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Abstract:

We first derive that conditional expectation for technical inefficiency in stochastic
frontier production models is an increasing function of the individual firm's
inefficiency effect which is defined as the mean of the normal distribution that is
truncated at zero. The finding provides a theoretical basis for using the Battese and
Coelli (1995) type specification. Second, we derive a confidence interval of
prediction for technical inefficiency, which is shown to be useful for evaluating the
reliability about prediction through numerical illustrations and an empirical study

on the Japanese pharmaceutical industry.



1. Introduction

Since the stochastic frontier production function was independently
proposed by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck
(1977), there has been considerable research to extend and apply the model. The
stochastic frontier model presumes the existence of technical inefficiencies of
production for individual firms, Kumbhakar, Ghosh and McGuckin (1991) and
Reifschneider and Stevenson (1991) proposed stochastic frontier models in which
the inefficiency effects are expressed as an explicit function of firm specific
variables. Battese and Coelli (1995} extended their models for panel data. Recent
empirical studies including Battese, Heshmatiand and Hjalmarsson (2000) and
Kim (2001) eﬁctensively adopted this type of specification for technical efficiency.

Battese and Coelli (1988) define the technical efficiency of a given firm at a
given time period as the ratio of its mean production (conditional on its levels of
factor inputs and firm effects) to the corresponding mean production if the firm
utilizes its levels of inputs most efficiently. The technical inefficiency (i.e., technical
efficiency subtracted from one) is a random variable which takes the values
between zero and one, and usually predicted by its conditional expectation on the
dbservations. Battese and Coelli (1995) and their followers implicitly postulate that
the inefficiency effects (1, by the notation in Section 2) is positively related to the
predictor for technical inefficiency. Even though their postulate looks intuitively
reasonable, it is not trivial to see how the inefficiency effects affect the predictor
because the shift of the former affects the latter in a highly nonlinear fashion.

On the other hand, the predicted values for technical inefficiency have been
reported in many empirical studies. However, none of the previous researches,
seems to have discussed the reliability about prediction.

The purpose of the paper is twofold. First, we analytically investigate the
relationship between the inefficiency effects and the predictor for technical
inefficiency in the model of Battese and Coelli (1995). We find that the predictor is
an increasing function of the inefficiency effects. This finding confirms Battese and

Coelli (1995)'s implicit postulate, and provides a theoretical basis for using their
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specification for technical inefficiency. Second, we propose a method for
constructing confidence interval for prediction in order to evaluate the reliability
about the predicted values. For any given significance levels, the lower and upper
confidence limits are an increasing function of the inefficiency effect, Numerical
illustrations indicate that prediction can be very inaccurate for some cases
depending on the choice of parameter sets for the model. We will give a simple
example of stochastic frontier model using panel data from the Japanese
pharmaceutical industry in order to examine the empirical significance of our
confidence interval argument.

The paper is organized as follows. Section 2 describes the model. Section
3 discusses the relationship between inefficiency effects and the conditional _
expectation for technical inefficiency, proposes a confidence interval for prediction,
and finally gives numerical illustrations. Section 4 examines a simple empirical
example from the Japanese pharmaceutical industry. Section 5 states concluding

remarks.

2. The Stochastic Frontier Production Model

We consider a stochastic frontier production function:

Y:'r =X“ﬂ+6‘” ’ ) ' (1)
&, =V, -U, ,i=L.,N;t=1.T,

where Y, denotes the-output (in logarithms) for the i-¢A firm at the #th time period;
X is a 1xk vector of k input variables (in logarithms); 8 is a kx1 vector of k
unknown parameters; N is the number of firms and T is the number of time
periods. Random variables ¥, are assumed to haveiid N(0,o7) distribution
and non-negative random variables U,, are assumed to haveiid N(u,,c})

distribution truncated at zero,

Hy= 25, ’ . (2)



where Z,is a 1x p vector of variables which influence the inefficiency of a firm and
dis a px1 vector of unknown parameters. The ¥, are assumed to be independent
of U, .The U, accounts for technical fne&iciency in production for the i-th firm
at the #-th time. The y, is the mean of the normal distribution that is truncated at
zero, and indicates the inefficiency effects for the i~¢4 firm at the #th time.

This model specification, which was developed by Battese and Coelli
(1995), allows the mean to be a function of the characteristics for the individual
firms at time t. It encompasses a number of other specifications as special cases.
Variables such as firm size and the ratio of external capital could be related to .
Battese and Coelli (1995) implicitly postulate that s, is positively related to the
expectation of technical inefficiency for production (i.e., the expectation of
equation (3)) conditional on &y Flowever, it is not trivial to see how y;, affects the
expected value because the shift of , affects it in a highly nonlinear fashion. We

examine this problem in the next section.

8. Technical Inefficiency
3.1 Technical Inefficiency and Its Distribution

Battese and Coelli (1988, p.389) define the rate of technical efficiency of
production for the 7-th firm at the #th time as a ratio of its mean production to the

corresponding mean with U,, =0

EE* U, X))

it = %* - . ’ (3)
E(Yrr [Uu _Oa Xn)

where Y, * (= exp(X; B8+ V,- Uy)) denotes the value of production in original units.
Necessarily, it holds taht 0 < TE, < 1. Alternatively we can discuss the problem in

terms of the technical inefficiency defined by 77E,=1 - 7E,,. Then, the rate of

technical inefficiency becomes



TIE, =1-exp(-U,,), (4)

which is a random variable taking the values between zero and one. We simply
call 77E, the technical inefficiency of production as well as U,, . There should be
no confusion.

The main concern of the paper is to predict the values of 77E, on the basis of
information for Y, and X, Weare only able to estimate ¢, (= V,,- U,, ). The
distribution of 77E; conditional on g,is derived in the next theorem. All proofs of
theorems and corollaries are given in Appendix.

Theorem 1: The distribution and density functions of 77E; conditional on ¢;are

respectively given by

FTI(wl 55,;;!,-,*,0'*) = PI‘{ TIE:-t = Wl gir}

1 O g0 (o 5
Dy /o)
and
fTI (wl 5;,:#,-,*,0'*) 5= ¢((4u1t +10g(1—W))/0' ) for w (O <w< 1), (6)

o* @y, 1o")1-w)

whete 4, = (024, ~o%e,) (ol +07), o =yforor or +o3) , @(+)and & *)

denote the standard normal distribution and density functions.

The distribution in Theorem 1 is the sole source for inference on technical
inefficiency. For the completeness of discussion, we derive the unconditional
distribution of 77E,

Corollary 1: The unconditional distribution and density functions of 77E, are
respectively given by



By (W s py,0y) = Pr{TIE, g w)

_1_ Dy +logd~w)/oy)
=1 ONED forw (0 <w<1), ‘ (7)

and

(4, +log(l-w))/ o)
oy @y, oy )1-w)

Juw s py,0y) = forw (0 <w< 1). (8)

We note that the unconditional distribution of 77E, is identical to the conditional
distribution with g,"and o replaced by u,ando,, .

3.2 Prediction for Technical Inefficiency
A natural predictor for technical inefficiency of preduction for the 7-t4 firm
atthe #-th'time conditional on the value of ¢,is given by its conditional

expectation:
E(TIE, |&,) = ETIE(p,, | £,,)

=1 {optpgho IO, /0)-0) /8K, 10 g

Equétion (9) was derived by Battese and Coelli (1993, p.20). We note that
4, and o™ are given by (6) and the former is a function of x, . The values of (9)
depend on the observations of Y; and X, through &,

The following theorem clarifies the relation of the predictor for technical
inefficiency given by (9) to y;,.
Theorem 2:For all u,, the following relationship holds:

BETIE (1, | 5,)/ oty > 0. | (10)

Theorem 2 implies that the predictor of technical inefficiency for the i-th
firm at the t-th time is an increasing function of 4, . The evaluation of y, is justified



in order to analyze the technical inefficiency. Theorem 1 clarifies the role of u, as
an inefficiency measure for the individual firms in the Battese and Coelli (1995)
specification, and provides a theoretical basis for tising their model. Although

Battese and Coelli (1993) derived the equation (9), they did not develop the
relationship between p, and the predictor.

IfT=1and g, =u foralli, the model of (1) and (2) reduces to the
Stevenson (1980) specification. Although this is a more general error specification
than a half-normal distribution originally proposed by Aigner, Lovell and Schmidt
(1977), Stevenson (1980) did not explore its implication for technical inefficiency.
Theorem 2 implies that 4 is positively related fo the amount of technical

inefficiency of production. If we specify u, =g, for all t, then g stands fora

location of an inefficiency random variable U, ~ |N (u4:,0%)|, which in turn

indicates the individual firm effects,
Corollary 2:If we condition the error terms at g, = g (=¢,), then the individual

firm effects satisfy the relation:
#; > u, ifand only if ETIE(y, |&,)> ETIE(y, |¢,). (11)

‘Corollary 2 implies that the production technology for the i-# firm is less efficient -
than that of the j-tA firm if and only if 4, > 1, in the sense that the conditional
expectation of inefficiency for the i-th firm is greater than that for the j-th firm.
So far we have concerned with the prediction conditional on the value of
& The unconditional version of Theorem 2 may be of theoretical interest. By an

analogous manner to (9), we define unconditional quantities
ETIE(u, )= E(TIE, ) =1~ E(exp(-U,,) ). Then, we can obtain

U, [oy)=0oy) exp{ —pt, +oy 2}. (12)

ETIE(y,)=1-
‘ CD(,U,, /O-U) ' :




The right hand sides of (12) is solely determined by the distribution of U,, and do
not incorporate the observed information on Y;, and X,,.

Theorem 3: For all 1, , the following relationship holds:

OETIE(u,)/ 8, >0 . (13)

Theorem 3 has parallel interpretation to that of Theorem 2.
Corollary 3:1f we specify u, =y, for all t, then the individual firm effects satisfy

the following relation:

#; > p, ifandonly if ETIE(w,)> ETIE(y,). (14)

Theorem 2 and Corollary 2 may not be meaningful from the view .point of
empirical study because they do not reflect the information on the observations of
Y and X;, However, they articulate the nature of technical inefficiency for the
Battese and Coelli (1995) specification in the stochastic frontier models.

3.3 A Confidence Interval for Technical Inefficiency ‘
In this section, we construct a confidence interval of prediction for technical

inefficiency. First, we define the quantile point w for a given level o (0< o < 1) as
a =Pr{ TIE, <w}e¢,} Then, we obtain from (5)

w= oy, | £,50) =1-explop, *+0* &7 (1~ 2)D(k, */ *))} . (15)
The value of (15) depends on the observations of Y, and X, through ;. Theorem 4
clarifies the relationship between p;, and the quantile point stated in (15).

Theorem 4: For all 4, the following relationship holds:

Oc(u, | €,3c) B, >0  for anyO<a<l. ' (16)



Theorem 4 implies that the conditional quantile point for the i-th firm at the t-th
time is an increasing function of 4, for any fixed value of o.. The distribution
function shifts to the right along with 4, .

Corollary 4:1f we specify u, =y, for all t and condition the error terms at g, = €t
(= ¢,), then the individual firm effects satisfy the relation:

C#;>py ifand only if ey |&;0) > e(u, | &,3a) forany 0 <o <1. (17)

The inefficiency measure of (15) has the same properties as the predictor
(ETIE(y, | £,) defined by (9)), concerning the relationship to 4, .

Second, we use the quantile points for constructing a confidence interval of
prediction. We define a confidence interval with a confidence level of 1 - 2a by
[c;, cy]. The lower and upper confidence limits (¢, and ¢, ) are respectively
calculated from o =Pr{ TIE, <¢, |¢,} and a=Pr{ TIE, 2¢, | &,}. Then, we

obtain from (15)
¢, =clyy | &sa), oy =clu,|&sl-a). (18)

The values ¢, and c, depend on the observations through ¢, and can be estimated
by replacing the unknown parameters with their estimates. By Theorem 4, both
c,and ¢, are increasing in 4, .

The unconditional quantile point w for a given level o (0< o < 1) is defined
by «=Pr{ TIE, < w} Then, we obtain

W= C(ﬂ,—, ;a) =1- &Xp {—,u,, +oy @ ((1 - a)q)(ﬂit /O-U ))} . (19)

The right hand side of (19) does not incorporate the observed information on Y,
and X,. ' '
Theorem 5; For all y,, the following relationship holds:



Oc(pt ysa)/0u, >0 for anyO<a<l. (20)
The unconditional confidence interval can be defined in a similar manner to (18).

3.4 Numerical Illustrations

This section numerically illustrates the prediction for technical inefficiency
and its confidence limits. The conditional distribution is completely characterized
by p* and o*. Hence, the predictor and the confidence limits with a specified
confidence level (1- 2ct) are completely determined by them.

Figures 1(a) and (b) draw the density functions of TIE, conditional on &,
for some sets of parameter values of p* and c*. The densities are quite
sensitive to those parameters. If u,* is fixed constant, the distribution becomes
muore flat as o* increases. If 6* is fixed, the distribution shifts towards one as u,*
increases. .

Figures 2(a)-(d) illustrate the prediction, the lower and upper confidence
limits with confidence level of 0.90 (o= 0.05) against p,* for the cases of o* =1.0,
0.5, 0.2 and 0.1 respectively. As have been proved in Theorems 1 and 2, we see that
the predictor and the lower and upper confidence limits are increasing in p,*.
Depending on the values of o* and p,*, the prediction for technical inefficiency can
exhibit quite diverse values. As o* goes up large, the technical inefficiency shifts
upward, and become possibly very large. Table 1 shows the predicted values and
90% lower and upper confidence limits for some specific sets of parameters. For
example, suppose that p,* =0.0. Then, if o* = 1.0, the predicted technical
inefficiency is as large as 0.477, the lower limit is 0.061 and the upper limit is 0.868.
In this case the prediction is very inaccurate. On the other hand, if o* = 0.1, the
prediction is reasonably accurate.

We do not know the value of o* in advance. In the empirical study about
agricultural production by Battese and Coelli (1995), we can calculate the value as
o* = 0.18. Their study is close to the situation illustrated in Figure 2(c). The
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technical inefficiency in Battese and Coelli (1995) is reasonably small, and the
confidence limits may not be far from the predicted value if they are compared
with the cases (a) and (b) in Figure 2.

" We can say that the confidence limits provide useful information on the

reliability about prediction.

4. An Empirical Example

We investigate an empirical example of stochastic frontier model using
panel data from the Japanese pharmaceutical industry. We do not intend to
analyze the production function for this industry in detail. The purpose of this
section is only to illustrate the empirical significance of our previous arguments.

" We choose four firms (Sankyo Co., Takeda Chemical Industries, Shionogi & Co.,
Tanabe Seiyaku Co.) from the pharmaceutical industry during the data periods
from the fiscal years 1979 to 1998. We employ a simple Cobb-Douglas type
production function.-We assume that p, represents only the individual firm's effect
and is independent from time periods (i.e., = u;). The modél presumes that-all
the four firms have the same production technology through observation periods,
but the technical inefficiency (TIE, in the equation (4)) differs through individual
firms and time periods. ,

The single output of the firm is defined by “ operating profits’, the capital
input (K) is “ fotal fixed assets minus land values” .These variables are measured
in terms of a million yen. The labor input (L) is “number of officers and personals”
The data are complied from "NIKKEI ZAIMU DATA" published by The Nihon
Keizai Shimbun. _

The calculation is carried out by the computer program, FRONTIER 4.1,
written by Coelli (1996). The maximum-likelihood estimates and their standard
errors (in parentheses) are reported according to the format of Battese and Coelli

(1995):

Stochastic Frontier:

n



Log(Y,)=- 3839 + 1003Log(Ly) + 0508 Log (K (21)

(0.85) (0.18) (0.092)
Inefficiency Mean:
k= -1117 +1.718D,+ 1.841D,+ 1.821D,, (22)
(0.092)  (0.062) (0.037)  (0.012)
Variance Parameters: 6*=0.0825, 7=0.224 , (23)
(0.0076) (0.044)

Log{likelihood) = -16.81

In equation (23), 6 and y are defined as o? = o2 + o2 and
y =0}, (o} + o) . We note that the durnmy variables Dy, (=1 if k = i; = 0 otherwise;
k,i=2,3 and 4)) indicates the individual firm effect on p, . The estimated
coefficients of the stochastic frontier have signs and magnitudes anticipated from
economic theory. The sum of the coefficient of labor (1.003) and that of capital
(0.508) is greater than one, which indicates increasing returns to scale for
production. .

The values of y, are of particular concern. The all coefficients on the
dummy variables are significant and take values around 1.8. The y, of the firm 1 is
less than other three firms. The firm 1 is technically more efficient than others in
terms of the mean i, . We can calculate o* = {y(1 —y)o? } "= {0.224x (1 -
0.224)x0.0825 }*/?= 0.120. This value roughly corresponds to the case of Figure 2(d).

We evaluate the predictor of (9) for each firm at the average of p,* over time,
- 1 T - - 1 T
pr=m 2 W ==m=ye . & =7 2.8 (24)
=1 =1
Table 2 shows the predicted values and the lower and upper confidence
limits calculated from the equations (9) and (18). The inefficiency for the firm 1 is
0.015. We can see from Figure 2(d) that the confidence interval for this predicted
value is very narrow even if the confidence limits are not directly calculated in
Table 2. The firms 2, 3 and 4 are technically less efficient. The ETIE of the firm 2 is

0.447, and its 90% confidence interval consists of [0.331, 0.549]. The predicted value

12



is less accurate compared with the firm 1. The empirical example in this section
indicates that the confidence interval exhibits a measure on reliability for

prediction.

5. Conclusion

Battese and Coelli (1995) specification is flexible for expressing the technical
inefficiency for an individual firm at a time period in stochastic frontier models.
Their model has been applied for many empirical studies. However, their model
implicitly lays an important postulate that the inefficiency effect (u,) is positively
related to the expectation of the technical inefficiency for production. The paper
analytically confirms their postulate. This finding presents a theoretical basis for
using their specification.

Many previous empirical studies for stochastic frontier models reported the
predicted value for technical inefficiency, but never discussed reliability about
prediction, The paper derives a confidence interval of prediction for technical
inefficiency. The confidence interval is shown to provide a useful measure for
evaluating the reliability about prediction through numerical illustrations and an

empirical study on the Japanese pharmaceutical industry.
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Appendix

‘We prove theorems and corollaries stated in the text without proofs.
Proof of Theorem 1: Battese and Coelli (1993, p.20) derive the density of

U,, conditional on &,as

(U, - ,“;:)/0")
o Oy, 1o')

SoWU,le, )= Uy, 20. (A1)

Then, we have
-Pf{ TIE, < Wl &}

= fw S| &)du, a=-log( 1-w)

z ‘
= L O 3 - ‘ (A2)

515
where a* = (a — 1, *)/o*. This leads to (5). Differentiating (5) with respect to w, we

have (6). W
Proof of Corollary 1:The uncondltxonal distribution of U is identical to (A.1) with
4, and o replaced by u,ando, . Hence, (7) and (8) are derived by a similar

manner to Theorem 1. M

" Weshowa prelinﬁnary result in the next lemma which is useful for
prdving Theorems 2and 4.
Lemma I: Let us define two functions as g(x) = ¢(x) / ®(x) and h(x) = x + g(x),
where ¢(-) and ©(-) respectively represent the density function and the distribution
function of a standard normal random variable. Then, the following inequalities
hold:

() <0 and ahx) —— >0, forallx. (A3)
dx dx

Proof :From Battese and Coelli (1992, pp.163), we have

EU)=oy, Wuloy)>0, (A.4)

16



VanUy=oy {1~ g(u! o )h(u! o)} >0, (A.5)

where U is a nonnegative random variable from |N (4,07)|, which denotes a

truncation (at zero) of normal distribution with mean p and varianceo;. The

inequality in (A.4) follows from U > 0. Differentiating g(x) and h(x) with respect to

x, we have

ED ) and Poiogipy . (A.6)
The first and second inequalities in (A.3) respectively follow from (A.4), (A.5) and
(A6). N '

Proof of Theorem 2: After differentiation of (9) with respect to L, and some

calculations, we have

OETIE(u, | &,)/0u,
(A7)

{h 10~ R, ~ o™ o)} 0.

= L exp(o# 12y 2t 0N ~07)
Oy Oy, /67)
The inequality holds because h( * ) is increasing by Lemma 1. W
Proof of Theorem 3: In a similar manner to the proof of Theorem 2, we can
obtain (13) after differentiating (12) with respect to p,. W
FProof of Theorem 4: Differentiating (5) with respect to y,, we obtain

OFy (Wl &, p,,0%) Bu,, (A 8)

_ o Oy +logl-w)/c’)
a,’ O, /o)

{ g ) 1% - g, +log(l- )/ %)< 0.

The inequality holds since g{ * } is decreasing by Lemma 1. Then, we have

dw =__6F],;r OF, 50, (A.9)
dy,, Oy | Ow :

17



The inequality holds from (A.8) and &F;, /dw > 0 because Fy,( * ) is the distribution
function. l

Proof of Theorem 5: In a similar manner to the proof of Theorem 4, we can
obtain (20) after differentiating (7} with respect to , M

18



Figurel. Density Function of Ineﬁ’iciency

(a) 1 *=0.0
10
8 -
6 L1
; 4 S
v - \ "'---_____..

0 0.2 0.4 0.6 0.8
w
(b) u*=05
8
6 £
4 : y

-
[an]
o
[\
o
n
o
>»
o
(o]

o *=1

19



wt

r

-

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

Figure2. Prediction of Technigal Inefficiency
and Confidence Limit against u *
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Table1. Prediction of Technical Inefficiency and Confidence Limit

, 4*=00 , 4*=05
7 C. ETIE Cy Cc ETIE - Cy
10 0.061 0.477 0.868- 0.092 0.554 0.909
0.5 0.031 0.301 0.625 0.077 0435 | 0744
. 0.2 | 0.012 0.142 0.324 0.166 0.384 0.564
: 0.1 0.006 0075 0.178 0.285 0.390 0.485
g

Note : The enties are calcurated by EXGEL;

[

- ¥
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Table2. 90% Confidence Interval for Prediction

firm u* C, ETIE Cy
1 -0.863 - 0015 — @
2 0.600 0.331 0.447 0.549
3 0.721 0.407 0.510 0.601
4 | 0699 0.395 0.499 0.592

Note : The enties are calcurated by EXCEL. .

a) EXCEL does not calcurate the quantile point in equation (15) for this

value of y”*
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