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Abstract

In the setting of a discrete-time delayed renewal process, we study counting

the number of renewals during a random interval. An example is the number

of appearances of a specific pattern in a random number of repeated trials. We

obtain closed-form mathematical expressions for the probability mass function and

the binomial moments of this number for various distributions of the interrenewal

times and the length of the random interval.

keywords: Delayed renewal process; counting process; discrete-time.

1 Introduction

This paper is concerned with counting the number of renewals in a discete-time random
interval. Let N(n) be the number of renewals in a fixed discrete-time interval (0, n],
where n is a positive integer. The interrenewal times occur according to a sequence
of discrete random variables {X1, X2, . . . , Xi, . . .}, where X1 is started at time 0. Let
T be a random variable representing a discrete-time interval, which is independent of
{X1, X2, . . . , Xi, . . .}. Hence N(T ) is a random variable which represents the number of
renewals occurring in the random interval (0, T ]. For the sake of convenience, we call T
a session time in this paper.

The problem of finding the probability distribution of N(T ) in the continuous-time
setting has been treated for several specific cases by Cox in his monograph [2, sec. 3.4]
under the title “the number of renewals in a random time.” Most of the results presented
by Cox are based on the ordinary renewal process, i.e., all the random variables Xi, i =
1, 2, . . . come from the same distribution [2, p. 25]. Thus it is more general to consider
the case in which Xi, i = 2, 3, . . . come from the same distribution as X2 while only
X1 may come from a different distribution. Such a case is called the delayed renewal
process [2, p. 28]. As a special case of the delayed renewal process, if X1 is a residual
life of X2, we have the equilibrium renewal process [2, p. 28]. These are the three types
of a renewal process introduced by Cox, and often considered by others subsequently.
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However, as a further generalization of the delayed renewal process, we may assume that
each interrenewal time X1, X2, . . . can have different distribution.

The discrete-time renewal process is dealt with in several textbooks, including Feller
[3] and Hunter [4], where it is called the recurrent event process. They present a theory
for counting the number of renewals in a fixed time interval. As an application, Koutras
[5] discusses the number of appearances of a specific pattern in a fixed number of repeated
trials. More applications of this type can be found in [1]. However, none of them consider
the number of renewals in a random time interval. Thus the theory in this paper extends
the previous treatment.

The rest of this paper is organized as follows. In Section 2, we derive the gener-
ating function for N(T ) when both session times and interrenewal times have general
distributions. We also obtain a useful expression when the session time is negative bi-
nomially distributed. Based on the general results of Section 2, we obtain in Section
3 the probability mass function and the binomial moments for N(T ) when the session
time is geometrically distributed while the interrenewal times are general. In Section 4
similar results are obtained when the session times are generally distributed while the
interrenewal times are geometrically distributed. Our results in Sections 2 through 4 are
valid for the delayed renewal process in the sense defined by Cox [2]. In Section 5, we
extend the results to the case of a generalized delayed renewal process such that some
or all of the interrenewal times can have different distributions.

2 General Session Time and General Interrenewal

Times in a Delayed Renewal Process

In Sections 2 through 4, we assume a delayed renewal process, i.e., a sequence of interre-
newal times {Xi; i = 1, 2, . . .} such that Xi, i = 2, 3, . . . come from the same distribution
as X2. In Section 2, we present a framework for handling the case in which the session
time T and the interrenewal times X1 and X2 have general distributions respectively.
In particular, we derive the generating function for N(T ) when the session time has
negative binomial distribution.

2.1 Generating function

Let us define the sum of m interrenewal times {X1, X2, . . . , Xm} as

Sm :=
m
∑

i=1

Xi; m = 1, 2, . . . (1)

and let S0 := 0. Let N(n) be a random variable representing the number of renewals
in a fixed interval (0, n], where n is a positive integer. Thus, the event {N(n) ≥ m} is
equivalent to the event {Sm ≤ n}, i.e., the number of renewals by time n inclusive is not
fewer than m if and only if the mth renewal occurs before or at time n. Thus we have

P [N(n) = m] = P [N(n) ≥ m] − P [N(n) ≥ m + 1]

= P [Sm ≤ n] − P [Sm+1 ≤ n]. (2)
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Hence
P [N(n) = m] = FSm

(n) − FSm+1
(n); m = 0, 1, 2, . . . , (3)

where FSm
(n) := P [Sm ≤ n] is the cumulative distribution function (cdf) of the random

variable Sm. Note that FS0
(n) ≡ 1. We define the probability generating function (pgf)

for N(n) as

GN(T )(n, z) :=
∞
∑

m=0

P [N(n) = m]zm. (4)

Substituting (3) into (4), we get

GN(T )(n, z) = 1 + (z − 1)
∞
∑

m=1

FSm
(n)zm−1. (5)

Now, let us define the following generating function

G∗
N(T )(y, z) :=

∞
∑

n=1

GN(T )(n, z)yn; |y| < 1. (6)

From (5) and (6) we have

G∗
N(T )(y, z) =

y

1 − y
+ (z − 1)

∞
∑

m=1

zm−1
∞
∑

n=1

FSm
(n)yn. (7)

By substituting FSm
(n) =

∑n
j=1 P [Sm = j] into (7), we obtain

G∗
N(T )(y, z) =

y

1 − y
+

z − 1

1 − y

∞
∑

m=1

zm−1
∞
∑

j=1

P [Sm = j]yj. (8)

This holds for a general renewal process.
For a delayed renewal process, the relationship between the pgf of Sm and the pgf’s

GX1
(y) and GX2

(y) for the interrenewal times X1 and X2, respectively, is given by

∞
∑

j=1

P [Sm = j]yj = GX1
(y) {GX2

(y)}m−1 . (9)

Then, by substituting (9) into (8), we obtain

G∗
N(T )(y, z) =

y

1 − y
+

(z − 1)GX1
(y)

(1 − y)[1 − zGX2
(y)]

. (10)

2.2 Probability mass function and binomial moments

Let GN(T )(z) be the pgf for N(T ), the number of renewals in a random interval (0, T ]. It
is given by

GN(T )(z) :=
∞
∑

n=1

GN(T )(n, z) P [T = n], (11)

3



where

GN(T )(n, z) := E
[

zN(T )|T = n
]

=
∞
∑

j=0

P [N(n) = j|T = n]zj . (12)

Note that this is equivalent to (4).
Once GN(T )(z) is obtained, the pmf of N(T ) is given by

P [N(T ) = j] =
1

j!

dj

dzj
GN(T )(z)

∣

∣

∣

∣

∣

z=0

; j = 0, 1, 2, . . . . (13)

The `th binomial moment of N(T ) is given by

E

[(

N(T )

`

)]

=
1

`!

d`

dz`
GN(T )(z)

∣

∣

∣

∣

∣

z=1

; ` = 0, 1, 2, . . . . (14)

2.3 Negative binomially distributed session time

Let us consider a special case in which the random interval T can be fitted by a negative
binomial pmf, say

P [T = n] =

(

n − 1

r − 1

)

prqn−r; n ≥ r (15)

where p + q = 1, 0 < p, q < 1, and r is a positive integer. Hence

GN(T )(z) =
∞
∑

n=r

GN(T )(n, z)

(

n − 1

r − 1

)

prqn−r. (16)

On the other hand, we have

G∗
N(T )(y, z)

y
=

∞
∑

n=1

GN(T )(n, z)yn−1. (17)

Hence the (r − 1)th derivative is given by

1

(r − 1)!

∂r−1

∂yr−1

[

G∗
N(T )(y, z)

y

]

=
∞
∑

n=r

(

n − 1

r − 1

)

GN(T )(n, z)yn−r. (18)

Thus we can obtain

GN(T )(z) =
pr

(r − 1)!

∂r−1

∂yr−1

[

G∗
N(T )(y, z)

y

]
∣

∣

∣

∣

∣

y=q

. (19)

This is the discrete-time version of Equation 4 in Section 3.4 of [2].
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3 Geometrically Distributed Session Time and Gen-

eral Interrenewal Times

As a special case of the general setting in Section 2, let us assume that the session time
T is modeled by a geometric pmf, say

P [T = n] = pqn−1; n = 1, 2, . . . (20)

with mean E[T ] = 1/p, where p + q = 1, 0 < p, q < 1. This is a special case of r = 1 in
(15). Then the pgf of N(T ) is given by

GN(T )(z) =
p

q
G∗

N(T )(q, z) = 1 +
(z − 1)GX1

(q)

q[1 − zGX2
(q)]

. (21)

The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) =

j!GX1
(q)[1 − GX2

(q)][GX2
(q)]j−1

q[1 − zGX2
(q)]j+1

; j = 1, 2, . . . . (22)

Substituting (22) into (13), we obtain the pmf of N(T ) as

P [N(T ) = j] =



















1 −
GX1

(q)

q
; j = 0

1

q
GX1

(q)[1 − GX2
(q)][GX2

(q)]j−1 ; j = 1, 2, . . .
. (23)

Substituting (22) into (14), we obtain the `th binomial moment of N(T ) as

E

[(

N(T )

`

)]

=
GX1

(q)[GX2
(q)]`−1

q[1 − GX2
(q)]`

` = 1, 2, . . . . (24)

In particular, we have the mean

E[N(T )] =
GX1

(q)

q[1 − GX2
(q)]

(25)

and the variance

Var[N(T )] =
2GX1

(q)GX2
(q)

q[1 − GX2
(q)]2

+ E[N(T )] − E2[N(T )]. (26)

4 General Session Time and Geometrically Distributed

Interrenewal Times

In this section, we consider a general pmf for the session time T and geometrically
distributed interrenewal times as follows:

P [Xi = k] = piq
k−1
i ; k = 1, 2, . . . , (27)
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where pi + qi = 1, 0 < pi, qi < 1; i = 1, 2. The pgf of Xi is then given by

GXi
(y) =

piy

1 − qiy
; i = 1, 2. (28)

Substituting (28) into (10), we obtain the pgf for N(n) as follows:

G∗
N(T )(y, z) =

y

1 − y
+

(z − 1)(1 − q2y)p1y

(1 − y)(1− q1y)[1 − (q2 + p2z)y]
. (29)

Expanding (29) in partial fractions in y and then inverting, we obtain

GN(T )(n, z) = (1 − z)A(z)qn
1 + B(z)(q2 + p2z)n, (30)

where

A(z) :=
q2 − q1

q2 − q1 + p2z
, B(z) :=

p1z

q2 − q1 + p2z
. (31)

Substituting (30) into (11), we get

GN(T )(z) = (1 − z)A(z)GT (q1) + B(z)GT (q2 + p2z), (32)

where GT (z) is the pgf for T .
We need the jth derivative of GN(T )(z) in order to find the pmf and the moments of

N(T ). It is given by

1

j!

djGN(T )(z)

dzj
=

(−1)jp1(q2 − q1)p2
j−1

(q2 − q1 + p2z)j+1
GT (q1)

+ p1(q2 − q1)p2
j−1

j−1
∑

i=0

(−1)j−i−1G
(i)
T (q2 + p2z)

i!(q2 − q1 + p2z)j−i+1

+
p1p

j
2z

j!(q2 − q1 + p2z)
G

(j)
T (q2 + p2z); j = 1, 2, . . . (33)

where G
(j)
T (y) := djGT (y)/dyj.

From (33), we find the pmf for N(T ) as

P [N(T ) = j]

=















GT (q1) j = 0

p1

p2

(

p2

q1 − q2

)j


GT (q1) −
j−1
∑

i=0

(q1 − q2)
i

i!
G

(i)
T (q2)



 j = 1, 2, . . .
(34)

The `th binomial moment of N(T ) is given by

E

[(

N(T )

`

)]

=
q1 − q2

p2

(

−
p2

p1

)` {

GT (q1) −
`−1
∑

i=0

(−p1)
i

i!
G

(i)
T (1)

}

+
p2

`

`!
G

(`)
T (1); ` = 1, 2, . . . . (35)
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For example, the mean is given by

E[N(T )] =
q2 − q1

p1
[1 − GT (q1)] + p2E[T ]. (36)

We remark that the corresponding pgf for the ordinary and equilibrium renewal pro-
cesses can be obtained by making q1 = q2 = q and p1 = p2 = p. In such a case, we get
GN(T )(n, z) = (q + pz)n, which is the pgf of a binomial random variable. Thus we simply
have

GN(T )(z) = GT (q + pz), (37)

which leads to

P [N(T ) = j] =
pj

j!
G

(j)
T (q); j = 0, 1, 2, . . . (38)

and

E

[(

N(T )

`

)]

=
p`

`!
G

(`)
T (1); ` = 0, 1, 2, . . . . (39)

5 Generalized Delayed Renewal Process

Let us generalize the delayed renewal process so that each interrenewal time X1, X2, . . .
may have different distribution.

Suppose that the first R interrenewal times X1, X2, . . . , XR may have different distri-
butions for which the pgf’s are given by GX1

(y), GX2
(y), . . ., GXR

(y), respectively, and
that the subsequent interrenewal times XR+1, XR+2, . . . have the same distribution as
XR. As special cases of this process, we have an ordinary renewal process for R = 1, a
delayed renewal process for R = 2, and the case in which all interrenewal times can be
distinct for R = ∞.

For this process, we have

∞
∑

j=1

P [Sm = j]yj =















m
∏

r=1

GXr
(y) 1 ≤ m ≤ R − 1

GR(y)[GXR
(y)]m−R m ≥ R

, (40)

where we have introduced for notational convenience

GR(y) :=
R
∏

r=1

GXr
(y). (41)

Then, by substituting (40) into (8), we obtain

G∗
N(T )(y, z) =

y

1 − y
+

z − 1

1 − y

R−1
∑

m=1

zm−1
m
∏

r=1

GXr
(y) +

(z − 1)zR−1GR(y)

(1 − y)[1 − zGXR
(y)]

. (42)
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5.1 Geometrically distributed session time

If the session time T is geometrically distributed with mean E[T ] = 1/p as in (20), we
have the pgf for N(T ) as

GN(T )(z) =
p

q
G∗

N(T )(q, z)

= 1 +
z − 1

q

R−1
∑

m=1

zm−1
m
∏

r=1

GXr
(q) +

(z − 1)zR−1GR(q)

q[1 − zGXR
(q)]

. (43)

It is straightforward as before to obtain the pmf and moments of N(T ) from (43). As
the coefficient of zj in the expansion of (43) in powers of z, the pmf of N(T ) is given by

P [N(T ) = j] =



























































1 −
GX1

(q)

q
; j = 0

1 − GXj+1
(q)

q

j
∏

r=1

GXr
(q) ; 1 ≤ j ≤ R − 1

GR(q)

q
[1 − GXR

(q)] [GXR
(q)]j−R ; j ≥ R

. (44)

As the coefficient of (z−1)` in the expansion of (43) in powers of z−1, the `th binomial
moment of N(T ) is given by

E

[(

N(T )

`

)]

=



























































1

q





R−1
∑

j=`

(

j − 1

` − 1

)

j
∏

r=1

GXr
(q) + GR(q)

`−1
∑

j=0

(

R − 1

` − j − 1

)

[GXR
(q)]j

[1 − GXR
(q]j+1



 ;

1 ≤ ` ≤ R − 1

GR(q)

q

`−1
∑

j=`−R

(

R − 1

` − j − 1

)

[GXR
(q)]j

[1 − GXR
(q)]j+1

; ` ≥ R

.

(45)
In particular, the mean is given by

E[N(T )] =
1

q





R−1
∑

j=1

j
∏

r=1

GXr
(q) +

GR(q)

1 − GXR
(q)



 . (46)

All the above expressions reduce to those in Section 3 when R = 2.
For R = ∞, by assuming that limR→∞ GR(q) = 0 for q > 0, the pgf of N(T ) is given

by

GN(T )(z) = 1 +
z − 1

q

∞
∑

m=1

zm−1
m
∏

r=1

GXr
(q). (47)
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Thus we have

P [N(T ) = j] =























1 −
GX1

(q)

q
; j = 0

1 − GXj+1
(q)

q

j
∏

r=1

GXr
(q) ; j = 1, 2, . . .

(48)

and

E

[(

N(T )

`

)]

=
1

q

∞
∑

j=`

(

j − 1

` − 1

)

j
∏

r=1

GXr
(q); ` = 1, 2, . . . . (49)

5.2 General session time and geometrically distributed inter-

renewal times

As an extension to the case of Section 4, we can consider a general session time and
geometrically distributed interrenewal times as

GXr
(y) =

pry

1 − qry
; r = 1, 2, . . . , R, (50)

where pr + qr = 1, 0 < pr, qr < 1. Let us assume for simplicity that all pr’s (thus all
qr’s) are distinct.

Substituting (50) into (42) and expanding in partial fractions in y yields

G∗
N(T )(y, z) = −1 + (1 − z)

R−1
∑

r=1

Ar(z)

1 − qry
+

B(z)

1 − (qR + pRz)y
, (51)

where

Ar(z) :=

(qR − qr + pRz)
R−2
∑

j=r

zj−1





j
∏

i=1

pi









R−1
∏

i=j+1

(pi − pr)



+ zR−2(pr − pR)
R−1
∏

j=1

pj

pr(qR − qr + pRz)
R−1
∏

j=1(j 6=r)

(pj − pr)

;

r = 1, 2, . . . , R − 1 (52)

and

B(z) := zR−1
R−1
∏

r=1

pr

qR − qr + pRz
. (53)

Substituting the inversion of (51) into (11), we obtain the pgf of N(T ) as

GN(T )(z) = (1 − z)
R−1
∑

r=1

Ar(z)GT (qr) + B(z)GT (qR + pRz), (54)

where GT (y) is the pgf of the session time T .
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It is possible to derive the pmf and moments of N(T ) from (54). For example, the
mean is given by

E[N(T )] = −
R−1
∑

r=1

Ar(1)GT (qr) + R + pR

(

E[T ] −
R
∑

r=1

1

pr

)

, (55)

where

Ar(1) =

pr

R−2
∑

j=r





j
∏

i=1

pi









R−1
∏

i=j+1

(pi − pr)



+ (pr − pR)
R−1
∏

j=1

pj

pr
2

R−1
∏

j=1(j 6=r)

(pj − pr)

;

r = 1, 2, . . . , R − 1. (56)

These results reduce to those in Section 4 when R = 2.

6 Conclusions

We have obtained several closed-form formulas for the pmf and the binomial moments
of the discrete random variable N(T ) which counts the number of renewals in a ran-
dom discrete time interval (called a session time). These results are valid for both the
conventional delayed renewal process and our generalized delayed renewal process.

We have also derived the generating functions of N(T ) for the case of a generally
distributed session time and generally distributed interrenewal times as well as for its
special case of a negative binomially distributed session time. Based on these results we
have obtained the pmf and the binomial moments when the session time is geometrically
distributed while the interrenewal times are general and when the session time is general
while the interrenewal times are geometrically distributed.
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