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Abstract

We consider a queueing system consisting of multiple identical servers and a

common queue. The service time follows an exponential distribution and the arrival
process is governed by a semi-Markov process (SMP). The motivation to study the

queueing system with SMP arrivals lies in that it can model the auto-correlated
traffic on the high speed network generated by a real time communication, for

example, the MPEG-encoded VBR video. Our analysis is based on the theory of
piecewise Markov process. We first derive the distributions of the queue size and
the waiting time. The stability condition of the system is also discussed. When the

sojourn time of SMP follows an exponential distribution all the unknown constants
contained in the generating function of queue size can be determined through the

zeros of the denominator for this generating function. Based on the result of the
analysis, we propose a model to evaluate the waiting time of MPEG video traffic

on an ATM network with multiple channels. Here, the SMP corresponds to the
exact MPEG sequence of frames. Finally, a numerical example using a real video

data is shown.

Key words: Semi-Markov process; batch arrivals; multiserver queue; waiting time;

MPEG; Rouché’s theorem

1 Introduction

We analyze a queueing system with multiple identical servers and a common queue which
is fed by a semi-Markov batch arrival process. The service time follows an exponential
distribution, and the capacity of waiting room is infinite. This system is denoted by
SMP[X]/M/c throughout the paper.

Queueing systems with an arrival process governed by a semi-Markov process (SMP)
have been studied extensively since Çinlar [2] first analyzed an SMP/M/1 queue. The
motivation to study the queueing system with an SMP arrival lies in that it can model
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the auto-correlated traffic on the high speed network generated by a real time commu-
nication, for example, Motion Picture Experts Group (MPEG) -encoded variable bit
rate (VBR) video. Arjas [1] and de Smit [14] apply a matrix factorization method to an
SMP/G/1 queue. Sengupta [13] provides a matrix-exponential solution to an SMP/PH/1
queue. Haβlinger [5] analyzes a discrete time SMP/G/1 queue using Wiener-Hopf factor-
ization approach. To the best of our knowledge, there are few studies on multiple-server
queues with SMP arrival. In [10, p.164], Neuts analyzes an SMP/M/c queue by the
well-known matrix-geometric method. While this method may handle the situation in
which the customers arrive in batches of random size, it is difficult to conduct numerical
computation, because it typically leads to blocks of very large dimension in partitioning
the transition matrix.

On the other hand, Kuczura [8] studies a piecewise Markov process. Based on this
theory, Yagyu and Takagi [16] consider an SSMP[X]+M/M/1 queue, where the SSMP
stands for a special semi-Markov process in which the sojourn time (interarrival time)
in the state of SMP is determined only by the current state. Wu and Takagi [17] extend
this model to a more general case, namely, an SMP[X]+M/M/1 queue. The method for
dealing with an SMP[X]/M/c queue in this paper is also the theory of piecewise Markov
process.

The rest of paper is organized as follows. Section 2 develops the formulas for a pure
death process as preliminaries. The semi-Markov batch arrival process is described in
Section 3. In Section 4, the generating function for the queue size in the SMP[X]/M/c
system is derived. The stability condition of this system is discussed in Section 5. In
Appendix 3, we prove that the unknown constants contained in the generating function
for the queue size can be determined by the zeros of the denominator for this generating
function, when the sojourn time in the state of SMP follows an exponential distribution.
The waiting time distribution is studied in Section 6. In Section 7 we use an SMP[X]/M/c
queue to model the transmission of MPEG frames in multiple channels in an ATM
network. A numerical example using a real video data taken from the Jurassic Park
video is also given.

2 Transient Behavior of a Pure Death Process

We first consider a pure death process {X(t); t ≥ 0} for a population which evolves in
the following way. At t = 0 the population size equals i (> 0). Each individual dies in
the time interval [t, t + ∆t) with probability µ∆t. If the population size i is less than
c (a constant positive integer), the death rate is iµ, otherwise it is cµ. We define the
transition probability for the population size

Pi,j(t) := P{X(t) = j|X(0) = i}; 0 ≤ j ≤ i, (1)

and the generating function of its Laplace transform

P ∗
i (s, z) :=

i
∑

j=0

P ∗
i,j(s)z

j, (2)
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where

P ∗
i,j(s) :=

∫ ∞

0

e−stPi,j(t)dt

is the Laplace transform of Pi,j(t).
Since the transient behavior of the pure death process {X(t); t ≥ 0} depends on the

initial population size i, we derive P ∗
i (s, z) for two cases, 0 < i ≤ c and i > c, separately.

When 0 < i ≤ c, the corresponding Kolmogorov forward equations are

P ′
i,0(t) = µPi,1(t),

P ′
i,j(t) = −jµPi,j(t) + (j + 1)µPi,j+1(t); 1 ≤ j ≤ i − 1,

P ′
i,i(t) = −iµPi,i(t), (3)

with the initial condition

Pi,i(0) = 1.

Taking the Laplace transform of (3) gives

sP ∗
i,0(s) = µP ∗

i,1(s),

sP ∗
i,j(s) = −jµP ∗

i,j(s) + (j + 1)µP ∗
i,j+1(s); 1 < j ≤ i − 1,

sP ∗
i,i(s) = 1 − iµP ∗

i,i(s),

Solving this set of equations, we have

P ∗
i,j(s) =

i!µi−jB(s; j − 1)

j!B(s; i)
; 0 ≤ j ≤ i ≤ c, (4)

where B(s; j) is defined by

B(s; j) := s(s + µ)(s + 2µ) · · · (s + jµ); j ≥ 0, (5)

B(s;−1) := 1.

Substituting (4) into (2) yields

P ∗
i (s, z) = τi(s, z); 0 < i ≤ c, (6)

where

τk(s, z) :=
k!µk

B(s; k)

k
∑

j=0

B(s; j − 1)

j!

(

z

µ

)j

; k ≥ 1. (7)

When the initial population size i is greater than c, the Kolmogorov forward equations
become

P ′
i,0(t) = µPi,1(t),

P ′
i,j(t) = −jµPi,j(t) + (j + 1)µPi,j+1(t); 1 ≤ j ≤ c − 1,

P ′
i,j(t) = −cµPi,j(t) + cµPi,j+1(t); c ≤ j ≤ i − 1, (8)

P ′
i,i(t) = −cµPi,i(t).

3



Taking the Laplace transform and solving the resulting equations, we obtain

P ∗
i,j(s) =























c!µc−jB(s; j − 1)

j!B(s; c)

(

cµ

s + cµ

)i−c

; 0 ≤ j ≤ c,

1

s + cµ

(

cµ

s + cµ

)i−j

; c < j ≤ i.

(9)

Multiplying (9) by zj and summing from 0 to i, we get

P ∗
i (s, z) =

zi+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i

; i > c, (10)

where

ξk(s, z) :=

(

s + kµ

kµ

)k
[

k!µk

B(s; k)

k−1
∑

j=0

B(s; j − 1)

j!

(

z

µ

)j

− kµzk

(s + kµ)[(s + kµ)z − kµ]

]

;

k ≥ 1. (11)

In Appendix 1 we derive several expressions for τk(s, z) and ξk(s, z) which will be used
in the analysis of an SMP[X]/M/c system in Section 4.

3 SMP Batch Arrival Process

We next consider an arrival process with L types of customers, each type arriving in
batches of random size. Customers arrive at time epochs T0, T1,. . . , with T0 := 0. Then
An := Tn − Tn−1, n ≥ 1, is the interarrival time, and we set A0 := 0. The type of
customers arriving at epoch Tn is denoted by S(n). Let gl(k) denote the probability of
batch size being k for type l customers, l = 1, . . . , L. The arrival process is referred to
as a semi-Markov process (SMP) if the following condition holds:

P{S(n+1) = l, An+1 ≤ t|S(0), . . . , S(n), A1, . . . , An} = P{S(n+1) = l, An+1 ≤ t|S(n)};
l = 1, . . . , L ; t ≥ 0. (12)

For this SMP arrival process, we say that the underlying process enters state l when a
batch of type l arrives. Let Qlm(t) be the probability that the arrival process moves from
state l to state m in time t, i.e.

Qlm(t) := P{S(n+1) = m, An+1 ≤ t|S(n) = l}.

Let plm denote the probability that the arrival of type l is followed by the arrival of
type m, and let Alm(t) be the distribution function of the time interval between those
successive arrivals. Thus

Qlm(t) = plmAlm(t),
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where

Qlm(∞) = plm.

Hereafter we use a matrix P= (plm), which is a stochastic matrix as

L
∑

m=1

plm = 1; l = 1, . . . , L.

Let π := [π1, . . . , πL] be the stationary distribution of the Markov chain with transition
probability matrix P. Then we have a set of the balance equations and the normalizing
condition as follows:

πm =

L
∑

l=1

πlplm; m = 1, . . . , L ;

L
∑

l=1

πl = 1. (13)

In Figure 1, we illustrate this semi-Markov arrival process, where Alm represents the
interarrival time between the arrivals of type l and type m customers. For convenience’
sake, Alm is also referred to as the sojourn time in state l when the next state is m.

type l arrival

type m arrival

type n arrival

state l

state m

state n

Alm

Amn

Figure 1: Semi-Markov arrival process.

4 Queue Size in an SMP[X]/M/c System

We proceed to analyze the SMP[X ]/M/c queueing system which is described as follows.
The arrival process in batches of customers is a semi-Markov process defined in Section
3. There are c parallel identical servers and a common queue. The service time follows
an exponential distribution with mean 1/µ. Finally, the capacity of the waiting room is
infinite, and the service discipline is first-come first-served (FCFS).
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Let X(t) denote the number of customers present in the system (queue size) at time t,
including the customers both in service and waiting. It is noted that the system behaves
like a pure death process, analyzed in Section 2, between the successive batch arrival
epochs. We analyze the queue size in the SMP[X]/M/c system by means of a discrete-
time Markov chain of two random variables {(X(n), S(n)); n = 0, 1, 2, . . . }, where X(n)

denotes the number of customers in the system seen by nth arrival, and S(n) denotes the
state of the underlying process immediately after the nth arrival.

The state transition probability of the time-homogeneous Markov chain {(X(n), S(n));
n = 0, 1, 2, . . . } is given by

P{X(n+1) = j, S(n+1) = m|X(n) = i, S(n) = l}

= plm

∞
∑

k=max(1,j−i)

gl(k)

∫ ∞

0

Pi+k,j(t)dAlm(t); i, j = 0, 1, 2, . . . ; l, m = 1, . . . , L,

(14)

where Pi,j(t) is transition probability of the pure death process defined by (1). Assuming
that this Markov chain is ergodic, the limiting distribution

P (i, l) := lim
n→∞

P{X(n) = i, S(n) = l}; i = 0, 1, 2, . . . ; l = 1, . . . , L (15)

satisfies the balance equations

P (j, m) =
∞
∑

i=0

L
∑

l=1

∞
∑

k=max(1,j−i)

plmgl(k)P (i, l)

∫ ∞

0

Pi+k,j(t)dAlm(t);

j = 0, 1, 2, . . . ; m = 1, . . . , L, (16)

and the normalization condition

∞
∑

i=0

L
∑

l=1

P (i, l) = 1. (17)

We transform (16) to a complex integral, since we want to utilize (6) and (10) to
convert (16) in terms of the generating function for the queue size. Since P ∗

i,j(s) is the
Laplace transform of Pi,j(t), we have the inversion

Pi,j(t) =
1

2πi

∫ b+i∞

b−i∞

estP ∗
i,j(s)ds, (18)

where b > 0, i :=
√
−1, and the integration

∫ b+i∞

b−i∞
denotes the Bromwich integral, being

written as
∫

Br
hereafter. Substituting (18) into (16) yields

P (j, m) =
∞
∑

i=0

L
∑

l=1

∞
∑

k=max(1,j−i)

plmgl(k)P (i, l)
1

2πi

∫

Br

P ∗
i+k,j(s)αlm(−s)ds;

j = 0, 1, 2, . . . ; m = 1, . . . , L, (19)
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where

αlm(s) :=

∫ ∞

0

e−stdAlm(t)

is the Laplace-Stieltjes transform (LST) of Alm(t). Let us introduce the generating
function for {P (i, l); i = 0, 1, 2, . . . } by

Φl(z) :=
∞
∑

i=0

P (i, l)zi; l = 1, . . . , L.

By definition, we must have

Φl(1) = πl; l = 1, . . . , L. (20)

Multiplying (19) by zj and summing over j = 0, 1, 2, . . . , i + k, we obtain

Φm(z) =
L
∑

l=1

plm

∞
∑

i=0

P (i, l)
∞
∑

k=1

gl(k)
1

2πi

∫

Br

i+k
∑

j=0

P ∗
i+k,j(s)z

jαlm(−s)ds. (21)

As shown in Appendix 2, this can be expressed as

Φm(z) =
L
∑

l=1

plm

1

2πi

∫

Br





zGl(z)Φl(z) + (z − 1)
[

λ(s, z)Hl(s) + ηl(s, z)
]

(s + cµ)z − cµ



αlm(−s)ds,

(22)

where Gl(z) is the generating function of gl(k),

λ(s, z) :=

(

s + cµ

cµ

)c−1
γc(s, z) − δc(s, z)

B(s; c − 1)
, (23)

Hl(s) := Gl

(

cµ

s + cµ

)

Φl

(

cµ

s + cµ

)

; l = 1, 2, . . . , L, (24)

ηl(s, z) :=

c−1
∑

i=0

P (i, l)

c−i
∑

k=1

gl(k)

×
{

µ
[

cγi+k(s, z) − (i + k)δi+k(s, z) + (c − i − k)B(s; i + k − 1)zi+k
]

B(s; i + k)

−γc(s, z) − δc(s, z)

B(s; c− 1)

(

s + cµ

cµ

)c−i−k−1
}

; l = 1, 2, . . . , L, (25)

γk(s, z) :=
k−1
∑

j=0

k!

j!
B(s; j − 1)µk−jzj; k ≥ 1, (26)
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and

δk(s, z) :=

k−1
∑

j=1

(k − 1)!

(j − 1)!
B(s; j − 1)µk−jzj; k ≥ 2,

δ1(s, z) := 0. (27)

Following Kuczura [7], we may comment on the Bromwich integral in (22) as follows.
Since Pi+k,j(t) is the probability, the generating function P ∗

i+k(s, z) of P ∗
i+k,j(s) is analytic

for |z| ≤ 1 and <(s) > 0. Hence the bracketed part of the integrand in (22) is analytic for
|z| ≤ 1 and <(s) > 0, since it is the convergent series of

∑∞

i=0

∑∞

k=1 P (i, l)gl(k)P ∗
i+k(s, z).

On the other hand, since Alm(t) is the distribution function, αlm(s) is analytic for <(s) >
0. For <(s) < 0, αlm(s) may or may not be analytic. However, αlm(s) is meromorphic
for <(s) < 0 in many cases, including the cases in which the distribution of Alm is
exponential, Erlang, and a linear combination thereof.

If we assume that αlm(s) is meromorphic for the left-half plane <(s) < 0, all the
poles of αlm(−s) are in the right-half plane <(s) > 0. Hence the integrand in (22) is
meromorphic in the right-half plane. Thus we can use the residue theorem to evaluate
the integrand over the contour consisting of the line (b + iR, b − iR) and a semicircle of
radius R in the right-half plane which connects b− iR with b + iR counterclockwise. We
can choose b and R such that all the poles of αlm(−s) are interior to this contour for
all l = 1, . . . , L. Then the Bromwich integrals in (22) are evaluated only at the poles of
αlm(−s)’s. Therefore, (22) is not a set of integral equations but simply a set of linear
equations for {Φl(z); l = 1, . . . , L} containing unknown constants as coefficients. These
unknown constants are determined from the condition that the generating function Φl(z)
is analytic for |z| ≤ 1 and other relations for {P (i, l); i = 0, . . . , c − 1}; l = 1, . . . , L. In
Appendix 3, we show explicitly how to determine Φl(z) when the sojourn time follows
an exponential distribution.

5 Stability Condition for an SMP[X]/M/c System

Let us discuss the stability condition for the SMP[X]/M/c system. To do so, we rewrite
(22) as

Φm(z) =
L
∑

l=1

plm

[

zGl(z)Φl(z)Ψlm(z) + (z − 1)B̂lm(z)
]

, (28)

where

Ψlm(z) :=
1

2πi

∫

Br

αlm(−s)

(s + cµ)z − cµ
ds, (29)

and

B̂lm(z) :=
1

2πi

∫

Br

λ(s, z)Hl(s) + ηl(s, z)

(s + cµ)z − cµ
αlm(−s)ds. (30)
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Evaluating Ψlm(z) at z = 1 yields

Ψlm(1) =
1

2πi

∫

Br

αlm(−s)

s
ds = 1. (31)

Differentiating Ψlm(z) and evaluating at z = 1, we obtain

dΨlm(z)

dz

∣

∣

∣

∣

∣

z=1

=
1

2πi

∫

Br

−s− cµ

s2
ds

∫ ∞

0

estdAlm(t)

=

∫ ∞

0

dAlm(t)
1

2πi

∫

Br

−s − cµ

s2
estds

= −1 − cµâlm, (32)

where âlm is mean of the distribution function Alm(t). These results are used later.
Now, equation (28) can be written in matrix form as

Φ(z)F̂(z) = (z − 1)1diag[B̂t(z)P], (33)

where Φ(z) := [Φ1(z), . . . , ΦL(z)], 1 := [1, . . . , 1],

F̂(z) := IL − zG(z)Q̂(z), (34)

G(z) :=











G1(z) 0 . . . 0
0 G2(z) . . . 0
...

...
. . .

...
0 0 . . . GL(z)











, (35)

Q̂(z) :=











p11Ψ11(z) p12Ψ12(z) . . . p1LΨ1L(z)
p21Ψ21(z) p22Ψ22(z) . . . p2LΨ2L(z)

...
...

. . .
...

pL1ΨL1(z) pL2ΨL2(z) . . . pLLΨLL(z)











, (36)

B̂(z) :=











B̂11(z) B̂12(z) . . . B̂12(z)

B̂21(z) B̂22(z) . . . B̂2L(z)
...

...
. . .

...

B̂L1(z) B̂L2(z) . . . B̂LL(z)











, (37)

and IL denotes an L × L identity matrix. In equation (33), diagX is a diagonal ma-
trix whose elements are taken from the corresponding elements of X, and B̂t(z) is the
transpose of B̂(z).

Differentiating (33) and evaluating the result at z = 1, we obtain

Φ′(1)(IL −P) + πF̂′(1) = 1diag[B̂t(1)P], (38)
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Here we have used F̂(1) = IL−P since G(1) = IL and Q̂(1) = P. Note also that Φ(1) =
π. Multiplying (38) on the right by 1t := [1, . . . , 1]t and noting that (IL −P)1t = 0, we
get

πF̂′(1)1t = 1diag[B̂t(1)P]1t. (39)

To determine the left-hand side of (39), we differentiate (34) and evaluate the result
at z = 1, where we use (31) and (32). Then we have

F̂′(1) = −Q̂′(1) − G′(1)P −P, (40)

where

G′(1) =





















g1 0 . . . 0

0 g2 . . . 0

...
...

. . .
...

0 0 . . . gL





















, (41)

and

Q̂′(1) =











p11(−1 − cµâ11) p12(−1 − cµâ12) . . . p1L(−1 − cµâ1L)
p21(−1 − cµâ21) p22(−1 − cµâ22) . . . p2L(−1 − cµâ2L)

...
...

. . .
...

pL1(−1 − cµâL1) pL2(−1 − cµâL1) . . . pLL(−1 − cµâLL)











. (42)

Here gl is the mean batch size of type l customers. Multiplying (39) on the right by 1t

and substituting (41) and (42) yields

F̂′(1)1t = −Q̂′(1)1t − G′(1)1t − 1t

=





























L
∑

m=1

p1m(1 + cµâ1m)

L
∑

m=1

p2m(1 + cµâ2m)

...
L
∑

m=1

pLm(1 + cµâLm)





























−











g1

g2
...

gL











−











1
1
...
1











. (43)

Finally, multiplying (43) on the left by π, we obtain

πF̂′(1)1t =
L
∑

l=1

πl

L
∑

m=1

plm(1 + cµâlm) − g − 1 = cµâ − g, (44)
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where â is the mean of interarrival time for SMP arrivals defined by

â :=
L
∑

l=1

πl

L
∑

m=1

plmâlm, (45)

and g is the mean batch size given by

g :=
L
∑

l=1

πlgl. (46)

The expression in (44) is the left-hand side of (39). Thus we have

cµâ − g =
L
∑

l=1

L
∑

m=1

B̂lm(1)plm. (47)

From Lemma 5 in Appendix 1, we see that the right-hand side of this equation is positive.
Hence we have

g

â
< cµ. (48)

The condition in (48) means that the customer arrival rate is less than the total service
rate. Thus it assures the stability of our system.

6 Waiting time of an Arbitrary Customer

We proceed to determine the waiting time W of an arbitrary customer. Let us focus on
a randomly chosen tagged customer included in a batch that arrives to bring state l. Let
Ĝl denote the number of customers placed before the tagged customer in this batch, and
Wl(t) be the waiting time distribution of this tagged customer. The distribution of Ĝl

is given by [15, p.46]

ĝl(k) =

∞
∑

j=k+1

gl(k)

gl

; k = 0, 1, 2, . . . , (49)

and its generating function is

Ĝl(z) =
1 − Gl(z)

gl(1 − z)
. (50)

The probability that the tagged customer need not wait is

Wl(0) =
c−1
∑

k=0

c−1−k
∑

i=0

ĝl(k)P (i, l).

11



On the other hand, if the tagged customer in a batch of size k arrives and finds that the
number i + k of customers in the system is great than c, he must wait until i + k +1− c
customers depart before he enters service. Therefore, his waiting time has (i+k+1− c)-
stage Erlang distribution. Thus, Wl(t) is given by

Wl(t)=
c−1
∑

k=0

c−1−k
∑

i=0

ĝl(k)P (i, l) +
c−1
∑

k=1

c−1
∑

i=c−k

ĝl(k)P (i, l)

∫ t

0

cµ(cµy)i+k−ce−cµy

(i + k − c)!
dy

+
c−1
∑

k=0

∞
∑

i=c

ĝl(k)P (i, l)

∫ t

0

cµ(cµy)i+k−ce−cµy

(i + k − c)!
dy

+

∞
∑

k=c

∞
∑

i=0

ĝl(k)P (i, l)

∫ t

0

cµ(cµy)i+k−ce−cµy

(i + k − c)!
dy. (51)

Taking the LST of Wl(t), we obtain

Ωl(s) =
[B(s)]1−c

gl[1 − B(s)]

(

1 − Gl[B(s)]
)

Φl[B(s)]

+
c−1
∑

k=0

c−1−k
∑

i=0

ĝl(k)P (i, l)
(

1 − [B(s)]i+k+1−c
)

, (52)

where B(s) := cµ/(s + cµ).
Finally we get the LST Ω(s) of the distribution function for the waiting time W of

an arbitrary customer as

Ω(s) =
1

g

L
∑

l=1

glΩl(s)

=
1

g

{

[B(s)]1−c

1 − B(s)

L
∑

l=1

(

1 − Gl[B(s)]
)

Φl[B(s)]

+
L
∑

l=1

c−1
∑

k=0

c−1−k
∑

i=0

glĝl(k)P (i, l)
(

1 − [B(s)]i+k+1−c
)

}

. (53)

The mean E[W ] and the second moment E[W 2] of the waiting time are then given by

E[W ] =
1

gcµ

[

L
∑

l=1

glEl[X ] +
g(2)

2
−

L
∑

l=1

c−1
∑

k=0

c−1−k
∑

i=0

glĝl(k)P (i, l)(i + k + 1 − c)

]

− c − 1

cµ
,

(54)

E[W 2] =
1

g(cµ)2

{

L
∑

l=1

[

gl

(

El[X
2] + (3 − 2c)El[X ])

)

+ g
(2)
l El[X ]

]

+ (2 − c)g(2) +
g(3)

3

−
L
∑

l=1

c−1
∑

k=0

c−1−k
∑

i=0

glĝl(k)P (i, l)(i + k + 1 − c)(i + k + 2 − c)

}

+
(c − 1)(c − 2)

(cµ)2
,

(55)
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where

g
(i)
l = G

(i)
l (1), g(i) =

L
∑

l=1

πlg
(i)
l ; i = 2, 3,

El[X ] = Φ
(1)
l (1), El[X

2] = Φ
(2)
l (1) + El[X ]; l = 1, . . . , L.

7 Application to the MPEG Frame Sequence

Let us use the SMP[X]/M/c system to model the traffic in the ATM network in which
the MPEG frames are transmitted through multiple channels. The waiting time of an
arbitrary ATM cell generated from MPEG frames is studied. In Section 7.1, a brief
description of MPEG coding scheme is given. In section 7.2, the transmission of MPEG
frame sequence is modeled by an SMP[X]/M/c system. Assuming that the MPEG frame
arrival process is Poisson, we obtain the formula for evaluating the waiting time of an
arbitrary ATM cell. In Section 7.3, some numerical results using the statistics of a real
video film are presented.

7.1 MPEG Video Coding Scheme

I B B P B B P B B P B B I

forward prediction

bidirectional prediction

Figure 2: Group of pictures (GOP) of an MPEG stream [9].

In the MPEG coding [9], a video traffic is compressed using the following three types
of frames.

• I-frames are generated independently of B- or P-frames and inserted periodically.

• P-frames are encoded for the motion compensation with respect to the previous I-
or P-frame.

13



• B-frames are similar to P-frames, except that the motion compensation can be
done with respect to the previous I- or P-frame, the next I- or P-frame, or the
interpolation between them.

These frames are arranged in a deterministic sequence “IBBPBBPBBPBB,” which
is called a Group of Pictures (GOP) as shown in Figure 2. The length of the GOP is 12
frames. The traffic stream generated by the MPEG coding is characterized by two fea-
tures, namely (i) the deterministic frame pattern in the GOP, and (ii) the distinguishable
frame size distributions for the three types of frames (I, B and P).

7.2 Traffic Model for MPEG Frame Sequence

We are now in a position to apply the analysis results of the SMP[X]/M/c system to
model the transmission of MPEG frame sequence on ATM network. In this model, the
Markov chain underlying the SMP has twelve states corresponding to the frame pattern
“IBBPBBPBBPBB” with cyclic transitions. We index this sequence which represents
the states in the Markov chain as 0 through 11. As shown in Figure 3, for any given
state, the transition probability to the next state is unity, since the frame pattern is
deterministic.

I
B

B

P

B

B
P

B

B

P

B

B 0
1

2

3

4

5
6

7

8

9

10

11

1

1

1

1

1

11

1

1

1

1

1

Figure 3: State transition diagram of the MPEG frame pattern.

The stationary distribution of this Markov chain is given by

πl = 1
12

; l = 0, . . . , 11.

For the sake of simplicity in the expressions, we assume that the arrival process of the
frames is Poisson with rate α as a (very) special case of the SMP. Let Gl(z) denote
the probability generating function for the number of ATM cells generated from the lth
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frame, l = 0, . . . , 11, and let c be the number of channels for transmitting the MPEG
frames. Equations in (22) then become

Φm(z) =
1

q(z)

{

zGm−1(z)Φm−1(z) + (z − 1)[λ(α, z)Hm−1 + ηm−1(α, z)]
}

;

m = 0, . . . , 11, (56)

where

q(z) :=
1

α
[(α + cµ)z − cµ],

and

Hm := Gm

(

cµ

α + cµ

)

Φm

(

cµ

α + cµ

)

.

We note that {Hm; m = 0, . . . , 11}, and {P (i, m); i = 0, . . . , c − 1; m = 0, . . . , 11},
included in ηm(α, z), are constants to be determined. Hereafter state “−m ” should read
state “12 − m”. Solving the set of equations in (56), we get

Φm(z) =

(z − 1)
11
∑

k=0

zk[q(z)]11−k[λ(α, z)Hm+k−1 + ηm+k−1(α, z)]
m−1
∏

l=m−k

Gl(z)

T (z)
;

m = 0, . . . , 11, (57)

where

T (z) := [q(z)]12 − z12

11
∏

l=0

Gl(z). (58)

It is shown in Appendix 3 that there are twelve zeros of T (z) in |z| ≤ 1 under the
condition

αg < cµ,

where

g :=
1

12

11
∑

l=0

gl

is the mean size of an MPEG frame. Therefore, by using the twelve zeros of T (z) in
|z| ≤ 1 together with relations

P (i, m) =
1

i!

diΦm(z)

dzi

∣

∣

∣

∣

z=0

; i = 0, . . . , c − 1; m = 0, . . . , 11,

we can solve the set of 12+12c linear equations for {Hm, P (i, m); m = 0, . . . , 11; i =
0, . . . , c − 1}. This completes the determination of parameters in the model.
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Table 1: Statistics for the frame size in ATM cells calculated from the MPEG frame
trace of the Jurassic Park video.

I-frame B-frame P-frame

mean var c.v. mean var c.v. mean var c.v.

143.427 918.704 0.211 19.033 135.021 0.612 37.659 632.568 0.667

Table 2: Parameters of the negative binomial distributions for the frame size of the
Jurassic Park video.

I-frame B-frame P-frame

nI pI nB pB nP pP

19 0.132 2 0.105 2 0.053

7.3 Numerical Examples

Let us evaluate the waiting time of an arbitrary ATM cell in the model. The real video
film data for the Jurassic Park is prepared by Rose [11], and it can be downloaded from
the web site http://nero.informatik.uni-wuerzburg.de/MPEG/. In addition, we need to
assume some distribution for the number of cells in each frame (frame size) so that we
can calculate the distribution of the waiting time numerically.

Frey and Nguen-Quang [3] and Sarkar et al. [12] propose the gamma distribution
for the frame size. As a discrete version of the gamma distribution, let us assume that
the distribution of the frame size is negative binomial. Thus the probability generating
functions for the frame size are given by

Gl(z) =

(

plz

1 − qlz

)nl

; ql := 1 − pl; l = 0, . . . , 11.

where, we set

pl = pI, nl = nI; l = 0,

pl = pB, nl = nB; l = 1, 2, 4, 5, 7, 8, 10, 11,

pl = pP, nl = nP; l = 3, 6, 9.

Table 1 shows the statistics for the number of ATM cells in each frame type for the
Jurassic Park video, which have been calculated by assuming that every frame is divided
into a group of cells each with a payload of 48 bytes. The fitting parameters for the
negative binominal distributions determined from the mean and variance of the data in
Table 1 are given in Table 2.

To compare the influence of the number of channels, we keep the total transmission
rate at 20Mbps, which corresponds to 2 × 2350 cells/sec, and vary c from 2 to 3. For
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each set of parameters we have exactly twelve zeros in the unit disk. The zeros of T (z)
for c = 2 and µ = 2350 cells/sec are plotted in the complex z-plane in Figure 4.
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Figure 4: Zeros of T (z) in the unit disk when c = 2, µ = 2350 cells/sec.

Figures 5 and 6 show the mean and the variance, respectively, of the waiting time of
an arbitrary ATM cell in the MPEG frames for c = 2, µ = 2350 cells/sec and for c = 3,
µ = (2/3) × 2350 cells/sec. It is observed that at low arrival rate α (frames/sec) both
the mean and variance are relatively flat, but they increase rapidly with respect to α
at heavy load. It is also observed that the difference (for both the mean and variance)
between c = 2 and c = 3 is very small if we keep the total transmission rate at a constant
cµ = 2 × 2350. In other words, the number of channels does not influence much on the
mean and variance of the waiting time as far as the total transmission rate is a constant.
This is just like the situation in an M/M/c queueing system.

8 Summary

In this paper, we have first analyzed the queue size in an SMP[X]/M/c system, where
the underlying SMP has L states. The formulas of the mean and variance of the waiting
time for an arbitrary customer have been presented. When the state sojourn times are
exponentially distributed, we have proved that there exist L2 zeros in the unit disk in the
denominator of the generating function for the queue size if the arrival rate is less than
the total service rate. Then we have modeled the arrival of the MPEG frame sequence
as an SMP batch arrival process. This model captures two major features of the MPEG
coding scheme: (i) the deterministic frame pattern and (ii) the distinct distributions
for the size of the three types of frames. The waiting time of each ATM cell has been
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Figure 5: Mean waiting time for an arbitrary cell.
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Figure 6: Variance of the waiting time for an arbitrary cell.
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evaluated. It is observed that, just like the situation in an M/M/c queueing system, the
number of channels does not influence much on the mean and variance of the waiting
time as far as the total transmission rate cµ is a constant.
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Appendix 1: Derivation of Preliminary Formulas

Lemma 1 For any positive integer k ≥ 1 the following relation holds:

γk(s, z) =
kµ

sz
[B(s; k − 1)zk − (z − 1)δk(s, z)], (A.1)

where γk(s, z) and δk(s, z) are defined in (26) and (27), respectively.

Proof. Obviously, (A.1) holds for k = 1 as both sides equal µ. Thus we prove it for
k ≥ 2. Equation (A.1) can be written as

kµ[B(s; k − 1)zk − (z − 1)δk(s, z)] = szγk(s, z). (A.2)

Substituting (27) into the left-hand side of (A.2) and expanding yields

kµ

(

B(s; k − 1)zk − (z − 1)
k−1
∑

j=1

(k − 1)!

(j − 1)!
B(s; j − 1)µk−jzj

)

=
k−1
∑

j=1

k!

(j − 1)!
B(s; j − 1)µk+1−jzj −

k
∑

j=2

k!

(j − 2)!
B(s; j − 2)µk+2−jzj + kµzkB(s; k − 1)

=
k−1
∑

j=2

k!

(j − 1)!
B(s; j − 2)µk+1−jszj − k!

(k − 2)!
B(s; k − 2)µ2zk + k!µksz + kµzkB(s; k − 1)

= sz
k−2
∑

j=1

k!

j!
B(s; j − 1)µk−jzj + sz[k!µk + kµB(s; k − 2)zk−1]

= szγk(s, z), (A.3)

where we have used B(s; j − 1) = [s + (j − 1)µ]B(s; j − 2), j ≥ 1. 2

Lemma 2 For any positive integer k ≥ 1 the following relation holds:

ξk(s, z) =
z − 1

(s + kµ)z − kµ

(

s + kµ

kµ

)k−1
γk(s, z) − δk(s, z)

B(s; k − 1)
, (A.4)

where ξk(s, z) is defined in (11).
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Proof. Obviously, relation (A.4) holds for k = 1 as both sides equal

(z − 1)µ

[(s + µ)z − µ]s
.

We next prove the case for k ≥ 2. From (11), we have

ξk(s, z)=
1

[(s + kµ)z − kµ]B(s; k − 1)

(

s + kµ

kµ

)k−1

×
(

[sz + kµ(z − 1)](k − 1)!µk−1

k−1
∑

j=0

B(s; j − 1)

j!

(

z

µ

)j

− B(s; k − 1)zk

)

=
1

[(s + kµ)z − kµ]B(s; k − 1)

(

s + kµ

kµ

)k−1

×
(

(z − 1)γk(s, z) +
sz

kµ
γk(s, z) − B(s; k − 1)zk

)

. (A.5)

However, from (A.2) we see that

sz

kµ
γk(s, z) −B(s; k − 1)zk = (1 − z)δk(s, z). (A.6)

Using relation (A.6) in (A.5) gives (A.4). 2

Lemma 3 For any positive integer 1 ≤ k ≤ c the following relation holds:

τk(s, z) − zk+1

(s + cµ)z − cµ
=

(z − 1)µ [cγk(s, z) − kδk(s, z) + (c − k)B(s; k − 1)zk]

[(s + cµ)z − cµ]B(s; k)
,

(A.7)

where τk(s, z) is defined in (7).

Proof. It is easy to verify that (A.7) holds for k = 1 as both sides equal

(z − 1)µ[(c − 1)sz + cµ]

s(s + µ)[(s + cµ)z − cµ]
.

We next consider the case for k ≥ 2. Rewriting ξk(s, z) in terms of τk(s, z) in (11), we
have

ξk(s, z) =

(

s + kµ

kµ

)k (

τk(s, z) − zk

s + kµ
− kµzk

(s + kµ)[(s + kµ)z − kµ]

)

. (A.8)

Together with (A.4), we obtain

τk(s, z) − zk+1

(s + kµ)z − kµ
=

(z − 1)kµ[γk(s, z) − δk(s, z)]

[(s + kµ)z − kµ]B(s; k)
. (A.9)
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However, we may write

τk(s, z) − zk+1

(s + kµ)z − kµ

=

(

τk(s, z) − zk+1

(s + cµ)z − cµ

)

+
zk+1

(s + cµ)z − cµ
− zk+1

(s + kµ)z − kµ
. (A.10)

From (A.9) and (A.10), we have

τk(s, z) − zk+1

(s + cµ)z − cµ

=
(z − 1)µ

[

[sz + cµ(z − 1)]k[γk(s, z)− δk(s, z)] + (c − k)B(s; k)zk+1
]

[(s + cµ)z − cµ][(s + kµ)z − kµ]B(s; k)

=
(z − 1)µ

[

[sz + kµ(z − 1) + (c − k)µ(z − 1)]k[γk(s, z) − δk(s, z)]
]

[(s + cµ)z − cµ][(s + kµ)z − kµ]B(s; k)

+
(z − 1)µ

[

(c − k)B(s; k − 1)zk[sz + kµ(z − 1) + kµ]
]

[(s + cµ)z − cµ][(s + kµ)z − kµ]B(s; k)

=
(z − 1)µ[sz + kµ(z − 1)]

[

k[γk(s, z)− δk(s, z)] + (c − k)B(s; k − 1)zk

]

[(s + cµ)z − cµ][(s + kµ)z − kµ]B(s; k)

+
(z − 1)µ(c − k)

[

[kµ(z − 1)γk(s, z) − kµ(z − 1)δk(s, z) + kµB(s; k − 1)zk
]

[(s + cµ)z − cµ][(s + kµ)z − kµ]B(s; k)

(A.11)

However, from (A.2), we have

kµ[B(s; k − 1)zk − (z − 1)δk(s, z)] + kµ(z − 1)γk(s, z) = [(s + kµ)z − kµ]γk(s, z)
(A.12)

Substituting (A.12) into (A.11) yields (A.7). 2

Lemma 4 The following relations hold for γk(s, z) and δk(s, z) at z = 1.

γk(s, 1)=
kµ

s
B(s; k − 1); k ≥ 1, (A.13)

δk(s, 1)=
(k − 1)µ

s + µ
B(s; k − 1); k ≥ 1. (A.14)

Proof. Evaluating the value of (A.1) at z = 1 yields (A.13). We next prove (A.14) by
induction.

It is clear that both sides of (A.14) equal 0 for k = 1. Assume that the inductive
hypothesis is true for k = n, that is

δn(s, 1) =
(n − 1)µ

s + µ
B(s; n− 1). (A.15)
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Let us consider the case for k = n + 1. Form (27), we have

δn+1(s, 1) =
n
∑

j=1

n!

(j − 1)!
B(s; j − 1)µn+1−j = nµδn(s, 1) + nµB(s; n − 1). (A.16)

By the inductive hypothesis (A.15), we have

nµδn(s, 1) + nµB(s; n − 1) =
nµ

s + µ
B(s; n). (A.17)

This completes the induction. 2

Lemma 5 For l, m = 1, 2, . . . , L,

B̂lm(1) =
1

2πi

∫

Br

λ(s, 1)Hl(s) + ηl(s, 1)

s
αlm(−s)ds (A.18)

is positive, where Hl(s) is defined in (24).

Proof. From Lemma 4, (23) and (25), we have

λ(s, 1) =
cµ2

s(s + µ)

(

s + cµ

cµ

)c

, (A.19)

and

ηl(s, 1) =
c−1
∑

i=0

P (i, l)
c−i
∑

k=1

gl(k)
µ[(c− i − k)s + cµ]

s(s + µ)

− cµ2

s(s + µ)

(

s + cµ

cµ

)c c−1
∑

i=0

P (i, l)
c−i
∑

k=1

gl(k)

(

cµ

s + cµ

)i+k

. (A.20)

Substituting (A.19) and (A.20) into (A.18), we obtain

B̂lm(1) =
1

2πi

∫

Br

{

c−1
∑

i=0

P (i, l)
c−i
∑

k=1

gl(k)
µ[(c − i − k)s + cµ]

s2(s + µ)
+

cµ2

s2(s + µ)

(

s + cµ

cµ

)c

×
{ c−1
∑

i=0

∞
∑

k=c−i+1

P (i, l)gl(k)

(

cµ

s + cµ

)i+k

+
∞
∑

i=c

P (i, l)
∞
∑

k=1

gl(k)

(

cµ

s + cµ

)i+k }
}

αlm(−s)ds

=

∫ ∞

0

dAlm(t)

{

c−1
∑

i=0

c−i
∑

k=1

P (i, l)gl(k)

(

(c − i − k)

∫ t

0

f
(1)
1 (y)dy

+cµ

∫ t

0

∫ t

0

f
(1)
1 (y)(dy)2

)

+
c−1
∑

i=0

∞
∑

k=c−i+1

P (i, l)gl(k)cµ

∫ t

0

∫ t

0

f
(1)
1 (·) ∗ f

(c)
i+k−c(y)(dy)2
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+

∞
∑

i=c

∞
∑

k=1

P (i, l)gl(k)cµ

∫ t

0

∫ t

0

f
(1)
1 (·) ∗ f

(c)
i+k−c(y)(dy)2

}

, (A.21)

where f
(n)
k (y) is the density function of the gamma distribution defined by

f
(n)
k (y) :=

(nµ)kyk−1

(k − 1)!
e−nµy; k, n = 1, 2, . . . ,

and f
(m)
i (·)∗f (n)

k (y) is the convolution of the f
(m)
i (y) and f

(n)
k (y). Thus, B̂lm(1) is positive.

2

Appendix 2: Derivation of (22)

C1

C2

C3

C4

i

k

cc − 1

c

1

Figure 7: Four regions for evaluating the r.h.s. of (21).

In order to derive (22) from (21), we consider the right-hand side of (21) for the four
regions in the (i, k) plane as shown in Figure 7. The region labeled C1 corresponds
to the case in which some of c servers are idle throughout interarrival interval of the
customers. Using the relation (6), we see that the right-hand side of (21) in region C1
equals

L
∑

l=1

plm

1

2πi

∫

Br

[

c−1
∑

i=0

P (i, l)

c−i
∑

k=1

gl(k)τi+k(s, z)

]

αlm(−s)ds. (A.22)

In region C2, all servers are busy throughout the time interval between two successive
batch arrivals. According to (10), the right-hand side of (21) then equals

L
∑

l=1

plm

1

2πi

∫

Br

c−1
∑

i=1

P (i, l)
c
∑

k=c+1−i

gl(k)

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]

αlm(−s)ds
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=

L
∑

l=1

plm

1

2πi

∫

Br

c−1
∑

i=1

P (i, l)

{

c
∑

k=1

gl(k)

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]

−
c−i
∑

k=1

gl(k)

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]}

αlm(−s)ds

=
L
∑

l=1

plm

1

2πi

∫

Br

{

z

(s + cµ)z − cµ
Gc

l (z)Φc−1
l (z) + ξc(s, z)Gc

l

(

cµ

s + cµ

)

Φc−1
l

(

cµ

s + cµ

)

−
c−1
∑

i=1

P (i, l)
c−i
∑

k=1

gl(k)

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]}

αlm(−s)ds, (A.23)

where

Φc
l (z) :=

c
∑

j=1

P (j, l)zj,

and

Gc
l (z) :=

c
∑

k=1

gl(k)zk.

Next we consider the right-hand side of (21) in region C3. It equals

L
∑

l=1

plm

1

2πi

∫

Br

c
∑

k=1

gl(k)
∞
∑

i=c

P (i, l)

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]

αlm(−s)ds

=

L
∑

l=1

plm

1

2πi

∫

Br

c
∑

k=1

gl(k)

{

zk+1

(s + cµ)z − cµ

[

∞
∑

i=0

P (i, l)zi −
c−1
∑

i=0

P (i, l)zi

]

+ξc(s, z)

(

cµ

s + cµ

)k
[

∞
∑

i=0

P (i, l)

(

cµ

s + cµ

)i

−
c−1
∑

i=0

P (i, l)

(

cµ

s + cµ

)i
]}

αlm(−s)ds

=
L
∑

l=1

plm

1

2πi

∫

Br

[

z

(s + cµ)z − cµ
Gc

l (z)Φl(z) − z

(s + cµ)z − cµ
Gc

l (z)Φc−1
l (z)

+ξc(s, z)Gc
l

(

cµ

s + cµ

)

Φl

(

cµ

s + cµ

)

− ξc(s, z)Gc
l

(

cµ

s + cµ

)

Φc−1
l

(

cµ

s + cµ

)]

αlm(−s)ds.

(A.24)

Finally we investigate the right-hand side of (21) in region C4. In a way similar to
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(A.24), we obtain that it equals

L
∑

l=1

plm

c
∑

k=c+1

gl(k)

∞
∑

i=0

P (i, l)
1

2πi

∫

Br

[

zi+k+1

(s + cµ)z − cµ
+ ξc(s, z)

(

cµ

s + cµ

)i+k
]

αlm(−s)ds

=

L
∑

l=1

plm

1

2πi

∫

Br

[

z

(s + cµ)z − cµ
Gl(z)Φl(z)− z

(s + cµ)z − cµ
Gc

l (z)Φl(z)

+ξc(s, z)Gl

(

cµ

s + cµ

)

Φl

(

cµ

s + cµ

)

− ξc(s, z)Gc
l

(

cµ

s + cµ

)

Φl

(

cµ

s + cµ

)]

αlm(−s)ds.

(A.25)

Summing over the four regions, we get

Φm(z)=
L
∑

l=1

plm

1

2πi

∫

Br

{

z

(s + cµ)z − cµ
Gl(z)Φl(z) + ξc(s, z)Gl

(

cµ

s + cµ

)

Φl

(

cµ

s + cµ

)

+

c−1
∑

i=0

P (i, l)

c−i
∑

k=1

gl(k)

[

τi+k(s, z) − zi+k+1

(s + cµ)z − cµ

−ξc(s, z)

(

cµ

s + cµ

)i+k ]
}

αlm(−s)ds.

(A.26)

Using Lemma 2 and Lemma 3 in (A.26) yields (22).

Appendix 3: Queue Size in an SMP[X]/M/c System

When the State Sojourn Time Follows an Exponential

Distribution

In this section, we show that the unknown constants contained in the generating function
(22) can be determined through the zeros of the denominator for this generating function
in the unit disk, when the sojourn time in the state of SMP follows an exponential
distribution.

If the sojourn time Alm follows an exponential distribution with mean 1/αlm, equation
(22) is free from the Bromwich integral, and it is reduced to

Φm(z) =
L
∑

l=1

plm

qlm(z)

[

zGl(z)Φl(z) + (z − 1)Blm(z)
]

; m = 1, . . . , L, (A.27)

where

qlm(z) :=
1

αlm

[(αlm + cµ)z − cµ], (A.28)
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Blm(z) := λ(αlm, z)Hlm + ηl(αlm, z), (A.29)

and

Hlm := Gl

(

cµ

αlm + cµ

)

Φl

(

cµ

αlm + cµ

)

. (A.30)

We also have the relations

P (i, l) =
1

i!

diΦl(z)

dzi

∣

∣

∣

∣

z=0

; l = 1, . . . , L, (A.31)

for {P (i, l); i = 0, . . . , c − 1} that appear in ηl(αlm, z). Note that each Blm(z) is a
polynomial in z. The set {Blm(z); l, m = 1, . . . , L} contains L2 unknown constants
{Hlm; l, m = 1, . . . , L} and cL unknown constants {P (i, l); i = 0, . . . , c−1; l = 1, . . . , L}.

Now, equation (A.27) can be written in matrix form as

Φ(z)V(z) = zΦ(z)G(z)Q(z) + (z − 1)1diag[Bt(z)Q(z)], (A.32)

where

V(z) :=





























L
∏

j=1

qj1(z) 0 . . . 0

0
L
∏

j=1

qj2(z) . . . 0

...
...

. . .
...

0 0 . . .
L
∏

j=1

qjL(z)





























, (A.33)

Q(z) :=























p11

∏

j 6=1

qj1(z) p12

∏

j 6=1

qj2(z) . . . p1L

∏

j 6=1

qjL(z)

p21

∏

j 6=2

qj1(z) p22

∏

j 6=2

qj2(z) . . . p2L

∏

j 6=2

qjL(z)

...
...

. . .
...

pL1

∏

j 6=L

qj1(z) pL2

∏

j 6=L

qj2(z) . . . pLL

∏

j 6=L

qjL(z)























, (A.34)

B(z) :=











B11(z) B12(z) . . . B1L(z)
B21(z) B21(z) . . . B2L(z)

...
...

. . .
...

BL1(z)BL2(z) . . . BLL(z)











, (A.35)

and G(z) is given by (35). We may rewrite (A.32) as

Φ(z)F(z) = (z − 1)1diag[Bt(z)Q(z)], (A.36)
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where

F(z) := V(z) − zG(z)Q(z). (A.37)

Let adjF(z) denote the adjoint matrix of F(z). Multiplying (A.36) on the right by
adjF(z), we have

Φ(z) =
(z − 1)1diag[Bt(z)Q(z)]adjF(z)

detF(z)
. (A.38)

Note that (A.38) contains the set of L2 + cL unknown constants {Hlm, P (i, l); i =
0, . . . , c − 1; l, m = 1, . . . , L}. We will show that there are L2 zeros for detF(z) in the
unit disk |z| ≤ 1 if the condition

αg < cµ (A.39)

is satisfied, which is the special case of the stability condition in (48). Here

α :=
1

L
∑

l=1

πl

L
∑

m=1

plm

αlm

(A.40)

is the arrival rate of the batches, and g is the average batch size given in (46). Those
unknown constants can be determined by solving the same number of linear equations
which consist of the set of equations yielded from the zeros of detF(z) in |z| ≤ 1 and
relations (A.31).

Differentiating (A.36) and evaluating the result at z = 1, we obtain

Φ′(1)(IL − P) + πF′(1) = 1diag[Bt(1)P]. (A.41)

Here we have used F(1) = IL − P since V(1) = G(1) = IL and Q(1) = P. Note also
that Φ(1) = π. Multiplying (A.41) on the right by 1t and noting that (IL − P)1t = 0,
we get

πF′(1)1t = 1diag[Bt(1)P]1t. (A.42)

To determine the left-hand side of (A.42), we differentiate (A.37) and evaluate the
result at z = 1. Then we have

F′(1) =V′(1) − G(1)Q(1) − G′(1)Q(1) − G(1)Q′(1)

=V′(1) − P −G′(1)P − Q′(1), (A.43)

where

V′(1) =





























L
∑

j=1

αj1 + cµ

αj1
0 . . . 0

0
L
∑

j=1

αj2 + cµ

αj2
. . . 0

...
...

. . .
...

0 0 . . .
L
∑

j=1

αjL + cµ

αjL





























, (A.44)
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Q′(1) =

























p11

∑

j 6=1

αj1 + cµ

αj1
p12

∑

j 6=1

αj2 + cµ

αj2
. . . p1L

∑

j 6=1

αjL + cµ

αjL

p21

∑

j 6=2

αj1 + cµ

αj1
p22

∑

j 6=2

αj2 + cµ

αj2
. . . p2L

∑

j 6=2

αjL + cµ

αjL

...
...

. . .
...

pL1

∑

j 6=L

αj1 + cµ

αj1
pL2

∑

j 6=L

αj2 + cµ

αj2
. . . pLL

∑

j 6=L

αjL + cµ

αjL

























, (A.45)

and G′(1) is given by (41). Multiplying (A.43) on the right by 1t and substituting (A.44),
(41), and (A.45) yields

F′(1)1t = V′(1)1t − 1t − G′(1)1t − Q′(1)1t

=





























L
∑

j=1

αj1 + cµ

αj1

L
∑

j=1

αj2 + cµ

αj2

...
L
∑

j=1

αjL + cµ

αjL





























−











1
1
...
1











−











g1

g2
...

gL











−































L
∑

k=1

p1k

∑

j 6=1

αjk + cµ

αjk

L
∑

k=1

p2k

∑

j 6=2

αjk + cµ

αjk

...
L
∑

k=1

pLk

∑

j 6=L

αjk + cµ

αjk































.

(A.46)

Finally, multiplying (A.46) on the left by π, we obtain

πF′(1)1t =
L
∑

l=1

πl

L
∑

k=1

αkl + cµ

αkl

−
L
∑

l=1

πl −
L
∑

l=1

πlgl

−
L
∑

l=1

πl

L
∑

k=1

plk

∑

j 6=l

αjk + cµ

αjk

=
L
∑

l=1

πl

L
∑

k=1

αkl + cµ

αkl

− 1 − g

−
L
∑

l=1

πl

L
∑

k=1

plk

L
∑

j=1

αjk + cµ

αjk

+
L
∑

l=1

πl

L
∑

k=1

plk

αlk + cµ

αlk

.

However, from the relations
∑L

l=1 πlplk = πk, k = 1, . . . , L, we have

L
∑

l=1

πl

L
∑

k=1

plk

L
∑

j=1

αjk + cµ

αjk

=
L
∑

k=1

L
∑

j=1

αjk + cµ

αjk

L
∑

l=1

πlplk

=
L
∑

k=1

πk

L
∑

j=1

αjk + cµ

αjk

.
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Thus we get

πF′(1)1t = cµ
L
∑

l=1

πl

L
∑

k=1

plk

αlk

− g =
cµ

α
− g. (A.47)

From the stability condition (48), we must have

αg < cµ, (A.48)

which is the condition in (A.39).
Recall that Φ(1) = π. Since detF(1) = det[IL − P] = 0, the point z = 1 is the

common zero of the denominator and the numerator for the right-hand side of (A.38).
Thus we investigate the value of the derivative of detF(z) at z = 1:

γ =
d

dz
detF(z)

∣

∣

∣

∣

z=1

.

Theorem 1 If αg < cµ, then γ > 0.

Proof. To determine γ, we use the well-known relations in linear algebra:

F(z)adjF(z) = detF(z)IL = adjF(z)F(z). (A.49)

Differentiating the second equality, evaluating the value at z = 1, and multiplying on
the right by 1t, we obtain

γ1t = adjF(1)F′(1)1t. (A.50)

An expression for adjF(1) may be found as follows. Evaluating (A.49) at z = 1 and
using detF(1) = 0, we have

PadjF(1) = adjF(1) = adjF(1)P.

Since P is an irreducible stochastic matrix, the first equality implies that each column of
adjF(1) is a multiple of 1t (recall that P1t = 1t). Similarly, the second equality implies
that each row of adjF(1) is a multiple of π (recall that πP = π). It follows that there
is a constant h such that

adjF(1) = h







π

...
π






. (A.51)

We claim that adjF(1) is a positive matrix [6, p.359]. From the form of (A.51), it is
enough to show that the diagonal elements, say, κl, l = 1, . . . , L, of adjF(1) are positive.
To see this, note that

κl = (−1)l+l det[F(l,l)(1)] = det[IL−1 − P(l,l)],
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where P(l,l) is the matrix P with its lth row and lth column removed. Since P is
irreducible, the spectral radius of P(l,l) is strictly less than unity. This implies that
det[IL−1− tP(l,l)] 6= 0 for real t satisfying 0 ≤ t ≤ 1. Since this determinant function of t
is positive for t = 0 and never zero, by continuity it is also positive for t = 1, i.e., κl > 0.
Thus adjF(1) is positive, and we conclude that h > 0 in (A.51).

Substituting (A.51) into (A.50) and noting (A.47) yields

γ = h
(cµ

α
− g
)

. (A.52)

Using h > 0 and the condition (A.48), we see that γ is positive. 2

We next show that there are L2 zeros for detF(z) in the unit disk. To do so, we use
a lemma in [4, p.239]: Let f(z, t) be a function analytic for z within and on a closed
contour C, and continuous for t in some interval I. If f(z, t) 6= 0 for z ∈ C and t ∈ I,
then the number of zeros of f(z, t) inside C is the same for all t ∈ I.

For our purpose, let

f(z, t) := detF(z, t),

where

F(z, t) := V(z) − ztG(z)Q(z).

We choose a closed contour C := {z; |z| = 1} and an interval I := {t; t ∈ [0, 1)}.
Obviously, f(z, t) is analytic in C and continuous for t ∈ I. We first prove that f(z, t) 6= 0
for z ∈ C and t ∈ I, and then prove that there are L2 zeros for f(z, 1) = detF(z) in C
using the above lemma.

Theorem 2

(a) detF(z, t) 6= 0 for |z| = 1 and t ∈ [0, 1).

(b) detF(z) 6= 0 for |z| = 1, z 6= 1.

Proof. We consider detF(z, t) for |z| = 1 and t ∈ [0, 1]. Note that detF(z) = detF(z, 1).
Then F(z, t) can be written as

F(z, t) =V(z) − ztG(z)Q(z)

=V(z) − ztG(z)L(z)V(z)

= [IL − ztG(z)L(z)]V(z), (A.53)

where

L(z) :=





























p11

q11(z)

p12

q12(z)
. . .

p1L

q1L(z)

p21

q21(z)

p22

q22(z)
. . .

p2L

q2L(z)

...
...

. . .
...

pL1

qL1(z)

pL2

qL2(z)
. . .

pLL

qLL(z)





























. (A.54)
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Therefore we have

detF(z, t) = det[IL − ztG(z)L(z)] · detV(z). (A.55)

Since

|qjk(z)| =

∣

∣

∣

∣

1

αjk

[(αjk + cµ)z − cµ]

∣

∣

∣

∣

≥ 1

αjk

[αjk + cµ − cµ)] = 1

for |z| = 1, we see that

|detV(z)| =

∣

∣

∣

∣

∣

L
∏

k=1

L
∏

j=1

qjk(z)

∣

∣

∣

∣

∣

≥ 1, for |z| = 1.

It follows that detV(z) 6= 0 for |z| = 1.
We next prove that IL − ztG(z)L(z) is nonsingular for |z| = 1 and t ∈ [0, 1) and

that IL − zG(z)L(z) is nonsingular for |z| = 1, z 6= 1. These are equivalent to that
det[IL − ztG(z)L(z)] and det[IL − zG(z)L(z)] are invertible, respectively. To do this,
we use the notion of maximum row sum matrix norm [6, p.295], and a corollary in [6,
p.301]. We state them as follows: Suppose there is a L × L matrix AL = {aij}. The
maximum row sum matrix norm of AL is defined by

|||AL|||∞ := max
1≤i≤L

L
∑

j=1

|aij|.

A matrix AL is invertible if there is a matrix norm (e.g. |||·|||∞ ) such that |||IL−AL||| <
1, if this condition is satisfied,

A−1
L =

∞
∑

k=0

(IL − AL)k.

From (35) and (A.54) we have

IL − ztG(z)L(z)

=





























1 − ztG1(z)
p11

q11(z)
−ztG1(z)

p12

q12(z)
. . . −ztG1(z)

p1L

q1L(z)

−ztG2(z)
p21

q21(z)
1 − ztG2(z)

p22

q22(z)
. . . −ztG2(z)

p2L

q2L(z)

...
...

. . .
...

−ztGL(z)
pL1

qL1(z)
−ztGL(z)

pL2

qL2(z)
. . . 1 − ztGL(z)

pLL

qLL(z)





























. (A.56)

For our purpose, we define

A(z, t) := IL − ztG(z)L(z), (A.57)
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and then

IL − A(z, t) = ztG(z)L(z). (A.58)

The absolute sum of ith row for ztG(z)L(z) on |z| = 1 and 0 ≤ t ≤ 1 is satisfied the
following relations

L
∑

j=1

∣

∣

∣
ztGi(z)

pij

qij(z)

∣

∣

∣
≤ t
∣

∣

∣
Gi(z)

∣

∣

∣

L
∑

j=1

pij = t
∣

∣

∣
Gi(z)

∣

∣

∣
. (A.59)

Thus we have
∣

∣

∣

∣

∣

∣

∣

∣

∣
IL − A(z, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤ t max

i

∣

∣

∣
Gi(z)

∣

∣

∣
. (A.60)

For case (a) in which |z| = 1 and t ∈ [0, 1), we see that
∣

∣

∣

∣

∣

∣

∣

∣

∣
IL − A(z, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
=
∣

∣

∣

∣

∣

∣

∣

∣

∣
tzG(z)L(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
< max

i

∣

∣

∣
Gi(z)

∣

∣

∣
≤ 1.

For case (b) in which |z| = 1, z 6= 1 and t = 1, since |Gi(z)| < 1, we see that
∣

∣

∣

∣

∣

∣

∣

∣

∣
IL − A(z, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
=
∣

∣

∣

∣

∣

∣

∣

∣

∣
zG(z)L(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤ max

i

∣

∣

∣
Gi(z)

∣

∣

∣
< 1.

From the Corollary [6, p.301], it follows that IL − ztG(z)L is nonsingular for both
|z| = 1, t ∈ [0, 1), and |z| = 1, z 6= 1, t = 1. From (A.55), we conclude that detF(z, t) 6= 0
for |z| = 1, t ∈ [0, 1) and detF(z) 6= 0 for |z| = 1, z 6= 1. 2

Theorem 3 If γ > 0, detF(z) has L2 − 1 zeros in |z| < 1, and it has a simple zero at
z = 1.

Proof. Our proof follows [4, p.241]. We first observe that detF(z, 0) = detV(z) has L2

zeros in |z| ≤ 1, because each element qij(z) in V(z) has a single zero at

zij =
cµ

αij + cµ

in |z| ≤ 1. From Theorem 2, we have detF(z, t) 6= 0 for |z| = 1 and t ∈ [0, 1). Thus,
according to the above lemma, there are L2 zeros of detF(z, t) in |z| < 1 for all t ∈ [0, 1).

We next investigate detF(z, t) at t = 1. Note that

detF(1, 1) = detF(1) = det[IL − P] = 0.

If γ > 0, the point z = 1 is a simple zero of the function detF(z, 1) = detF(z). Since
detF(1, 1) = 0, then detF(1 − ε, 1) < 0 for small ε > 0. By continuity in t ∈ [0, 1),
there is small τ so that detF(1 − ε, 1 − τ ) < 0. However, detF(1, 0) = detV(1) = 1
and detF(1, t) 6= 0 for 0 ≤ t < 1 as shown above. By continuity, detF(1, t) > 0 for
0 ≤ t < 1, so in particular, detF(1, 1 − τ ) > 0. Therefore, detF(1 − ε1, 1 − τ ) = 0 for
some 0 < ε1 < ε. The same argument holds for τ → 0, so the simple zero at z = 1 is
the limit of zeros from inside the unit disk. It follows that detF(z, 1) = detF(z) has L2

zeros in |z| ≤ 1. From Theorem 2(b), detF(z) has L2 − 1 zeros in |z| < 1. 2
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