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Abstract

Given a generalized network and a generalized feasible flow f0, we consider a

problem finding a modified edge cost d such that f0 is minimum cost with respect

to d and the maximum deviation between the original edge cost and d is minimum.

This paper shows the relationship between this problem and minimum mean circuit

problems and analyze a binary search algorithm for this problem.
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1 Introduction

The inverse optimization problem is to find an objective function such that a given feasible

solution is optimal and the variance between the original objective function and the finding

one is minimum. With its rich applications, there is a good deal of literature on inverse

optimization. Ahuja and Orlin wrote a survey of inverse optimization [1]. The same

authors systematically studied inverse network flow problems [2]. They dealt with two

types of objective functions; one is minimizing the sum of absolute deviations, that is,

under the L1 norms, and the other is minimizing the maximum absolute deviation, that

is, under the L∞ norms. We call inverse problems of these types the minisum inverse

problem and the minimax inverse problem, respectively. Ahuja and Orlin [2] showed that

the minisum inverse problem for each of shortest path, assignment, minimum s-t cut, and
∗Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

email:{johta, maiko}@shako.sk.tsukuba.ac.jp. The second author is supported by a Grant-in-Aid En-

couragement of Young Scientists from Japan Society for the Promotion of Science.

1



minimum cost flow reduces to solving the same kind of problem, and that the minimax

inverse problem for each of shortest path, assignment, and minimum cost flow reduces to

solving a minimum mean cycle problem. Moreover, they showed that the weighted version

of a minimax inverse minimum cost flow problem reduces to solving a minimum cost-to-

weight ratio cycle problem. In [9], the relationship between the minimax inverse minimum

s-t cut problem and the maximum mean cut problem was elucidated. This paper treats

the minimax inverse problem of generalized minimum cost flow.

We first define a generalized minimum cost flow problem. Let G = (V,E) be a directed

graph of n vertices and m edges with a non-negative capacity function u : E → IR+, a

cost function c : E → IR and a positive gain function γ : E → IR++. For notational

convenience, we assume that G has no multiple edges so that each edge can be uniquely

specified by its endpoints. We also assume, without loss of generality, that the graph G is

symmetric, that is,

if (v,w) ∈ E, then (w, v) ∈ E,

and that the costs and gains are antisymmetric, that is,

c(v,w) = −c(w, v)/γ(w, v), ∀(v,w) ∈ E, (1)

γ(v,w) = 1/γ(w, v), ∀(v,w) ∈ E.

For a function f : E → IR, the excess ef (v) at a vertex v is defined by ef (v) :=

−∑
(v,w)∈E f(v,w). Given a supply/demand function b : V → IR, a generalized flow is

a function f : E → IR that satisfies the capacity constraint:

f(v,w) ≤ u(v,w), ∀(v,w) ∈ E,

the flow antisymmetry constraint:

f(v,w) = −γ(w, v)f(w, v), ∀(v,w) ∈ E,

and the supply/demand constraint:

ef (v) = b(v), ∀v ∈ V.

For a generalized flow f and a function x : E → IR, we define

x(f) :=
∑

(v,w)∈E:f(v,w)>0

x(v,w)f(v,w).
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The cost of a generalized flow f is given by c(f). We call a generalized flow f a minimum-

cost generalized flow, if c(f) ≤ c(f ′) holds for all generalized flows f ′. The generalized

minimum cost flow problem is that of finding a minimum-cost generalized flow.

Given a generalized flow f0, the minimax inverse generalized minimum cost flow prob-

lem (MIGCF) is to find a modified cost function d : E → IR satisfying cost antisymme-
try constraint (1) such that f0 is minimum-cost generalized flow with respect to d, and

max{d(v,w)−c(v,w) | (v,w) ∈ E} is minimum. When the gain of each edge is equal to one,
from the cost antisymmetry constraint (1), minimizing max{d(v,w)−c(v,w) | (v,w) ∈ E}
is equivalent to minimizing max{|d(v,w) − c(v,w)| | (v,w) ∈ E} = ‖d − c‖∞, and
MIGCF coincides with the minimax inverse minimum cost flow problem. For a pos-

itive weight function τ : E → IR++, the weighted version of MIGCF (wMIGCF) is

to minimize max{τ(v,w)(d(v,w) − c(v,w)) | (v,w) ∈ E}. Note that, when τ(v,w) =

max{1,1/γ(v,w)} for all (v,w) ∈ E, the objective of wMIGCF is equivalent to minimiz-

ing max{|d(v,w) − c(v,w)| | (v,w) ∈ E}.
Throughout this paper, we assume that the costs c and gains γ are given by ratios of

two relatively prime integers, and we denote the largest absolute value of these integers by

B. Moreover, assume that the weights τ are also given by ratios of two relatively prime

integers and denote the largest absolute value of these integers byW . Section 2 gives some

definitions and basic properties. Section 3 shows that MIGCF is related to a minimum

mean circuit problem which is a generalization of a minimum mean cycle problem, and

wMIGCF is related to a minimum cost-to-weight ratio circuit problem which is a general-

ization of a minimum cost-to-weight cycle problem. Section 4 discusses polynomial time

algorithms for these problems.

2 Preliminaries

This section reviews some basic definitions and properties.

The gain of a cycle (resp. path) is the product of the gains of edges participating

in that cycle (resp. path). A unit-gain cycle is a cycle whose gain is equal to one. A

flow-generating (resp. flow-absorbing) cycle is a cycle whose gain is greater (resp. less)

than one. A bicycle is a flow-generating cycle, a flow-absorbing cycle, and a simple path
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from the first cycle to the second. We note that the edges in the flow-generating and

flow-absorbing cycles need not be edge-disjoint.

Given a generalized flow f , the residual capacity function uf : E → IR is defined by
uf (v,w) := u(v,w) − f(v,w). The residual graph with respect to f is given by Gf =

(V,Ef ), where Ef = {(v,w) ∈ E | uf (v,w) > 0}. A generalized circulation on Gf is a

flow g : E → IR that satisfies the capacity constraint given by the residual capacity uf ,

the flow antisymmetry constraint, the supply/demand constraint for b = 0. A circuit on

Gf is a generalized circulation g on Gf such that {(v,w) ∈ E | g(v,w) > 0} is a single
unit-gain cycle, a bicycle or the empty set. Any generalized circulation g on Gf can be

decomposed into a collection of circuits g1, . . . , gk on Gf with k ≤ m such that g =
∑

i gi

holds and that gi(v,w) > 0 implies g(v,w) > 0 (e.g., see [4]).

The following theorem states the optimality criterion (e.g., see [4]).

Theorem 1 A generalized flow f is minimum-cost if and only if Gf contains no circuit

whose cost is negative. ✷

A potential function π is a labeling of the vertices by real numbers. The reduced cost with

respect to π is defined by cπ(v,w) := c(v,w) + π(v) − γ(v,w)π(w). The next property

comes from the linear programming duality theorem (also see [10, Section 6.2]).

Lemma 2 Assume that the costs satisfy

c(v,w) ≥ −c(w, v)/γ(w, v), ∀(v,w) ∈ E, (2)

instead of the antisymmetricity (1). Any circuit on Gf has nonnegative cost if and only

if there exists a potential function π : V → IR such that cπ(v,w) ≥ 0, ∀(v,w) ∈ Ef . ✷

As a consequence of the above two properties, we obtain the second optimality criterion.

Theorem 3 A generalized flow f is minimum-cost if and only if there exists a potential

function π : V → IR such that cπ(v,w) ≥ 0, ∀(v,w) ∈ Ef . ✷
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The following property is useful in our discussion.

Lemma 4 For any potential π and any generalized circulation f , we have c(f) = cπ(f).

Proof.

c(f) = c(f) +
∑
v∈V

(π(v)
∑

(v,w)∈E

f(v,w))

=
∑

(v,w)∈E

f(v,w)>0

c(v,w)f(v,w) +
∑
v∈V

π(v)(
∑

(v,w)∈E

f(v,w)>0

f(v,w) −
∑

(v,w)∈E

f(v,w)<0

γ(w, v)f(w, v))

=
∑

(v,w)∈E

f(v,w)>0

(c(v,w) + π(v)− γ(v,w)π(w)) f(v,w) = cπ(f).

✷

3 Relationship to minimum mean/cost-to-weight ratio cir-

cuit problems

This section shows that MIGCF reduces to a minimummean circuit problem in the residual

graph Gf0 and wMIGCF reduces to a minimum cost-to-weight ratio circuit problem in

Gf0 . Recall that f0 is a given generalized flow for MIGCF and wMIGCF.

By using Theorem 3, we can formulate wMIGCF as follows:

(P1)

∣∣∣∣∣∣∣∣∣∣

Minimize max{τ(v,w)(d(v,w) − c(v,w)) | (v,w) ∈ E}
subject to d(v,w) = −d(w, v)/γ(w, v), ∀(v,w) ∈ E,

dπ(v,w) = d(v,w) + π(v)− γ(v,w)π(w) ≥ 0, ∀(v,w) ∈ Ef0 .

The cost antisymmetry constraint implies that the objective value of any feasible solution

is nonnegative. Hence, if f0 is minimum-cost for c, then an optimal solution d is equal to

c. Problem (P1) can be reduced to solving the following problem:

(P2)

∣∣∣∣∣∣∣∣∣∣

Minimize λ

subject to c(v,w) + λ
τ(v,w) + π(v)− γ(v,w)π(w) ≥ 0, ∀(v,w) ∈ Ef0 ,

λ ≥ 0.
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Lemma 5 When we have an optimal solution (λ̂, π̂) of (P2), let d̂ be given by:

• d̂(v,w) = c(v,w) −min{0, cπ̂(v,w)} and d̂(w, v) = −d̂(v,w)/γ(v,w), if (v,w) ∈ Ef0

and (w, v) �∈ Ef0 .

• d̂(v,w) = c(v,w) − cπ̂(v,w) and d̂(w, v) = −d̂(v,w)/γ(v,w), if (v,w), (w, v) ∈ Ef0

and cπ̂(v,w) ≤ 0.

Then a pair (d̂, π̂) is an optimal solution of (P1). Moreover, the optimal values of (P1)

and (P2) coincide with each other.

Proof. It is clear that, for any feasible solution (d, π) of (P1) and any λ ≥ max{τ(v,w)(d(v,w)−
c(v,w)) | (v,w) ∈ E}, a pair of (λ, π) is feasible for (P2). Hence, λ̂ ≤ λ holds.

We now show that (d̂, π̂) is feasible for (P1) and λ̂ ≥ max{τ(v,w)(d̂(v,w) − c(v,w)) |
(v,w) ∈ E} holds. It is obvious that d̂ satisfies the cost antisymmetry constraint. When
(v,w) ∈ Ef0 and cπ̂(v,w) ≤ 0, we have

d̂π̂(v,w) = c(v,w) − cπ̂(v,w) + π̂(v)− γ(v,w)π̂(w) = 0,

and

d̂(v,w) − c(v,w) = −cπ̂(v,w) ≤ λ̂

τ(v,w)
,

where the last inequality comes from the condition of (P2). In this case,

d̂π̂(w, v) = −d̂π̂(v,w)/γ(v,w) = 0

and

d̂(w, v) − c(w, v) = −(d̂(v,w) − c(v,w))/γ(v,w) = cπ̂(v,w)/γ(v,w) ≤ 0 ≤ λ̂

τ(w, v)

holds. When (v,w) ∈ Ef0 , (w, v) �∈ Ef0 and cπ̂(v,w) > 0, d̂(v,w) is given by c(v,w). Thus

we have d̂π̂(v,w) = cπ̂(v,w) > 0 and d̂(v,w)− c(v,w) = 0 ≤ λ̂
τ(v,w) and d̂(w, v)− c(w, v) =

0 ≤ λ̂
τ(w,v) . ✷

We are now in a position to discuss the relationship between wMIGCF and a minimum

cost-to-weight ratio circuit problem. Given a positive weight ω : E → IR++, the minimum
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cost-to-weight ratio circuit problem on Gf0 is defined as follows:

min{ c(g)
ω(g)

| g : circuit on Gf0}, (3)

where, for the zero circuit g = 0, we put c(g)/ω(g) = 0. When ω(v,w) = 1 for all

(v,w) ∈ E, the minimum cost-to-weight ratio circuit problem is called the minimum mean

circuit problem. When the gain of each edge is equal to one, the minimum cost-to-weight

ratio circuit problem and the minimum mean circuit problem coincide with the minimum

cost-to-weight cycle problem:

min{
∑

(v,w)∈D c(v,w)∑
(v,w)∈D ω(v,w)

| D : cycle},

and the minimum mean cycle problem:

min{
∑

(v,w)∈D c(v,w)
|D| | D : cycle},

respectively. Let ξ̂ be the optimal value of the minimum cost-to-weight circuit problem

(3).

Lemma 6 Assume that λ̂ is the optimal value of (P2). When τ(v,w) = 1/ω(v,w) for all

(v,w) ∈ E, we have λ̂ = −ξ̂.

Proof. Let ĝ be an optimal circuit for minimum cost-to-weight circuit problem in Gf0 , and

π̂, together with λ̂, be an optimal solution of (P2). When ĝ = 0, Gf contains no circuit

with negative cost. From Lemma 2, we have λ̂ = 0 = −ξ̂.

We now assume that ĝ �= 0. Since

c(ĝ) = cπ̂(ĝ)

=
∑

(v,w)∈E

ĝ(v,w)>0

(c(v,w) + π̂(v)− γ(v,w)π̂(w)) ĝ(v,w)

≥
∑

(v,w)∈E

ĝ(v,w)>0

− λ̂

τ(v,w)
ĝ(v,w) = −λ̂

∑
(v,w)∈E

ĝ(v,w)>0

ω(v,w)ĝ(v,w)

holds, we have

ξ̂ =
c(ĝ)
ω(ĝ)

≥ −λ̂.
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We replace each edge cost c(v,w) by c̄(v,w) := c(v,w) − ξ̂ω(v,w). For any circuit g in

Gf0 , we have

c̄(g) =
∑

(v,w)∈E

g(v,w)>0

(c(v,w) − ξ̂ω(v,w))g(v,w)

= c(g) − ξ̂ω(g) ≥ 0,

since c(g)/ω(g) ≥ ξ̂. Thus Gf0 contains no negative cost circuit with respect to c̄. Since

ξ̂ ≤ 0, the cost c̄ satisfies (2). Hence Lemma 2 implies that there exists a potential function
π such that c̄π(v,w) = c(v,w)− ξ̂ω(v,w) + π(v)− γ(v,w)π(w) = c(v,w)− ξ̂

τ(v,w) + π(v)−
γ(v,w)π(w) ≥ 0 for all (v,w) ∈ Ef0 . Therefore, we obtain λ̂ ≤ −ξ̂. ✷

Theorem 7 1. The optimal value of the minimum mean circuit problem is equal to

the minus of the optimal value of MIGCF.

2. The optimal value of the minimum cost-to-weight ratio problem is equal to the minus

of the optimal value of wMIGCF, when ω(v,w) = 1/τ(v,w) for all (v,w) ∈ E.

✷

4 Algorithm

This section describes algorithms for wMIGCF. From Lemma 6, a minimum cost-to-weight

circuit algorithm gives the optimal value λ̂ of problem (P2). If we have λ̂, an optimal

solution of (P2) is obtained by the feasibility subroutine for linear constraints with at

most two variables per inequalities (2VPI). Then we find an optimal solution of wMIGCF

by Lemma 5.

In the following, we discuss an algorithm for the minimum cost-to-weight circuit prob-

lem. We assume that the weights ω for problem (3) are given by ratios of two integers

which are no more than W .

For fractional optimization problems, the binary search is a standard strategy. The

binary search algorithm maintains a search interval [LB,UB] containing ξ̂, which is the
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optimal value of (3), and reduces the search interval without excluding ξ̂ in each iteration.

Each iteration checks there exists a negative circuit with respect to the cost function

c − ξω for fixing ξ to (UB − LB)/2. It is easy to see that ξ ≤ ξ̂ holds if and only if

there exists no negative cost circuit with respect to c − ξω in Gf0 . Let cπ
ξω(v,w) :=

c(v,w) − ξω(v,w) + π(v) − γ(v,w)π(w) for all (v,w) ∈ E. When ξ ≤ 0, it follows from
Lemma 2 that there exists π : V → IR with cπ

ξω(v,w) ≥ 0 for all (v,w) ∈ Ef0 if and

only if there exists no negative circuit with respect to c− ξω in Gf0 . Thus if there exists

a potential π with cπ
ξω(v,w) ≥ 0 for all (v,w) ∈ Ef0 , then update [LB,UB] to [ξ,UB];

otherwise update [LB,UB] to [LB, ξ]. We can check such a potential π exists or not by

algorithms to detect the feasibility of 2VPI. When the search interval is sufficiently small,

we can obtain a minimum cost-to-weight ratio circuit. Wayne [10] has discussed the binary

search algorithm solving the minimum cost-to-weight ratio circuit problem, and said the

iteration number of the algorithm is O(m logB). In the following lemma, we show that

the binary search needs less iterations, and show how to obtain an optimal circuit when

the binary search terminates.

Lemma 8 Assume that UB−LB < 1/(B21n+4W 6n+4) holds. For ξ = LB, let π be a feasi-

ble potential with respect to c− ξω and Ē = {(v,w) ∈ E | cπ
ξω(v,w) < 1/(B

18n+4W 6n+3)}.
If Ē does not contain any unit-gain cycle and any bicycle, the zero flow is an optimal

circuit. Otherwise, any circuit g �= 0 with {(v,w) ∈ E | g(v,w) > 0} ⊆ Ē is an optimal

circuit.

Proof. Note that |{(v,w) ∈ E | g(v,w) > 0}| ≤ min{3n,m} holds for any circuit g. Hence
for an edge (v′, w′) ∈ E with g(v′, w′) > 0,

ω(g) ≤ W
∑

(v,w)∈E:g(v,w)>0

g(v,w) < W
3n∑
i=0

Big(v′, w′) < WB3n+1g(v′, w′)

holds. We also notice that we only have to consider circuits whose values are ratio. By

gd, we denote the denominator of a circuit g. Then, the least common denominator Tg of

a circuit g is less than B3n+1gd(v′, w′).

Let ĝ be a minimum cost-to-weight ratio circuit. Then we obtain

cπ
ξω(ĝ) = cπ(ĝ)− ξω(ĝ) = c(ĝ)− ξω(ĝ) = (ξ̂ − LB)ω(ĝ) < ω(ĝ)

B21n+4W 6n+4
.
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If there exists (v′, w′) ∈ E \ Ē with ĝ(v′, w′) > 0,

cπ
ξω(ĝ) > cπ

ξω(v
′, w′)ĝ(v′, w′) >

1
B18n+4W 6n+3

· ω(ĝ)
B3nW

=
ω(ĝ)

B21n+4W 6n+4

holds. Therefore, ĝ is a circuit in Ē.

We assume that a circuit g′ �= 0 in Ē is not optimal. Since
∑

g′(v,w)>0 g
′(v,w) ≤

Wω(g′),

cπ
ξω(g

′) <
∑

(v,w)∈E:g′(v,w)>0

1
B18n+4W 6n+3

g′(v,w) ≤ 1
B18n+4W 6n+3

·Wω(g′) =
ω(g′)

B18n+4W 6n+2

holds. On the other hand, we have

cπ
ξω(g

′) = cπ(g′)− ξω(g′) = c(g′)− ξω(g′) ≥ c(g′)− ξ̂ω(g′) = c(g′)− c(ĝ)
ω(ĝ)

· ω(g′).

We now evaluate the difference of c(g′)/ω(g′) and c(ĝ)/ω(ĝ).

c(g′)
ω(g′)

− c(ĝ)
ω(ĝ)

=
c(g′)ω(ĝ)− c(ĝ)ω(g′)

ω(g′)ω(ĝ)

≥


Tg′Tĝ

∏

g′(v,w)>0

cd(v,w)
∏

ĝ(v,w)>0

ωd(v,w)
∏

ĝ(v,w)>0

cd(v,w)
∏

g′(v,w)>0

ωd(v,w)




−1

ω(g′)ω(ĝ)

>
1

B18n+4W 6n+2g′(v′, w′)ĝ(v′′, w′′)g′d(v′, w′)ĝd(v′′, w′′)
,

where cd and ωd stand for denominators of cost c and weight ω, respectively, and g′(v′, w′) >

0 and ĝ(v′′, w′′) > 0. Without loss of generality, we can assume g′(v′, w′) = ĝ(v′′, w′′) = 1.

Hence we have

cπ
ξω(g

′) ≥ ( c(g
′)

ω(g′)
− c(ĝ)

ω(ĝ)
)ω(g′) >

ω(g′)
B18n+4W 6n+2

,

which is contradiction. ✷

We can set the initial search interval as [LB,UB] = [−B, 0]. Hence the number of

iterations is O(n log(BW )). Therefore, we obtain the following theorem.

Theorem 9 The minimum cost-to-weight ratio circuit problem can be solved in O(T2VPI ·
n log(BW )) time, where T2VPI is a time bound for a 2VPI feasibility subroutine. Moreover,

wMIGCF is also solved in the same running time. ✷
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Currently, the best known complexity bound of T2VPI is O(n2m logn) due to Hochbaum

and Naor [5]. Therefore, MIGCF and wMIGCF are solved in O(n3m log n logB) and

O(n3m logn log(BW )), respectively, by the binary search algorithm. When B and W are

smaller than n, the binary search algorithm is superiority to the Megiddo’s parametric

search which runs in O(n3m log4 n) time by incorporated with a 2VPI feasibility subrou-

tine [3, 5] (see also [10]).

If Gf0 has no flow-generating cycles, we can check the existence of negative circuits,

more efficiently. We start by constructing a graph Ḡ having vertices in V together with

a new vertex s and edges in Ē = Ef0 ∪ {(s, v) | v ∈ V }. The cost and gain of every
edge in {(s, v) | v ∈ V } are zero and one, respectively. For each vertex v ∈ V , a label

µ(v) is defined as the gain of the highest-gain simple s-v path in Ḡ and µ(s) = 1. This

label µ can be found by solving a shortest path problem, where edge lengths are defined

as −log(γ(v,w)) for all (v,w) ∈ Ē, because Ḡ contains no flow-generating cycles and

every vertex is reachable from s. The relabeled gain, relabeled capacity, relabeled cost

and relabeled weight of (v,w) ∈ Ē are defined as γµ(v,w) = γ(v,w)µ(v)/µ(w), uµ(v,w) =

u(v,w)/µ(v), cµ(v,w) = c(v,w)µ(v) and ωµ(v,w) = ω(v,w)µ(v), respectively. Note that

γµ(v,w) ≤ 1 for all (v,w) ∈ Ē. Let Ēµ = {(v,w) ∈ Ē | γµ(v,w) = 1} and Ḡµ =

(V ∪ {s}, Ēµ). For all v ∈ V , there exists an s-v path in Ḡµ. Moreover, a cycle C is a

unit-gain cycle in Gf0 if and only if C is a cycle in Ḡµ. Since Gf0 does not contain any

bicycle, we have the following lemma.

Lemma 10 Let Gf0 be a graph without flow-generating cycles. If g(�= 0) is a circuit on

Gf0 , then C = {(v,w) ∈ E | g(v,w) > 0} is a cycle in Ḡµ. On the other hand, when C

is a cycle in Ḡµ, there exists a circuit g �= 0 on Gf0 such that (v,w) ∈ C if g(v,w) > 0.

Moreover, we have
c(g)
ω(g)

=
∑

(v,w)∈C cµ(v,w)∑
(v,w)∈C ωµ(v,w)

.

✷

Therefore the minimum cost-to-weight ratio circuit problem (3) is reduced to

min{
∑

(v,w)∈C cµ(v,w)∑
(v,w)∈C ωµ(v,w)

| C : cycle in Ḡµ}, (4)

11



which is a minimum cost-to-weight ratio cycle problem on a graph without gains. Let

c̄ξω(v,w) := cµ(v,w) − ξωµ(v,w) for all (v,w) ∈ Ē. Then we can check there exists a

negative cycle on Ḡµ with respect to c̄ξω in O(nm) time by Bellman-Ford’s shortest path

algorithm. In this case, since T2VPI = O(nm) the binary search algorithm solves the

minimum cost-to-weight ratio circuit problem and wMIGCF in O(n2m log(BW )) time.

Moreover, using Ḡµ, an algorithm based on Megiddo’s parametric search technique [6]

solves the minimum cost-to weight ratio circuit problem and wMIGCF in O(n2m logn)

time, as the algorithm for generalized shortest path problems due to Oldham [8].

References

[1] R. K. Ahuja, J. B. Orlin, Inverse optimization, Oper. Res. 49 (2001)771–783.

[2] R. K. Ahuja, J. B. Orlin, Combinatorial algorithms for inverse network flow problems,

Working Paper SWP 4004, Sloan School of Management, MIT, 1998.

[3] E. Cohen, N. Megiddo. Improved algorithms for linear inequalities with two variables

per inequality, SIAM J. Comput. 23 (1994) 1313–1347 .

[4] M. Gondran, M. Minoux, Graphs and Algorithms, Wiley, New York, 1984.

[5] D. S. Hochbaum, J. Naor, Simple and fast algorithms for linear and integer programs

with two variables per inequality, SIAM J. Comput. 23 (1994) 1179–1192.

[6] N. Megiddo, Combinatorial optimization with rational objective functions, Math. of

Oper. Res. 4 (1979) 414–424.

[7] N. Megiddo, Applying parallel computation algorithms in the design of serial algo-

rithms, J. Assoc. Compt. Mach. 30 (1983) 852–865.

[8] J. D. Oldham, Combinatorial approximation algorithms for generalized flow problems,

J. Algorithms 38 (2001) 135–169 .

[9] M. Shigeno, Minimax inverse problems of minimum cuts, Networks 39 (2002) 7–14.

12



[10] K. D. Wayne, A polynomial combinatorial algorithm for generalized minimum cost

flow, Proceedings of the 31st Annual ACM Symposium of Theory of Computing

(1999) 11–18.

13


