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Abstract

This paper addresses comprehensive ranking systems determining an ordering of entities
by aggregating quantitative data for multiple attributes. We propose a DEA-CP (Data
Envelopment Analysis - Compromise Programming) model for the comprehensive ranking,
including preference voting (ranked voting) to rank candidates in terms of aggregate vote
by rank for each candidate. Although the DEA-CP model once employs the flexible DEA
weighting system that can vary by entity, it finally aims at regressing to the common weights
across the entities. Therefore, the model can totally rank the entities by spec:fymg nothing
arbitrary, and can avoid to use the diverse DEA weights.

Keywords: Comprehensive ranking; Preference voting; Weighting; Data envelopment anal-
ysis; Compromise programming

1 Introduction

This paper deals with comprehensive ranking systems, e.g., project ranking systems, in which
we evaluate and rank n entities by aggregating quantitative data for ¢ attributes. Although such
a multi-attribute ranking is broadly used in various fields, we cannot but employ a weighted
sum of the attribute values as an evaluation criterion. That is, the problem is to obtain a
total score Z; = S, uryr; for entity 7, j = 1,...,n, where y,;(> 0) is the value to attribute
r of entity j, and u,(> 0) is the weight given to attribute 7. Consider a special case of the
comprehensive ranking, and suppose that y,; is the number of r-th place votes that candidate
J receives. Then, this is a preference voting system, i.e., ranked voting system, in which each
voter selects, ranks and votes the top t candidates among n, and we determine an ordering
of all the n candidates by obtaining Z;. Note that the comprehensive ranking includes the
preference voting. Since it is not easy to determine a priori clear-cut weights in comprehensive



ranking systems, we must say that any comprehensive ranking in terms of the weighted sum is
somewhat arbitrary however the weights are specified.

In order to exclude the arbitrariness, we can consider to apply DEA (Data Envelopment
Analysis) (e.g., Charnes et al., 1994, Cooper et al., 2000) to the comprehensive ranking. Cook
and Kress (1990) first propose a DEA-based preference voting model, in which the candidates
are regarded as DMUs (Decision Making Units) in DEA, and every DMU j is considered to
have t DEA outputs, i.e., ¥4, 7 = 1, ..., ¢, and one DEA input, i.e., “unit input” whose amount
is unity (Hashimoto, 1996). This idea is applicable to the DEA-based comprehensive ranking.
In the DEA comprehensive ranking, we evaluate entities using a total score Z;, a weighted sum
of multi-attribute values, but the weights u,, r = 1,...,f, can vary by entity. That is, each
entity is rated in terms of the weights most favorable to itself.

Although the DEA comprehensive ranking can do without employing a priori weighting,
there exist two kinds of criticism originated from the above-mentioned property peculiar to
DEA: (1) Multiple top-ties. DEA usually judges multiple DMUs as DEA efficient. Therefore,
DEA ranking usually has multiple entities tied for the first place; (2) Too diverse weights.
Each entity evaluated in DEA ranking has the freedom to choose its own optimal weights.
Therefore, the ranking using such diverse weights seems to be unrealistic or unfair compared
with the traditional ranking using common weights across the entities.

To resolve the problem of multiple top-ties, several methods are addressed. For the prefer-
ence voting, Cook and Kress (1990) propose to discriminate the top-tied candidates, i.e., DEA.
efficient DMUs, by maximizing a discrimination intensity function, implying the minimum gap
between successively ranked weights, subject to the condition that they remain DEA efficient.
However, we must then specify the discrimination intensity function, which brings another ar-
bitrarimess than that in determining weights. Hashimoto (1997) resolves this problem in also
the preference voting by applying the DEA exclusion model (Andersen and Petersen, 1993},
that can discriminate DEA efficient DMUs, instead of the standard DEA model. But it should
be noted that in the more general comprehensive ranking with no a priori information about
weight distribution, as these authors also state, the DEA exclusion model ranks the DEA ef-
ficient DMUs outlying in the data space too high. Green et al. (1996) develop another model
that constructs the DEA/ cross-efficiency matrix (Sexton et al., 1986) and ranks the candidates
by its eigenvector. This is applicable to the comprehensive ranking, But regrettably, we must
say that this method also depends on the diverse DEA weights like Cook and Kress (1990) and
Hashimoto (1997).

Based on the considerations above, this paper proposes a new comprehensive ranking model
named DEA-CP (DEA- Compromise Programming). This is also a DEA-based model, but aims
at regressing to the common weights across the entities. The DEA-CP model can rank the
entities by specifying nothing arbitrary, and can avoid to use the diverse DEA weights. Further,
it can resolve the problem of multiple ¢op-ties, and produces no problem of outliers ranked too
high.

2 DEA-CP ranking

The DEA-CP ranking model proposed in this paper consists of two stages: (1) DEA compre-
hensive ranking and (2) compromise programming. We begin with describing the model for the
preference voting. Therefore, the first stage of the model is here the DEA preference voting.



2.1 DEA preference voting model

We formulate the model of DEA preference voting, the same of Cook and Kress (1990), as
follows:

Maximize  Zj, = Y ur¥ri (2.1a)

; :

subject to Z urlri <1, f=1,.,n, (2.1b)
r=1

Uy — Uryl 2 £, T = 1, ...,t - 1, (2.10)

Uy 2 €, (21d)

where ¢ is a positive non-Archimedean infinitesimal.

This is a DEA/ multiplier form model with each candidate as a DMU. We solve this LP
(Linear Programming) problem with decision variables u,, r = 1,...,t, for each candidate jo,
Jo =1,...,n, and try to rank the candidates according to the maximum 23 . Comstraints (2.1c)
form the DEA/ assurance region (Thompson et al, 1986) expressing a strict ordering of weights.
Since each DMU can diversely select its own optimal weights, model (2.1) usually judges
multiple DMUs as DEA efficient, i.e., %5, = 1. In this way, although the DEA preference voting
can certainly do without arbitrary specifying weights, it usually ranks multiple candidates as
the top based on the diverse weights differently defined by candidate.

2.2 Compromise programming

Model (2.1) gives a DEA score vector 2* = (Z}, ..., Z;;) based on the optimal weights varying
by candidate j, and there are usually multiple top-tied candidates with Z; = 1. These diverse
optimal weights imply different interpretations of the voters’ preference by the candidates,
which causes the problem of multiple top-ties. Moreover, although the idea of flexibly defined
weights is peculiar to DEA vs other comprehensive evaluation methods, there are surely some
people who think it unrealistic or unfair. To resolve this, at the second stage of the DEA-CP
model, we consider regressing to the common weights across the candidates. However, we
can neither employ any predetermined weights because of arbitrariness, nor employ optimal
weights for any special candidate because of fairness. Therefore, we here apply the notion of
compromise programming (Yu, 1973, Zeleny, 1973) in the multiobjective decision-making, that
minimizes the sum of each candidate’s deviation from the ideal point.

Let u = (uy,...,us) be the vector of common weights across the candidates to be obtained,
and let

t
Yoy S L G =1 n, U — U1 26 T=1,,t— 1, 26} (2.2)

r=1

U= {(uls ...,Ut)

be the set of all feasible u, the feasible weight set. Further let Zj(w) = Yt_, u,yr; be the
total score function to candidate j, let Z{u) = (Z1(u),..., Zo(u)) be the vector of Z;(u), and
let § = {Z(u)|lu € U} be the total score set. For any candidate j, score Z} model (2.1)
gives is the maximum total score that he/she can obtain. Therefore, vector Z * is the ideal
point in the sense that every candidate is evaluated in terms of hls/her own optimal weights.
. If Z* is feasible, i.e., there exists u® € U such that Z(u®) = Z*, the weight vector u® would
be acceptable. Since such a fortunate case is rare, we aim at reaching to the closest point
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Z{u) to the ideal point Z*. For this purpose, we need a distance function that measures the
closeness between the points Z* and Z(u). We introduce the well-known distance function
(7=1 w3} 25— Z;(u)|P)?, where w; (> 0) is the weight given to candidate j, and p, 1 < p < oo,
is a parameter (e.g., Chankong and Haimes, 1983).

Since this distance function implies the total sum of each candidate’s regret that he/she
cannot achieve the ideal point Z*, we search the point Z(uw) by minimizing the function.
-Noting that we should regard the weight to each candidate as equal because of fairness, and
noting that Z* > Z(u), we can formulate the problem for seeking the closest point to Z* as
follows: '

1/p
Minimize  Dp(Z(u)) = [Z (Z - Eu,.yrj) } (2.3a)

=1
subject to wu € U. (2.3b)

Obtaining the optimal solution u* to model (2.3), we rank the candidates by Z; 5 (u*).

In model (2.3), we can, in theory, specify the parameter p any value in the range 1 < p < co.
However, in computation, i.e., from a viewpoint of algorithms to obtain the optimal solution,
and because of geometrical concepts of distance, we cannot but consider only the following
three values: p = 1, the L) (absolute value) norm; p = 2, the L (Buclidean) norm; and p = oo,
the Lo (Tchebycheff) norm.

(1) The L; norm. When p = 1, the model (2.3) is equivalent to the following LP prob-
lem:

Maximize Z Z U Yrj (2.4a)
j=lr=l
subjectto w e U. (2.4b)

(2) The L norm. Whenp = 2, let 17 (25— ZT_.lu,-yU) = Dy(Z(u)). Then, Da(Z(u u)) =
[Da(Z(w))]2 is a strictly increasing function of Da(Z(u)). Therefore, since minimizing
Dy(Z(u)) is equivalent to minimizing Ds(Z(u)), we can solve the following QP (Quadratic
Programming) problem instead of the model (2.3) for p = 2:

n 2
Minimize — Dy(Z(u)) = z (ZJ* - zt: ury,-j) (2.5a)

j=1 r=1
subjectto wu e U. (2.5b)

(3) The Loo norm. As is well-known, we can transform the model (2.3) for p = 0o to the
following:

Minimize max (Z —Zu,.y”) (2.62)

J ,,Tl.

subject to w e U. (2.6b}

This can further be transformed as an LP formulation.



2.3 Selecting a norm

We must here choose one out of the L;, L and Ly norms. The effect of parameter p is to
place more or less emphasis on the relative contribution of individual regret. The larger the p
value is chosen, the more importance is given to the largest regret. Ultimately, the Lo, treats
only the maximal regret. On the contrary, the L, norm takes all regrets into account in direct
proportion to their magnitudes. The Ly norm measures the shortest geometric distance from
the ideal point to the actual evaluation point. Notwithstanding, we have no rationale to choose
the value of p.

We here select the Ly norm from the reason of the unique optimal solution of total score
vector Z(u). If model (2.3) has multiple optimal solutions of Z(u), the ranking in terms of
Z;(u") might be indefinite. Hence, we prove the following property.

Property. For 1 < p < o0, model (2.3) has a unique optimal solution of Z(u).

Proof For 1 < p < oo, since Dp(Z(u)) is a strictly increasing function of D (Z(u)) =
i=1{2} — 3 % —1 UrYrs)P, minimizing D,(Z (w)) is equivalent to minimizing D o (Z(uw )) D,,(Z (u))

is a strlctly convex function of Z{u) because each (Z; - -3t Uryri )Py J = 1,...,n, is strictly

convex. Therefore, letting Z', Z? € S and letting ) be a scalar 0 < A < 1,

Dp((1=X)Z' +22%) < (1 = N D,(2Y) + AD,(2?). (2.7)

_ Suppose that model (2.3) has two optimal solutions 2" and Z° , then D ( ) 1'51,(22) =
D;, where D* is the minimum to D »(Z(u)), because minimizing Dp( 'u)) is equivalent to

minimizing DP(Z (u)). Since S is convex (see Appendix A), any convex combination of Z! and
Z? also belongs to §. But from (2. 7),

Bp((1 - N2 +22%) < 1= ND,(ZY) +25,(2%) = B,

This is in contradiction to that 15; is the minimum to Dp(Z(wu)). Therefore, model (2.3) has
a unique optimal solution Z. 0o

‘This property implies that if an optimal solution u* to the model {2.3) for 1 < p < oo
is obtained, then the unique optimal vector Z (u*) is also obtained, so that we can rank the
candidates in terms of the total scores Z; j(u*). This is guaranteed by only the Ly norm among
the three norms.

For the more general comprehensive ranking, not the preference voting, removing the con-
straints ur — up41 2 €,r = 1,...,t — 1, from the feasible weight set U/, we can follow the same
discussion. Therefore, we employ the L norm, i.e., employ solving the QP problem (2.5) as
the second stage of the DEA-CP ranking model.

3 Ranking cases

To demonstrate the performance of the proposed DEA-CP ranking model, we show two ranking
cases corresponding to the preference voting and the comprehensive ranking.



3.1 Preference voting case

Table 1 shows a preference voting case where each voter selects, ranks and votes the top
five candidates and we try to determine an ordering of all the fourteen candidates (t =5,
n = 14). We get the Borda order based on the weights somewhat arbitrarily determined as
ur =3 ~nr=1,..,5 The DEA/AR (DEA/ Assurance Region) score is that model (2.1),
having constraint (2.1c) as the assurance region, produces. Here, candidates A and B are tied
for the top. The DEA/AR, exclusion model is by Hashimoto (1997), and is different from the
DEA/AR model by that candidate jy being evaluated is excluded from constraint (2.1b) as
Th ety < L5 =1,.., 14,5 # jo.

The DEA-CP obtains the results resolving the multiple top-ties like the DEA/AR exclusion.
But unlike the diverse weights of the DEA/AR exclusion, the DEA-CP has the common weights
across the candidates. That is, the optimal solution to model (2.5) is u* = (uf,...,ud) =
(0.0111,0.0109, 0.0109, 0.0109,0.0109). {Strictly, from constraints (2.2), the optimal value v}
is greater than u; ., r = 2,...,4, by an infinitesimal ¢, respectively.) We should note that a
total ordering different from the Borda one is obtained through the common weights across the
candidates by specifying nothing arbitrary.

3.2 Comprehensive ranking example

Consider a general comprehensive ranking where we rank five entities by aggregating quanti-
tative data for two attributes. The attribute data i, T =1,2,7 = 1,...,5, are given in Table
2, and Fig.1 displays the five entities on the attribute plane. Note that the comprehensive
ranking model with no a priori information about weight distribution does not have constraint
(2.1c) as the AR, i.e., it forms the DEA, not the DEA/AR, model.

Table 2 shows that the DEA exclusion can discriminate four DMUs (entities A-D) on the
frontier in Fig.1. Here, entity D obtains the greatest DEA exclusion score 2.0 (= OD/OD' in
Fig.1) because the DEA exclusion computes the score in terms of its reference point onto the
shifted DEA exclusion frontier. This is the problem that the DEA exclusion ranks the DEA’
efficient DMUs outlying (entity D) too high.

On the other hand, the DEA-CP can provide more reasonable results with the optimal
weights u* = (0.136,0.099) common across the entities. That is, the DEA-CP resolves the
problem of outliers ranked too high as well.

4 Summary and conclusions

This paper has proposed the DEA-CP model for comprehensive ranking, including preference
voting, of entities by aggregating quantitative data for multiple attributes. This model avoids
a priori fixed weights to the attributes in terms of the DEA, and aims at regressing to the
common weights across the entities in terms of the CP. That is, the DEA-CP model can get a.
total ordering of the entities by specifying nothing arbitrary. Further, it can avoid to use the
diverse DEA weights and produces no problems of outliers ranked too high, It is considered
that the DEA-CP model can be a powerful method to comprehensively rank the entities with
multiple attributes.

Appendix A



Pmof of that the total score set S is convez. Let Z'(u'), Z*(u?) € §. From model (2.1),
Z'(u') < (1,...,1) and Z*(u?) < (1,...,1). Letting A be a scalar 0 € A < 1, (1— Aad + \u? =
melU because the feasible region U of LP constraints is a convex set. Then,

' Z
(l - ’\)Zl(ul) + ,\22(71-2) = (1 - )\) (Z ulyrl, Zuryrn) + A (z Uplrly - i ugyrn)
r=1 r=1

r=]
(Zi(T), ..., Zn(7))
< (1,.,1). O

Appendix B
We treat the positive non-Archimedean infinitesimal in solving model (2.5} as follows:

Setting the infinitesimal (¢ > 0) as ¢ = 0 and computing model (2.5), we obtain the
optimal solution u* and the DEA-CP scores Z i(w*), 7 =1,...,n. This implies that we suppose
boundaries of the constraints related to e (we here call e- boundaries) to be included in the
feasible region to model (2.5).

(1) If w* is not on any e-boundary, u* is also the optimal solution to model (2.5) in the
case of € > 0. Therefore, we can rank the candidates by Ej(u*).

(2) If u* is on the e-boundary, u* is not a feasible solution to (2.5). However, within the
range of Archimedean numbers, u* is the optimal solution to (2.5) a.nd the ordering in terms
of Z; j(u*) is va.hd

(3) In (2), and in the case of some ties in terms of the DEA-CP scores Z;(u*), we examine
whether to d1scr1mma,te the Z; (u*) scores using the non-Archimedean mﬁmtesima.l term with
e>0.

In the case of Table 1, letting ¢ = 0, we get u} = 0.0109, r = 2,...,5. This corresponds to
(2) or (3) above. In terms of (2), we can rank ten candidate groups, i.e., candidates A-H, (I,
J, K) and (L, M, N) using the DEA-CP scores ZJ( *). To dlscrn:nmate candidates I, J and
K, for example, we let uj = uf + ¢, uj = uj + 2¢ and u§ = u} + 3¢ (¢ > 0), and can find
Zi(w*) > Zi(w*) = Zx(u*).
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Table 1
A preference voting case @

Candi- Rank DEA-CP DEA/AR DEA/ Borda
date exclusion P ARD

1 2 3 4 5 Score Order ¢ Score Order © Score Order

A 27 38 15 7 4 1.000 1 1.226 2 1.000 1
B 38 15 16 14 7 0.991 2 1.407 1 1.000 2
C 21 25 30 & 5 0.977 3 0.978 3 0.978 3
D 2 8 10 23 19 0.679 4 0.681 4 0.681 4
E 1 1 11 22 24 0.646 5 0.648 5 0.648 5
F 2 4 4 7 13 0.329 6 0.330 6 0.330 6
G 1 0 4 7 13 0.274 7 0.275 7 0275 7
H 0 1 I 0 0 0.022 11 0.025 11 0.025 8
I 0 0 1 1 1 - 0.033 8 0.033 8 0.033 9
J 0 0 0 1 2 0.033 9 0.033 9 0.033 10
K a 0 0 1 2 0.033 9 0.033 9 0.033 10
L 0 ¢ 0 1 0 0.011 12 0.011 12 0.011 12
M 60 0 0 0 1 0.011 13 0.011 13 0.011 13
N 0 0 0 ¢ 1 0.011 13 0.011 13  0.011 13

® Data of the aggregate votes y,5,7 = 1,...,5,5 = 1,..., 14, are quoted from Stein et al. (1994),
and are also used in Hashimoto (1997).

b See Hashimoto (1997). But the AR (Assurance Region) here is different from that of
Hashimoto (1997).

¢ Different orders with the same score are according to the infinitesimal term. See Appendix
B as to the computation of the DEA-CP model.



Table 2
A comprehensive ranking example

Entity Attribute DEA-CP DEA exclusion DEA
1 2 Score Order Score  Order Score

A 1 7 0.827 4 1.000 4 1.000
B 2 7 0.963 2 1.067 - 2 1.000
C 3 6 1.000 1 1.050 3 1.000
D 6 1 0.914 3 2.000 1 1.000
E 2 2 0.469 5 0.485 5 0.485
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Fig.1. The five entities plotted on the attribute plane.



