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Abstract

A formulation of the agile production planning and controi system (APPCS, for short) is given
and its dafa model and methods are provided in this paper. The formulation consists of static modet,
planning and scheduling model, and control model. It is implemented as a simulator that can
produce feasible production plan and schedule, and agilely response to uncertainties using safety

lead time and safety stock for supplies.
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1. Introduction

Agile production planning and control system (APPCS) is a real time system that can respond
to uncertainty immediately. It was proposed by Sato and Tsai (2002) as innovation to the traditional
production planning, scheduling, and control system. It converts demands to a production and/or
procurement requirement, generates schedules to realize the production requirement, and controls
the processing of the schedules. This paper proposes a formulation of the APPCS that provides a
structure and procedures‘ for planning, schedﬁling, and event control according to .the following

system requirements.

1. Ability to make feasible production plan and schedule: A plan and schedule is a result of
planning and scheduling process. A plan and schedule is feasible if it is realizable and

executable in actual production. Sato and Tsai (2002) advocated that what is really problematic
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for a plan is not the nervousness of a planning and control mechanism but the exact feasibility
of the plan. A feasible plan and schedule for a demand makes the demand management be
capable of promising an order-delivery-date precisely. One of the weaknesses of MRP pbinted
out by Silver et al. (1998) that it uses a lead time specified by a user for each part and since
queues of the components of a part can be formed in front of work centers, actual lead time
varies. A feasible production plan and schedule hence becomes the first prerequisite of APPCS,

2. Flexibility of planning and scheduling: The traditional planning and scheduling follows the
natural flow of decisions in an organization (Shobrys and White, 2002). It first plans all the
materials and then allocates capacity to those materials. However, Goldratt and Cox (1986)
suggest that écheduling an important resource first can avoid the occurrence of bottlenecks and
improve the throughput of production. Thus, APPCS must provide a flexible procedure, which

. is specified by parameters, to efficiently allocate materials and iesources to a demand.

3. Agile response to uncertainties: Uncertainty becomes inevitable in modern iimes. It can be
regarded as an important message for the production system to keep up with the changing
market requirements. Sanchez and Nagi (2001) regards a planning, scheduling, aiid control
system that is able to re-schedule or recover from many uncertainties of the market as a further
research of agile manufacturing system. However, Silver ét al. (1998) indicated that the
frequent updates from the planning process leads to a poor communication between the
planning depm:tment and the manufacturing dei:artmént. Hence, APPCS is requested to provide
a structure to immediately response to uncertainty and cope with the uncertainty with less

conflict.

A similar structure was proposed by Hegedous and Hopp (2001) in calculating optimized safety
lead time for a purchase part. They modeled the whole produgtion process as a single machine.
Since different production processes are used for different products, it is plausible that the effect of
buffers on a whole production process varies among the structures of the process. Thus, it is

advantageous for setting of buffers to consider with BOM, routings and resources.
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Tu (1997) gives a problem domain to production planning and control in a virtual one-of-a-kind
production (OKP) company under uncertainty. The OKP offers ‘one’ product that belongs to
‘a-kind’ to an individual customer according to specific requirements. The problem domain shows
(1) real-time monitoring and control of production progress, (2) a control structure that can be
flexibly extended to cope with the uncertainties, and (3) an adaptive production scheduling structure
and the algorithms are needed, etc. The APPCS acts as a model of the physical process for the

problem domain.

To satisfy the above requirements, APPCS uses control structure of network, which is
composed of components and links. A component plays'a role of a provider, a requester, or both. A
link connecting a provider with a requester means that the provider offers components to the
requester for production. A demand is converted to the network structure by executing a set of
planning processes and scheduling processes. Each planning or scheduling process is processed for
a component. The planning process is to link a set of provider components with a requester
component. The scheduling process is to generate schedules by allocating finite capacity of

specified resource to the operations of the component.

A unique sequence of scheduling processes and planning process for a demand ié determined
by specifying some priority rules and constraints. Choosing next component for planning or
scheduling, and choosing an apt resource among candidates are such rules. The priority rules and
constrains are parameters to determine a flexible procedure of planning and scheduling. A demand
is backwardly scheduled from its promised delivery -epoch. If the result shows the demand must
start from the past, then a forward scheduling approach is substituted to plan and schedule the
demand from the present time, A feasible production plan and schedule of the demand is thus

generated.

The components in the planned network are executed as it was planned. The production control

of APPCS is to manage and monitor the execution of the on-processing components under
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uncertainties. An event will cause components of the network unpattainable. Except for the
on-processing components, the planned components that link to the components directly or

indirectly are cancelled and rescheduled to cope with the uncertainty. The network structure is

' designed to be able to do planning and scheduling over and over as any event is triggered. Thus,

APPCS is capable of handling uncertainties.

A data model for produc'; data management and planning is available in Scheer (1994). This
paper showed a basic augmeﬁmtion so that APPCS is possible. The formulation of APPCS, called
the APPCS model, is described by using the universal modeling language (UML) and illustrated
with class diagrams. Section 2 gives an introduction to the UML and provides a sample class
diagram. In section 3, a formulation of APPCS is presented as 3 sul;-systems. They are static model,
planning and scheduling model, and control model. The static model is to describe parts, BOM,
operations, work centers, and resources. The planning ’and scheduling model serves as a control
structure for planning éﬁd scheduling, and also production control. The control model defines
uncertainties and their impacts on the other objects. In section 4, we implement a simulator for

APPCS that uses safety lead time and safety stock under demand and supply uﬁcertaintics. Finally,

~ a conclusion is provided in section 5.

2. Modeling methodology
The UML is a language for specifying, visualizing, constructing, and documenting the artifacts

of software system, as well as for business modeling and other non-software systems (OMG 2000).
The language is composed by Foundation, Behavioral elements, and Model Management packages. .
The package here is a grouping of model elements. The UML Foundation Package defines the

constructs to abstract a static model. We follow the UML Foundation Package to model APPCS.

The UML Foundation Package is made up of three subpackages: the Core, the Extension
Mechanisms, and the Data Types. The Core package defines the basic abstract and concrete

constructs needed for the deyelopment of object models. The following constructs, which are part of
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the UML Core Package, are used in modeling APPCS. Figure 1 demonstrates a class diagram of an

example. The class diagram is a graph of model elements described as follows.

L.

Class: A class is the descriptor for a set of objects with similar structure, behavior,' and
relationships (OMG 2000). An object instantiates operations from a class and assigns values to
attributes of the class. In figure 1, Human, Mdle, Female, and MarriageRegistry are classes.
Mary and Smith are objects instantiated from the Human class.

Attribute: An attribute is a named slot within a class that describes a range of values that
instances of the class may hold (OMG 2000). In the diagram, name, weight, age, and marry are
attributes of the Human class. The object of the Human class has values of its attributes. For
example, the fact that the weight of Mary object equals 60 is written as Mary.weight=60.
Method: A method is the implementation of an operation. It specifies the algorithm or
procedure that affects the results of an operation (OMG 2000). In the sample, a method, eaz(),
is defined in the Human class. The method is instantiated as an operation of Mary object such
that Mary.eat() could increases Mary.weight,

Association: An association declares a connection between instances of the associated classes
(OMG 2000). The instance ofan association is a link, Which serves as a reference to the objects
it connects. In figure 1, MarriageRegistry and Birth are associations. The MarriageRegistry
regulates how object of the Male class is related to object of the Female class. A multiplicity
rule limits the number of target objects a source object can connect. For example, a male can
marry 0 or many (0..*) females and vice versa in one’s life. The Birth association reveals that a
human object must connect to at least a marriage registry.

AssociationClass: An association class is an association that is also a class. It not only connects
a set of classes but also defines a set of attributes that belong to the relationship itself and not
any of the classes (OMG 2000). The MarriageRegistry is an association class as shown in
figure 1.

Generalization: A generalization is a taxonomic relationship between a more general element
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and a more specific element. The more specific element is fully consistent with the more

general element and may contain additional information (OMG 2000). Figure 1 shows that

Male class and Female class are two generations of the Human class.
[Insert figure 1 about here]

The Extension Mechanisms package specifies how specific UML model elements are
customized and extended with new semantics (OMG 2000). A constraint is one of tﬁe extension
mechanisms. Tt specifies a semantic condition among model elements. A s‘ystem is valid only when
all of the constrains attached to it are proved to be true. In figure 1, “any male can only marry to a
female who is single, énd vice versa” is defined for the MarriageRegistry association. The Data
Type p;ctckage specifies data types that are used to define UML itself.

3. Aformulation of APPCS by UML
3.1. Static model

A part is a finished product, an assembly, or a raw material. A part is served as an input to or an
output from a manufacturiné process. A manufacturing process is a process of sales, production, or
procurement. A raw material is procured by releasing purchase orders to venders. A finished product
or an assembly is produced by its components, which could be other assemblies or raw materials. A
finished prdduct is sold to the customers. Figure 2, provided !ﬁy Vollmazi‘et al, (1997), shows a
product structure diagram of a snow shovel. In the ﬁgure, a rectangle represents a part, a solid line
with a number denotes a usage of production, a dot line expresses the procurement process, and an

arrow line indicates sales process.
[Insert ﬂgure 2 about here]

The production of a part is through a routing of operations that use components-of the part. For
example, the snow shovel is produced by (10) combining one top handle assembly with one shaft
by 4 nail-62s to make one work-in-process (WIP) A, further by (20) fixing one scoop-shaft

connector with one scoop assembly by 4 rivets to make one WIP B, and finally by (30) assembling
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A into B. Each operation is assigned to a work center for processing. The total processing time is
estimated by a summation of setup time, and processing time. The processing time is calculated by

multiplying unit process time with processing quantities.

A resource with a qualified skill is enrolled as a member of a work center that needs the skill. A
work center can enroll numbers of resources depending on the total capacity requirement. One of
the resources enrolled in a work center is dynamically selected by an operation assigned to the work
center when runs a planning and scheduling. The planning and scheduling process will be explained

in section 3.3 in further detail.

The capacity of a resource is finite and managed by shifts. A shift, represents an interval of
working hours, is specified for a resource on the planning horizon. The planning horizon indicates a
time toward the future for which production planning is made. By assuming finite loading, the
planning and scheduling uses the capacity of a resource only inside its shifis. Figure 3 demonstrates
instances of operation, work center, fesource, and shift, and mutual links among them. For example,
an operation (Combining) is processed at the work center (Drive), the work center enrolled two

resources (A, B, and C) with their respective shift.
[Insert figure 3 about here]

We compile and abstract the above descriptions as a static model of APPCS as follows. A class

diagram of the static model is shown in figure 4.
[Insert figure 4 about here]

1. The part objects are abstracted as a Parf class. The attributes of the Part class include leadTime
and inventory. The leadTime of a part preserves the estimated time for producing or procuring a
part regardless of its request quantity. The inventory is an initial stock that is lﬁossessed by the

production system from the beginning,
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2. The hierarchical relationships among parts can be ébstracted as a Bom association with its both
ends connecting with the Part class. A link of the Bom class in figure 2 is a solid line represents
a usage from a part to one of its components. Hence the Bom association is also a class with
attributes of part, childPart, and usage. A bill of materials (BOM) of a part is a set of the links
whose ‘part’ end connects to the part. The product structure diagram, as shown in figure 2, of a
part can be attained by spreading out its BOM downwardly and repeatedly until all raw
materials of the part are reached. A constraint is necessary to prevent the product structure from
an endless loop of BbM explosion.

‘3. A routing of operations of a part is abstracted as an Operation class andlthe Part class is a
composite of it. The attributes of the Operation class are oprld, setupTime, processTime, and
workCenter, The oprld is for identifying an order of operations. The total processing time
processed at the work center workCenter for making g pieces of a part equals to setupTime+
processlime X q.

4. The work centers and resources are modeled as a WorkCenter class and a Resource class with
an Enroll association between them. The Enroll association allows a work .cent-er to have more
than one resource, and a resource is possible to be enrolled in more than one work center.

5. The shifts are abstracted as a Shift class with attributes of resource, beginEpk and endEpk. The

Resource class is a composite of the Shift class.

3.2. Planning and scheduling model

A demand is a request made by a customer for a quantity of the finished product with a due date
specified, The demand arrives on a continuous basis; however, the planning and scheduling of the
demand can be processed either continuously or periodically. A production system can either accept
all coming demands or reject some of them by a judgment. A planned delivery date is set by a

-negotiation with the customer,

The planning and scheduling process, in turn, generates requests for the raw materials. The

request is in a similar form with the demand that indicates raw material, quantity, and request date.
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If the lot-for-lot (LAL) policy is specified, the purchase order, or we say supply from the view point

of vender, is just the generated request. Besides the L4L, economic order quantity (EOQ) and
periodic order quantity (POQ) rules are usually adopted. The EOQ is to minimize the ordering cost
and the inventory carrying cost by assuming a constant demanding rate in the periodic basis.
However, Vollman et al. (1997) pointed out EOQ resulfs in a mismatch between supply quantities
and actual request quantities in the case of MRP. An improvement of EOQ is POQ that applies EOQ
and thc;, demanding rate in computing an economic time between orders (TBO). The requests for the
same raw materials within the TBO, are aggregated in their quantities, and arranged to their request
dates to form a purchase order. The order has to be released to a vender no later than the
procurement lead time before its request date. A pIanne_d arrival date for the supply is then

determined by a negotiation with the vender.

Components, links, and schedules play an important role in keeping a result of planning and
scheduling process under the APPCS. A component is an information object that processes a
quantity of parts from a start epoch to a finish epoch. There is a request-provide relationship
between two components. The component provides a part for the other components is called a
provider, while the component requests a part from other components is a requester. To satisty a

minimum requirement of the APPCS, at least the following types of components are necessary.

1. Demand (DMD): A DMD component is a component form of a demand. It is a pure requester
whose requests can be satisfied by INV, SUP, REQ, or WIP component. The start epoch of the
DMD component is set to the due date of the demand.

2. Inventory (INV): An INV component is an information object for managing the inventory of a
part. It is a pure provider that provides the requests of DMD or REQ component. |

3. Supply (SUP): A SUP component is a component form of a purchase order. It is a pure provider
that provides requests to DMD or REQ component. The quantity of a SUP component is

released at the start epoch and can only be provided after the finish epoch.
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4, Net requirement (REQ): A REQ component is generated for filling up a shortagé that the gross

requirement is unable .to be supplemented by INV, SUP, and WIP components. It is both a
requester and provider type of componént. A REQ component starts processing.at the start
epoch by requesting necessary parts from its providers, After the REQ component is finished at
the finish epoch, it becomes available to its requester. |

5. Work-in-process (WIP): While a REQ component is processed, it is possible that its requester is
cancelled due to some unpredictable events. The on—proéessing REQ component can not be
cancelled due to a loss of setup time. The REQ component lost its requester becomes a WIP

component, The WIP component is a pure provider.

The request-provide relationship of two components is kept as a link. A requester component
can ask quantities from one or more provider components. A provider can also provide quantities to
several requester components. The link between é provider and a requester is a guarantee of the
provider for offering a quantity of part to the requester. A schedule is an actual processing interval
fof an operation of REQ or WIP coinponent. It is a subinterval of a shift assigned to a resource that
is qualified to process the operation. A valid schedule is an interval that has no intersection with

other schedules of the same resource.

We model the components, links, and schedules as Components, Links, and Schedules classes
respectively. The Component class has attributes of type, part, quantity, startEpk, and finishEpk. |
The Link class, which is also an association whose both ends connect to the Component class, has -
attributes of requester, provider; and wuseQty. The useQty is a promised quantity of a provider to a
requester. The Schedule class is aggregated to both the Component and Shift classes with attributes

of component, shift, operation, startEpk, and finishEpk.

The demands are abstracted as a Demand class with part, quantity, acceptEpk, deliveryEpk, and
demandCom attributes, and the supplies as a Supply class with part, quantity, releaseEpk,

arrivalEpk, and supplyCom attributes. The acceptEpk is a promised due date, while the deliveryEpk
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stores actual date of the delivery. The demandCom (supplyCom) provides an access link between a

demand (a supply) and a component. A class diagram for the planning and scheduling model is

shown in figure 5.

[Insert figure 5 about here]

3.2.1  Scheduling a component

The scheduling process is to allocate required processing time to the responsible resources. For
a REQ component, the scheduling process is to generate schedules for a sequence of operations
necessary for producing the part of the component. For each operation, it chooses a resource in the
work center that works for the operation, and allocating available working time of the resource to
the operation. The scheduling process places schedules backwardly from a future epoch or

forwardly from an epoch into the future,

The backwardScheduling () method of the Compor-tent Class shows how a provider component
is backwardly scheduled from an epoch that is the latest start epoch of its requester component. In
the method, a getdptResource() method of the WorkCenter class is a rule to pick up a resource
among resources in the Work cente;-. The alternative rules are (1) latest starting epoch (LSE) and (2)
lowest capacity rate (LCR), etc. To schedule an operation backwardly from its planned finish epoch,
the LSE rule picks a resource that can start the operation the latest. The LCR chooses a resource
that has the lowest capacity rate during a period of time. The backwardScheduling () method calls a
getPrevinterval () method of the Resource class to get a free interval of a resource before an epoch.
To a resource, a valid free interval is a subset of one of its shifts and has no 6ver1aps with any

planned schedules of the resource.

In the following methods, the class name with an italic font, such as Shift, means a set of
instances that are of the class type, and the class.namc with a normal font, such as Shift, means the
type of the class. The forwardScheduling() and getNextInterval () methods have a similar structure

with the backwardScheduling () and getPrevinterval () method, we leave the details to the readers.
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Resource.getPrevinterval (endEpk: Epoch): Interval
Shift F:= {f|feShift & f.resource=this & f.beginEpk<endEpk },
Schedule H:= { 4| heSchedule & h.shift.resource=this & h.startEpk<endEpk };
Interval i := NEW Interval(0, 0);
i.endEpk:=MAX {t|(VfeF)(tef)& (VheH)(teh)&t<endEpk};
i.beginEpk:=MAX {f.beginEpk|feF &f.beginEpk<i.endEpk<f.endEpk),
H'={h|heH&i.beginEpk<h finishEpk<i.endEpk};
IF H'#{}

i.beginEpk . =MAX { hfinishEpk|heH'}};
RETURN i;

Component.backwardScheduling (): void
Epoch latestFinishEpk:=MIN {l.requester.startEpk|le Link & . provider=this };
- Operation O:= {o|oeOperation & o part=this.part};
IFO={}
this finishEpk:=latestFinishEpk;
this.startEpk:=this finishEpk—this.part.leadTime;
ELSE
FOR 0e O DESCENDING BY o.0prid
Time reqTime:=o.setupTime+ o.processTime X this.quantity;
Resource r=: o.workCenter.getAptResource(latestFinishEpk, reqTime)
WHILE prclime>0
Interval i :=r.getPrevinterval( latestFinishEpk);
reqTime :=reqTime—(i.endEpk—i.beginEpk),
IF prelime<0
i.beginEpk:=i.beginEpk—prcTime;
Schedule :=Schedule’s {NEW Schedule (this, o, r, i.beginEpk, i.endEpk)};
latestFinishEpk =i.beginEpk;
ENDWHILE
ENDFOR
this.startEpk:= latestFinishEpk; _
this finishEpk:=MAX { h finishEpk| heSchedule & h.component=this};
ENDIF
RETURN

3.22 Planning a component

The planning process of a component is to determine the provider components for the requester
component. For a requester component, the planning process grants work-in-process, released
supply, and inventory to its grass requirements by making links to WIP, SUP and INV components.
The unsatisfied quantity, the net requirement, is then filled up by a new REQ component. The
planning( ) method of the Component class describes how a REQ component is planned. If start
epoch of the component is not yet decided, in the case of forward scheduling a demand, the

parameter £ gives an epoch for determining whether WIP, SUP can be used by the component or not,
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Figure 6 shows how component A is backwardly scheduled to 3 schedules and planed to 3

provider components. In the result of scheduling, resource P is chosen for that it can start later than
Q for operation 10. In the result of planning, a supply for B arrives too late (50t} for providing itself

to component A.

Component.planning (t: Epoch )

Epoch ifCanUseEpk =this.startEpk;
IF {fCanUseEpk=null
ifCanUseEpk =,
Bom B=: {b|beBom & b.part=this.part};
IF this.type="DMD’
Demand {d}:={d|deDemand & d.demandCom=this};
B:={NEW BOM (null, d.part, I)};
ENDIF
FOR next beB
float reqgQty :=b.usage % this.quantity;
Component C:= {c|ce Component 8 c.part=b.childPart};
Component W= {c|ce C&c.type="WIP’ & ¢ finishEpk<ifCanUseEpk};
Component S:={c|ce C&c.type="SUP’ & c finishEpk<ifCanUseFpk},;
Component I:= {c|ce C&c.type="INV’};
FOR ce(WuSuUI) ORDER BY c.type="WIP’, ‘SUP’, ‘INV’ ASENDING BY c finishEpk
float netQty :=c.quantity-3 {L.useQty|le Link & l.provider=c};
reqQty :=reqQty—netQty;
IF reqQty <0
Link:=Link\w {NEW Link(zhis, c, reqQty+netQty) }; BREAK;
ELSE
Link:=Linkw {NEW Link( this, ¢, netQty) };
ENDIF
ENDFOR
IF reqQty>0
Component :=Component U { NEW Component(”REQ”, b.childPart, reqQty, null, null ) };
Link:=Linkw {NEW Link (this, ¢, reqQty)};
ENDIF
ENDFOR
RETURN

[Insert figure 6 about here]

323 Planning and scheduling a demand

The planning and scheduling process is to convert a demand to a set of coniponents, links, and
schedules under inventories, released supplies, and work-in-processes. The process is a sequence of

a combination of planning processes and scheduling processes.
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Planning and scheduling of a demand in a top-down sequence from the DMﬁ component to the
REQ components of raw material is called backward scheduling of the demand. The demand is
backward scheduleci from its promised delivery epoch. If the start epoch of any component of the
demand locates in the past, then the final schedules are infeasible and a forward scheduling

approach is substituted to plan and schedule the demand from the present time,

Forward scheduling first plans components of a network in a top-down sequence, and then
schedules the components in a bottom-up sequence. The processing and scheduling process
continues until all the REQ components are planned and scheduled. A sequence of planning and/or

scheduling components in a network is determined by the following rules.

1. If backward scheduling is applied, no component .can be planned before it is scheduled. A
component is in a ready-for-schedule state of backward scheduling if its requester component is
planned. A component is in a ready-for-plan state of backward scheduling if it is scheduled,

2, If forwafd scheduling is applied, no component can be scheduled before it is planned. A
component is in a ready-for-plan state of forward scheduling if its requester component is
planned. A component is in a ready-for-schedule state of forward scheduling if it has no
provider or its provider components are scheduled. |

3. If more tﬁan two components are in ready-for-schedule, or ready-for-plan state, then other

priority rules are necessary to determine their scheduling or planning sequence.

The sequence represents a priority folr a component to consume quantities of valid provider
components and capacities of valid resources. We dembnstrate two methods of Demand class,
backwardScheduling () and forwardScheduling (), in the following context to solve the problem of
backward scheduling and forward scheduling. In Eoth methods, getNextScheduleComponent() or

getNextPlanComponent () is a rule to determine the next component for scheduling or planning.

Demand.backwardScheduling (): Component
Component de:=NEW Component (“DMD?”, null, null, this.deliveryEpk, null);
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Component := ComponentU {dc};
Component pList:={ dc}, sList:={dc}, dList:={};
WHILE pList#{}
THREAD

Component nsc:=getNextScheduleComponent (sList);

dList:=dListJ{nsc};

nse.backwardScheduling();

sList:=sList-{nsc};

pList:=pList {nsc};

ENDTHREAD

THREAD
Component npc :=getNextPlanComponent(pList),
npe.planning (null);

pList:=pList—{npc};
sList:=sList U {Lprovider|leLink & l.requester=npc & lprovider.type="“REQ” };
ENDTHREAD
ENDWHILE
RETURN dList;

Demand.forwardScheduling (t: Epoch ): void
Component d¢:=NEW Component(“DMD”, null, null, this.deliveryEpk, null);
Component .= Component\U {dc};
Component pList:={dc}, sList:={dc};
WHILE PlanList+#{}
Component npc := getNextPlanComponent (pList);
sList:=sList {npc};
npc.planning (t),
plList.:=(pListw {lprovider|leLink & Lrequester=npc} )-{npc};
ENDWHILE
WHILE sList#{}
Component nsc = getNextScheduleComponent (sList);
nsc.forwardScheduling(t);
sList:=sList—{nsc};
ENDWHILE
RETURN;

In the case of backward scheduling, the scheduling process decides member of planning‘ list,
the planning process decides member of scheduling list, and both processes runs concurrently,
hence a sequence can not be uniquely identified by the scheduling rule and the planning rule only.
To uniquely identify a sequence, a further constrain is necessary. For example, a breadth-first
sequence can be achieved by the constraint that the planning process can not start until the schedule
list is empty and the scheduling process can not start until the plan list is empty. A depth-first
sequence can be organized by assuming that schedule Iist is a stock and a component is planned

immediately after if is scheduled.



16

In the case of forward scheduling, the planning process appends provider components to the
planning list and scheduling list, and use a planning rule to choose the next component for planning,
After planning is finished, the scheduling process chooses the next component for scheduling

among the scheduling list by a scheduling rule. The sequence is possible to be uniquely identified

by using only a planning rule and a scheduling rule.

Figure 7 shows 3 sequences of planning and scheduling by assuming depth-first rule,
breadth-first rule, and no rule. In the figure, § indicates scheduling list, P planning list, Schix)

scheduling component x, and Plan(y) planning component y.

After all demands are planned and scheduied, a set of REQ components that have no provider
component is generated for requesting a quantity of raw materials. The L4L, EOQ, or POQ rules are
applied, and safety buffers are considered to generate a set of SUP components instead of the REQ
components. If a requester component whose net requirement is supplied by a SUP component, then

a link from the SUP component to the requester component with a request quantity is created.

[Insert figure 7 about here]

3.3. Control model

The production control of APPCS is a process to -manage and monitor the execution of planned
components and their schedules under uncertainties. An uncertainty is an unpredictable event that
could make the production plan invalid. If the production system does not learn to deal with it, it is
prone to cause the production system an inconceivable loss. For example, a demand change caused

by customer, forecasting error, and dramatic changes of cost in the market are such events.

APPCS response to the events by redoing planning and scheduling. An event will cause one or
more component of the network unattainable. Except for the on-processing component, the
components of the demand whose direct or indirect provider component is unattainable will be

cancelled and the processing and scheduling is run again for the demand. The control process
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continues for all the demands.
[Insert figure 8 about here]

The result of planning and scheduling of all demands becomes a network composed 0.f
' components and links. A network has a si:ate, and an event brings about state change to the network.
Figure 8 depicts how state (Sy) of a network is changed by an event (Ey). In the figure, a dot line
with its start point locates in the time axis and énd arrow pointing to a component shows an event,
and a bold line indicates componeht or link that has a direct or indirect request-provide relationships

with the component. Components affected by the event are possible to be unattainable.

Whybark and Williams (1976) pointed out sources of uncertainty are (1) supply timing, (2)
supply quantity, (3) dcmand‘timing, and (4) demand quantity. We model the events as an Event class
with its specific classes as shown in figure 9. The notifyEpk attributé of the class keeps the value of
epoch that the production system knows the event. For example, a supply change event can be
notified in advance by its vender before the promised delivery epoch. The specific classes are

corresponding to individual types of event described in the following.
[Insert figure 9 about here]

1. Aftera pui‘chase order is released for a supply, the event of SupplyUncertainty type is caused
by the vender notifying its delay in delivering and/or shortage of the supply. Any accident
occurred during transportation is also a possible reason for the uncertainty. A new delivery
epoch and/or a delivery quantity should also be provided by the vender.

2. After planning and scheduling is done for a demand, the event of DemandUncertainty type is
caused by the customer notifying its change in demand quantity and/or promised delivery
epoch. A correct request quantity and/or a new negotiated delivery epoch should be followed by

the event.
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Once an event is notified, handle() method of the Event class is triggered to handle the event.
To run the method, a status attribute belongs to the Component class is added to show the status of a
component whose possible values is “INITIAL” or “CHANGED”. A component is initialized to be
“INITIAL” after it is planned anci scheduled. Tﬁe components that are directly affected by an event

will be set to “CHANGED".

In the handle() method, the chémged objects are updated, directly related components are set to
be “CHANGED?”, a set of demands that at least one of its Iﬁrovider components is in “CHNAGED”
status is searched by a static getdffectedDemand () method, the not yet started components, which
are either REQ or SUP, that are planned for the demands are cancelled by a cancellnvalidPlan()
method of the Demand class, and finally the demands are planned and scheduled again according to
a priority of the demands. The priority, determined by a static method getNextDemand(), is possible
the earliest due date (EDD), or the shortest processing tﬁne (SPT) rule. Each demand is first
planned and scheduled by backwardScheduling () method. If the result of the backward scheduling

is invalid, then forwardScheduling () is adopted instead.

Event.handle (): void

CASE this.type ="DemandUncertainty”
this.demand.quantity .= this.changedQty;
this.demand.deliveryEpk = this.changedDeliveryEpk,
this.demand.demandCom.status .= “CHANGED”;

CASE this.type ="SupplyUncertainty”
this.supply.quantity =this.changedQty;
this.supply.arrivalEpk:=this.changedArrivalEpk;
this.supply supplyCom.status :=“CHANGED”,

ENDCASE

Demand D :=getAffectedDemand();

FOR Demand deD
d.cancellnvalidPlan (this.notifyEpk);

WHILE (Demand d:=getNextDemand (D))# { }
Component C:=d.backwardScheduling ();

IF (3ceC).c.startEpk < this.notifyEpk
d.cancellnvalidPlan (this.notifyEpk);
d forwardScheduling ();
ENDIF
D=D-{d};
ENDWHILE
this.delete ();
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RETURN

Static getAffectedDemand (): Demand

Component cList:= { c|ce Component & c.status=“CHANGED" }
Component dList:={}
FOR ceclList

IF c.type = “DMD”

dList:=dList U{c};

cList:=cList \ {l.requester|leLink & l.provider=c}—-{c};
ENDFOR ,
RETURN {d|deDemand & d.demandCom edList })

Demand.cancellnvalidPlan (notifyEpk: Epoch): void

Component pList:= { this.demandCom};

ENDFOR

FOR ceplist
L:={l|leLink&lrequester=c},
RC:={lprovider|le L & l.provider.type="REQ” & Lprovider.startEpk>notifyEpk};
SC:={lprovider|leL &l provider.type=""SUP” & l.provider.startEpk>notifyEpk};
pList:=(pList URCUSC)-{c};
Schedule:=Schedule — { h|heSchedule & h. component €RC};
Link:=Link—L,

ENDFOR

RETRUN

" 4. An APPCS based simulator integrated with APS

For calculating necessary rate of safety lead time buffer and/or safety stock against a rate of
supply time or quantity uncertainty to attain a service level under APPCS, a simulator is designed
by following the APPCS model and implemented by integrating a scheduler of advanced planning

and scheduling (APS) that is provided by Symix (1998).

4.1. Simulation design

The data for simulation is drawn from an ABC plant. Sets of all parts, operations, work centers,
resources, shifts, demands, and supplies in the ABC plant are defined as Part, Operation,
WorkCenter, Resource, Shift, Demand, and Supply respectively, A -set of links between the higher

and the lower level of parts is Bom.

Assume that all of the products have respective three-level BOM, The set of part in level i is Pj,
1<i<3. The number of P; is. 8, which is expressed By |P;|=8, and |P;|=12, |P3;]|=20. For a

part p € P;, a number of component parts B(p)={b.childPart|beBom&b.part=p} are randomly
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selected from Pji;, and the number satisfies 1<|B(p)|<4. For a beBom, its usage satisfies

1=busage<4. For apart pe P, 1<i<2, a set of operations O(p)={o|oeOperation & o.part=p}
is generated by following 1<|O(p)}{<6. For a raw material p € Ps, the purchase lead time satisfies

Oh<p.leadTime<48h.

For an operation o, o.workCenter is randomly selected from WorkCenter, its setup time satisfies
Oh<o.setupTime<0.5h, and processing time per item Oh<o.processTime<0.2h. The number of
work centers is 4, and each work center has a distinct resource. In the simulation every resource has
the same shift that works from 0:00 to 10:00 everyday without vacation or maintenance, In the
simulation, above product data are randomly sampled from respective uniform distributions with
the ranges. The planning horizon is defined within 31 days from 2000/01/01 00:00 to
2000/01/31/23:59. The required quantity for a demand deDemand varies according to the
exponential distribution with the average of 10 pieces. The following rules are used in the

simulation for planning and scheduling,

1. As planning and scheduling a set of demands, we adopt EDD rule by granting pr1or1ty to the
demand that has the earliest due date, and des1gn it in the getNextDemand () method.

2. To uniquely identify a sequence of planning process and scheduling process in backward
scheduling of a demand, the “depth-first sequence rule” is specified in the simulation.

3. The next component selected for scheduling is the component that has the earliest finish epoch
as implemented in getNextScheduleComponent ().

4. The next component select for planning is the component with the earliest start epoch as shown
in getNextPlanComponent ().

5. The LSE rule is used in selecting an apt resource among resources in a work centef. The rule is

implemented in the getdptResource() method of the WorkCenter class.

‘ Static getNextDemand ( D: Demand ): void
Demand {d} =MAX{d.acceptEpk|deD}
RETURN d;
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Static getNextScheduleComponent ( C: Component ): void
Component {¢} =MAX({ c.finishEpk|ceC}

RETURN ¢;

Static getNextPlanComponent ( C: Component ): void
Component {c} :=MAX({ c.startEpk|ceC}
RETURN ¢;

WorkCenter.getAptResource ( latestFinish: Epoch, PrcTime: Time ): Resource

Resource aptRes =null;
Epoch latestStartEpoch:=0;
FOR re {e.resource|ecEnroll & e.workCenter=this }
Interval i;
Time reqTime:=prcTime;
Epoch lfe:=latestFinish;
WHILE reqZime>0
i:=r.getPrevinterval(lfe); _
reqTime :=reqTime—(i.endEpk—i.beginEpk);
IF reqTime<0
i.beginEpk=1i.beginEpk—reqTime;
Ife:=i.beginEpk,
ENDWHILE
IF i.beginEpk> latestStartEpoch
latestStartEpoch :=i.beginEpk;

aptRes :=r;
ENDIF
ENDFOR
RETURN aptRes;

We adopt one periodic order quantity (POQ=1) rule to decide the lot size of procurement. The
procurement () method shows how set of SUP components is generated from the result of planning
and scheduling in the simulation. The specification of safety buffers makes a SUP component have

an earlier startEpk or request a more guantity than required.

Static procurement (bufferType, bufferRate: float ): void
FOR pepP;
Component C:={c|ce Component & c.type="REQ” & c.part=p};
IF C={} ,
Epoch finishEpk:=MIN{ c.finishEpk|ceC};
float quantity =3 { c.quantity|ceC};
Epoch startEpk:=fnishEpk—p.leadTime;
IF bufferType="SafetyStock”
quantity =quantity % (1 + bufferRate);
IF bufferType=""SafetyLeadTime”
startEpk:=startEpk—bufferRate % p.leadTime;
Component ne:=NEW Component(“SUP”, p, quantity, startEpk, finishEpk);
FOR le{l|leLink &l provider € Com}
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l.provider :=nc;
Component == Component U {nc}—C,
ENDIF
ENDFOR -
RETURN | '

Now we proceed to uncerfainty—related issues. For a purchase order seSupply, its notification
time is located between s.releaseEpk and s.arrivalEpk. The shortage of supply quantity is smaller

than s.quantity. The delay of supply is smaller than s.part.leadTime.

For a demand debemand, notification of change occurs before the earliest start epoch of
components that are related to d. The time when a customer asks earlier shipment than initial due
date is smaller than the total processing time of the demand. Extra quantity reqﬁested by a customer
for an initial demand is less than the demand's requirement quantity d.quantity. All of these

uncertainties are sampled from suitable uniform distributions in simulation.
A test case in simulation is a combination of the following five parameters.

1. Advanced notification is possible or not.

2. Source of uncertainty specifies either demand uncertainty or supply uncertainty.

3. Type of uncertainty specifies either time or quantity.

l4. Level of uncertainty, Degree of demand uncertainty is high (75%), medium (50%) or low
(25%). The degree is defined as the ratio of the changed demands to the total demands. Degree
of supply uncertainty is high (50%), medium (25%) or low (12.5%), which is defined similarly.

5. Rate of buffer. Degree of safety lead time buffer takes a value in {0, 0.1, 0.2, ..., 1.0}. It is
defined as the rate of additionally reserved lead time to the predefined procurement lead time.

Degree of safety stock buffer is a rate of additional quantity to total required quantity.
[Insert figure 10 about here]

For example, a case has high-level uncertainty in supply quantity and 20% safety lead time

with advanced notification. Then, APPCS schedules with procurement lead times 1.2 times longer
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than usual, and 75% of purchase orders will change in respective quantities. Such a change is
notified from a supplier and causes rescheduling, depending on the epoch of notification, Each case
is simulated 40 times to provide a data for the case, and performance indices are calculated for the

data.

Figure 10 shows a class diagram for the simulation design. A test case is set by specifying
values of repeatTimes, eventType, eventRate, eventLevel, bufferType, bufferRate, and ifNotify. Based
on specification of the test case, values of Part, Bom, Operation, WorkCenter, Resource, Shift,
Event, Demand, Supply, Component, Link, gnd Schedule are initialed for a simulation by initialize ()
method. Then the simulation is run by the run() method, and finally its result is saved for further

analysis by the save() method. A design spec. of the run () method is demonstrated as follows.

Simulation.run (): void

this.initialize (),

WHILE (Demand d:=getNextDemand (Demand)+#{ })
d.backwardScheduling (),

ENDWHILE

procurement (te.bufferBype, tc.bufferRate);

FOR e € Event ASENDING BY e.notifyEpk
e.handle();

procurement (tc.buffer ype, te.bufferRate);

ENDFOR

this.save();

RETURN

4.2, Simulation result

The simulation result is analyzed and evaluated by service level. The service level is defined as
an average ratio between the number of demands delivered in time and the number of all demands

as shown in (1).

| {d | d € Demand & d.deliveryEpk < d.acceptEpk} |
“ | Demand |

ey

service level =

Figure 11a shows the relationship between service level and rate of buffering. The hollow
curves depict that relationship with safety stock (sb_), while the solid curves depict that with safety

lead time (Ib_). For both kinds of lines there are three cases. They are under high (_htu), medium
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(_mtu) and low (_ltu) levels of supply time uncertainty. The higher the rate of uncertainty is, the

lower the service level can be achieved. We observe that the service level increases much sharply

with rate of safety lead time buffer than that of safety stock buffer.

The reason why safety time is effective ;égainst supply time uncertainty is two folci. When thé
prescﬁbed safety time is longer than delay time, or when the notification time is early enough, the
uncertainty won'’t delay the production. This result suggests that safety lead time can be adjusted by
the APPCS to achieve a target level of service in different degree of uncertainty environments.
When safety stock is used to against supply time uncertainty, there is an upper limit of service lével
for each level of uncertainty. Hence, safety time ié more flexible than safety stock under supply time

uncertainty.

Figure 11b shows the relationship between service level and supply quantity uncertainty. Since
each service level goes gradually up to 100% as rate of both buffers increased, both types of buffer
are effective against supply quantity uncertainty. When supply quantity uncertainty is informed,
some action must be taken to supplement the shortage. If safety time is reserved, releasing another
purchase order is’inevitable and no production can be started until the arrival of the purchase
material. If safety' stock is reserved, the shortage is supplemented either from stock or by releasing
another purchase order. The result of the experiment shows that both buffering approaches are

adjustable to achieve a target service level under supply quantity uncertainty.

Figure 1lc and 11d shows the result of the same experiment with figure 1la and 11b
respectively, but the plant won’t know the change until the promised delivery date. Thus, the effect
of notification on service level can be obtained by the difference of the two pairs of figures. By
comparing figures 11a with 11c, we observe that safety time is more effective than safety stock. The
comparison of figure 11b and 11d brings us the fact that the service level for using safety lead time

falls dramatically.
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[Insert figure 11 about here]

Among the related works in comparing safety time and safety stock, the pioneer research is
done by Whybark and Williams (1976) who compares the two buffers under both demand and
supply uncertainty. They modeled a representative part in an MRP system. They concluded that
safety time buffer can protect from time uncertainty and safety stock buffer performs well under
quantit‘y uncertainty in either case of demand or supply. Grasso and Taylor (1984) and Buzacott and
Shanthikumar (1994) have done a related research and have different suggestions, Hegedous and
Hopp (2001) reveal that the setting of safety lead time provides production flexibility in the form of

build ahead that helps deal with capacity issues.

Under an assumption that any uncertainty will be informed by demand or supply side earlier
than shipment or delivery date, the safety time acts more flexible in response to the four types of
uncertainty than the safety stock. Besides, we found that the earlier notification policy, which
enables the releasing of another purchase order‘ if the rescheduling suggests, shifts fhe service level

and decreases the delay time dramatically under demand side uncertainties.

We conclude that the approach of earlier notification plays an important role in supporting
policy of safety time buffering both to achieve a higher service level under supply time uncertainty
and to keep the same service level with safety stock under supply quantity uncertainty. The
nofiﬁcation approach can be regarded as another form of safety tirﬁe that is offered by external

venders and with less effort.

5. Conclusion

We abstract agile production planning and control system as the APPCS model that contains
static model, planning and scheduling model, and control model by using UML. The objects in
static model are similar to usual MRP, consisting part, BOM, operation, work cente;, resource, and
shift (work hours). The planning and scheduling model provides a flexible structure for planning

and scheduling, and production control. The control model defines uncertainties and their impacts
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on the other objects. The structure is a network which consists of components and links. A
component is a requester, provider, or both. A link represents that a requester consumes quantities of

a provider. Planning and scheduling process changes the state of a network.

If some priority rules and parameters, such as lot size, lead time, safety stock, are specified,
then a feasible production plan can be generated and regenerated against uncertainties. The APPCS

mode] has been shown useful by applying it in an implementation of a simulator.

The simulator has been used to advise a necessary rate of safety lead time buffer and/or safety
stock against a rate of supply time or quantity uncertainty to attain a service level. It showed that
when notification system is set, safety lead time buffer performs well under both time and quantity
uncertainty, but safety stock buffer is only effective in against quantity uncertainty. The approach of

earlier notification is a complementary policy for safety time approach under supply uncertainties.

In order to control a business process with high quality of performance, qualitative analysis of
dynamic property such as Sato'(1999) is not sufficient. The design of dynamics of a business
process is necessary. If we could bring planning components into the design of business processes,
then the whole control mechanism can be explicitly managed. The result of this paper plays a basic

role for that purpose.
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