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In actual applications of regression analysis, users face two difficult prob-
lems. One is to find the most appropriate functional form, while the other
is to search for the best subset derivable from a given set of all possible ex-
planatory variables. Variable selection for the Box-Cox transformation may
be useful to concurrently solve both problems. The purpose of this paper is
to (1) concretely formulate the j-th OLS-best subset problem for the Box-
Cox transformation, (2) introduce a knowledge-based computational method
to solve it and (3) propose a solution to the (first) OLS-best subset problem
(4 = 1) or one selected by a user among solutions to the first § OLS-best sub-
set problems (7 > 1) solved in a run of a computer as a solution to a variable
selection problem for the Box-Cox transformation. The integer 7, specified
by the user, depends on his scientific knowledge, criteria for statistical and
data-analytic tests and model-building experience.

Key Words and Phrases: Regression analysis; Box-Cox transformation; Vari-
able selection; J-th best subset problem; Variable classification; Meaningful
subset; Practically best regression equation; Intellectual Statistical System
OEPP. . '

1 Introduction

The role of data analysis is eventually to let data tell the truth they veil. Un-
fortunately, they do not easily do so. When we set up an appropriate condition
and environment for them in the same way that seeds of a crop germinate in an
appropriately-moist, fertile and plowed soil with warm weather, they try to tell it.
As the seeds never germinate healthily in a dry and hard soil and/or with cold
weather, the data do not easily unveil the truth only through statistical tests. Data
analysis is part of statistics. Statistics is an applied science but not one which sur-
passes all other sciences. It is independent of them and as important as well. The
knowledge established in the science(s) related to research in question, including
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natural logic and correct common sense, is definitely needed to solve an applied sta-
tistical problem in addition to statistical knowledge. Let us call it professional
knowledge. A statistical model constructed only with statistics is not so ef-
fective as expected to solve an actual problem, social or natural, in a society and
frequently aggravates the situation, because it is not necessarily reasonable from
" the viewpoint of the science related to the research, even though it is statistically
best. No mistakes and errors are allowed for users, especially business managers and
policy makers. Their social responsibilities are serious. In applications of statisti-
cal methods, resources such as brain labor, paper, i.e., wood resources, electricity
and toner should not be wasted. It is necessary to concretely formulate statistical
problems which convince not only statisticians but also users in various academic,
governmental and industrial fields and create knowledge-based computational meth-
ods to actually solve them. Generally speaking, so long as statistical methods fail
to yield not only scientifically reasonable but also statistically and data-analytically
best results, statistics cannot become an expansive science which attracts many wise
students and collects sufficient research funds. As a result, the statistical society
stagnates and even shrinks.

The purpose of this paper is to (i) concretely formulate the j-th OLS-best sub-
set problem as a variable selection problem for the Box-Cox transformation (Box
and Cox, 1964), (ii) introduce a knowledge-based computational method to solve
it, (iil) propose a solution to the (first) OLS-best subset problem for the Box-Cox
transformation (§j = 1) or one selected by a user among solutions to the first j
OLS-best subset problems for the Box-Cox transformation (j > 1} solved in a run
of a computer as a solution to a variable selection problem for the Box-Cox transfor-
mation, (iv) install the program in the Intellectual Statistical Systemn OEPP! and
make it available and (v) demonstrate an application to civil servants in prefectural
governments in Japan.

The method to be proposed searches for a practically-best regression
equation which is defined as not only scientifically reasonable but
also statistically and data-analytically best on the condition of the
appropriate scientific, statistical and data-analytical criteria specified by a user. It is
an informatic and computational method that referees of a journal in his academic
field can accept, policy-makers can adopt or business excutives can employ. We
define the following terms: a meaningful subset as a subset which includes all
necessary explanatory variables for a dependent variable but excludes any unneces-
sary, redundant and/or contradiction-causing explanatory variables from the view-
point of professional knowledge or, in other words, a subset which consists of only
explanatory variables representing a behavioral, institutional, technical or natural-
law-based relation to a dependent variable and a regression subequation

! The QEPP is software which can handle the Onishi variable selection methods for
(C)OLS, (C)GLS, (C)ADLR, (C)BCT, (C)2SLS, (C)2SPC, LIML, LIPC, etc., which Kitagawa,
professor emeritus of Kyushu University, first named in his book (Kitagawa, 1987) The "C” of
(C) implies constrained.



as the regression equation of a meaningful subset when the j-th OLS-best subset
problem is solved.

2 Box-Cox Transformation

When M dependent variable candidates, say, Y, Y2, ..., Y™, which represent M
respective data sets, are regressed on the ¢-th meaningful subset X; of a set X of all
possible explanatory variables, the regression subequation for Y™ can be expressed
as follows? :

Y™ =X;AT+U for some i and m=1,2,--+, M (1)

where Y™ consists of the data y{*’s for the outcome; ¢ =sample point number;
AT =column vector of true regression coefficients of X;; and U =disturbance term.

The Box-Cox transformation is often used when a true functional form of a re-
gression equation is not known. Let Y be a variable, a data vector or a data set
of the original data y;’s of an outcome where y; > 0 for all . M dependent vari-
able candidates in the Box-Cox transformation for M > 2 are defined as (i) Y1 =Y
which implies y} = yt for all ¢; (ii) Y™ = {(Y)* —1}/\y, for Ay, = (M —m) /(M —1)
which implies y* = {(yt))‘m — 1} Am form = 2,3, M —1if M > 3 and
for all ¢; and (ifi} Y™ = limp, ,»[{{(Y)™M~ "‘)/(M i 1}/{(M ~m}/(M —1)}] =
lim), ng[{(Y))‘M —1}/Anm] = In(Y) by the L’Hépital’s rule (actually proved by Jo-
hann Bernoulli) which implies y = limy,, ps[{(y,) M~/ M=1) _ 1}/ {(M ~m) /(M —
D} = limy, sol{(y)™ — 1}/ Ay] = ln(y,:) for all t. Y? is the original dependent
variable Y as a candidate, whereas Y2, - -+, YM-1 and Y™ are transformed depen-
dent variable candidates concerned Wlth Y Concretely rewriting (1) in the Box-Cox
transformation, we have

yt—yt Ek“oa}”k“—l—ut for m=1,

Am
ygn' = gﬂlﬁ = Zk =0 akmsz*’ + U with /\m - %:_—T (2)
for m=2,3,: M_—- 1,
= In(y:) = Tio aﬂf,mt” +u form=M

where af; =true but unknown regression coefficient; 25 =datum of an explanatory
variable with &; = 0 for a constant term,; and u; =disturbance.

2 At present, the System OEPP can deal with the j-th OLS-best subset problems for cases
in which the Box-Cox transformation is applied only for explanatory variables X, leading to
= XPAP 4+ U for m = 1,2,--+,M, and for both a dependent variable ¥ and explanatory
variables X, leading to Y™ = XT'A™ + U for m = 1,2, -+, M in addition to the present problem.
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3 Variable Selection for Box-Cox Transformation

3.1 Notation

For simplicity, we assume that no constraints are imposed on regression coeffi-
cients and no lagged dependent variables are included in all possible explanatory
variables.> We introduce the following notation and rules for the j-th OLS-best
subset problem for the Box-Cox transformation, although the notation for criteria
are introduced in Subsection 3.2 and the others in the j-th OLS-best subset problem
in Subsection 3.4:

T = number of all samples each variable has where t = 1,2,---,T for T > 1;

Y =original dependent variable or ¥ = (y1,92, -+, yr) = (¥ x 1)-vector of its
data 1;’s observed or measured for the outcome at the ¢-th sample pomt where

y > 0 for all ¢
M =number of all Box-Cox transformations;
Am=(M—-m)/(M —1)form=2,3,--+,M —1for M >3 where 0 < A, < 1;
M={1,2,---,m,---, M} =set of all Box-Cox transformation numbers;
yi" = t-th datum of the m-th Box~Oox-transformed dependent variable Y™ for m €
M at sample point ¢ where (i) yf = y; for all t; (i) ¥ = {(y)* — 1}/, for

m=2,3,---,M—1and for all {; and (iii) ¥ = hmAM_,o(yt —1)/Ap = In(y,)
for all ¢;

Y™ = original dependent variable (for m = 1) or m~th Box-Cox-transformed depen-
dent variable (form = 2,3,---, M) or Y™ = (4, yF, - - -, ¥%) = (T'x 1)-vector
of its data y™’s for m € M and for all ¢;

Y = {YLY?...,YM} =set of all possible original (m = 1) or Box-Cox trans-
formed (m = 2,3,---, M) dependent variables;

Xy =constant term or Xo = (1,1,--+,1) = (T x 1)-vector of its data 1’s;

Jr = XY™/T = ST |y /T =average of Y™ for m € M;
K =number of all possible nonconstant explanatory variables where X > 1 and

k=12 K;
X = k-th possible explanatory variable or Xy = (z¥,z%, .-+, 2%) = (T x 1)-vector
of its data;

X = {Xo, X1, X2+, Xx} = (K + 1)-set of a constant term and all possible
explanatory variables or X = (X, X1, X3, -, Xg) = {T x (K + 1)}-matrix
of their data; '

u; = disturbance at sample point #;

U = disturbance term or U = (u1,up, -, ur) = (T x 1)-vector of disturbances
U;’S;

3 The System OEPP can deal with these cases.
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02,0 =unknown variance and standard deviation (or standard error) of U, respec-
tively;

1 =number assigned to each of all possible nonempty subsets or submatrices of X
where t = 1,2,3, ---,2K — 1;

X; = {Xo, X, Xoi, -+, Xk} = i-th (K; + 1)-subset of X or X; = (X, Xy,
KXoy, Xk,i) = {Tx (K;+1)}-submatrix of X where it is ruled that X, € X;
for all ¢ if X, € X;

k; =number assigned to the (k; + 1)-st variable in X; where k; = 0,1,2,---, K;;

X = (a0 2kt oo , oY = (T x 1)-vector of its data zFi®s;

agy; =true but unknown regression coefficient of the (k; + 1)-st variable Xj;;

AP = (ag}, o}, a8}, - -+ a%) = {(KG+1) x 1}-vector of true but unknown regression
coefficients of X; on which Y™ is regressed;

m =optimal Box-Cox transformation number where 77 € M

X, =optimal value for A, for m =2,--+, M — 1 where Az = (M — i) /(M — 1);

y;; =estimate of af; based on Y™ and X;;

AP = (ap,ap, e, -, 6,) =estimate of AT

C(A™) =estimated covariance matrix of Am,

V(@p,) =estimated variance of @ which is the (k; + 1, k; + 1)-element of (AT)
for all &;; :

8% = estimated standard deviation of Gy; based on Y™ and X;

&, = t-ratio of @ based on Y™ and X

Uy = (partial-test) estimate of yI* based on Y™ and X;;

Y™ = (§%,792, -, %)Y =estimate of Y™, '

7 =(inversely-transformed) estimate of original datum y, calculated by 7}, = 7}
for m =1; §7 = (Am@P + 1) if Ap@F > —1 or 5 = 0 i MufF < —1 for
m=2,---,M —1; and 9] = exp(§¥) for m = M based on Y™ and X;;

P = T, 75, -, i) = estimate of ¥ based on Y™ and X;

e =y — Uit = residual from 3" based on Y™ and X;;

Em o= (&n,eB,---,eh) = Y™ — ¥™ = (T x 1)-vector of residuals from Y™

e = Y — ¥5; = residual from original datum ; ‘

E =@En,e3, - ,e5) =Y — ¥ = (T x 1)-vector of residuals from Y’;

R™? = (unadjusted) coefficient of determination of ¥/ based on Y™ and X;;

( =
(R)? = (Theil) adjusted coefficient of determination of ¥/ based on Y™ and X;
0, = (n X 1)-zero vector; -
n X n)-identity matrix;
T; =T — K; — 1 = number of degrees of freedom.



3.2 Criteria for Scientific Conditions, Statistical and Data-
analytic Tests

A user has to specify the following criteria, if needed, for scientific conditions, sta-
tistical tests and data-analytic tests, depending on the type of data, the information
on observations (for instance, structural changes caused by the oil crises) and the
purpose of his research? :

a} = a priori known lower bound of the h-th magnitude condition based on the
knowledge of the science related to the research at hand;

a? = a priori known upper bound of the h-th magnitude condition based on the
knowledge of the science related to the research at hand;

B = significance level (1008 %) of a one- or two-tailed t-test for regression coeffi-
cients (0 < 8 < 1);

v = significance level (1007 %) of the Durbin-Watson serial correlation test (0 <
7 < 1);

€ = tolerance level for standardized residual test;

n = significance level (100n %) of a x*-distribution for the Jarque-Bera normality
test (0 < 7 < 1);

v = significance level (100v %) of a two-tailed ¢-test for a residual outlier (0 < v <
1);

7 = significance level (100¢ %) of an F' distribution for the Chow equal coefficients
test (0 < ¢ < 1);

w = significance level (100w %) of an F' distribution for the Goldfeld-Quandt
homoscedasticity test (0 < w < 1);

¢ = value (100¢ %) to define a turning point at ¢ of 7 (0 < ¢ < 1);

# = minimum tolerance level of an adjusted or unadjusted coeflicient of determi-
nation where 0 € 8 < 1;

Q={ay’s, of’s, 8,7, ¢ ¢ n 0, v, ¢, w} = criterion set.

3.3 Assumptions

(1) A user must have not necessarily perfect but sufficient professional knowledge
about the science related to his (or her) research at hand. He must be able
to introduce the set X of all possible explanatory variables for the depen-
dent variable ¥ through the professional knowledge and then classify X to
generate only the subsets meaningful for his research from X (see Section 4).

4 The percentiles of normal, x?, ¢-, F tests and the lower and upper limits of the Durbin-
Watson serial correlation tests of appropriate degrees of freedom at specified significance levels are
automatically calculated and compared with the corresponding test statistics in the OEPP.
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Furthermore, he must have the professional knowledge about the signs and/or
magnitude ranges of regression coeflicients and the nature (for example, econ-
omy of scale in production) of the system focussed on, if any.

(2) The functional forms of all regression subequations are linear with respect to
the regression coeflicients of explanatory variables in the meaningful subsets.

(3) The sample size must exceed the number of the constant term and the possible
explanatory variables in the smallest meaningful subset of X. It is desirable
that the sample size exceeds sufficiently the number of the constant term and
the possible explanatory variables in the largest meaningful subset of X.

(4) The disturbance term U is normally distributed as U ~ A/ (OT, azIT), re-
gardless of m.

(5) abs(|X[X;|) > efor at least one meaningful subset X; with respect to a preset
or user-specified inverse-matrix-existence criterion value e.

(6) X is nonstochastic or independent of U if X is stochastic.

(7) The principle of minimizing the sum of squared errors with respect to regres-
sion coeflicients is suitable for the research.

3.4 The J-th OLS-Best Subset Problem for Box-Cox Trans-
formation ‘

We formulate the j-th OLS-best subset problem for M Box-Cox transformations
and define a solution to it as the j-th practically-best regression subequation, where
integers j (7 > 1) and M (M > 2} are specified by a user. If he knows all appropriate
scientific, statistical and data-analytic criteria and has rich experience in model
building, he can specify 5 = 1. Then, he should regard the (first) practically-best
regression subequation of a solution to the (first) OLS-best subset problem as the
practically-best regression equation. He should specify, for example, 3, 4 or 5 for
J, otherwise. Then, he must select by himself the most satisfactory from among
the first at most j practically-best regression subequations as the practically-best
regression equation by using his own new criterion or comparing them with each
other. It should be noted that the integer j appears in the last condition [ XI ].

The J-th OLS-Best Subset Problem for Box-Cox Transformation®

% For simplicity, it is assumed that no lagged dependent variable is explanatory and no constraint
is imposed on regression coeflicients, although the System OEPP can handle them. Accordingly,
the Schur stability condition {for m = 1 or m = M), the Durbin h-test, generalized turning point
test, final test, constrained estimation and adjustment of degrees of freedom are not referred to.
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Obtain in a run of a computer the practically j-th OLS-best regression subequa-
tion ¥/ = X; AP for 7 € M by (1) searching for a best dependent variable Y™
from the set Y of all possible dependent variables and a subset X; from the set X
of all possible explanatory variables specified for Y, (2) estimating the true regres-
sion coefficient vector A™ of X; and the true variance ¢? and standard deviation
o of the disturbance term U and (3) calculating the standard deviations 57%;’s and

t-ratios i‘fji’s of ﬁf‘, other important test statistics and the inversely-transformed

estimate }7? for Y if m = 2,3,---, M under the criterion set @ and M Box-Cox
transformations such that :

[ T ] X; is meaningful for Y™ from the viewpoint of the science related to the
research at hand® ; .

~ o~

[ 11 ] A if 2 <t < M — 1 and A7, C(AR), Y%, EF, (57°)2, 8%, §; and B, for
h € M are calculated as follows:

() Y™ ={(Y)™ = 1}/As with Aa

(i) Y™* =Y if m= M,
AP = (X1 X)T XY™, C(AR) = (6P)H(XiX) T

. . s . Frit fria
7= XAP, BP=vh-9p, =T
— _an
=+/(6 V(@) and ;= ggf, (3)

[ III ] (s) A must satisfy the following sign and/or magnitude conditions, if re-
quired from the viewpoints of the professional knowledge of the science related
to the research:

op, < fr (AR if meH) for hy =1,2,.-, HY, (4)
A <o, if meH: for hy=1,2,--,H?, (5)

and/or
o, < fga(ﬁf.ﬁ) <of, i meH], for hy=1,2,.-, H? (6)

where each of fi (Am) F2 (A7) and 2,(A™) which denotes a function of
AP (and is linear with respect to A™ in most cases); H', H2, H® =numbers

¢ To understand how important the condition [ I ] for meaningful subsets of possible explana-
tory variables and the condition [ IIT ] for signs and/or magnitudes about regression coefficients
are, see the explanation by some examples shown on pp. 380 of Onishi {1995a).
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of the sign and/or magnitude conditions in an upper bound case, a lower
bound case and a range case, respectively; ?{.él,?-l,z ?—Lds =sets of the Box-
Cox transformation numbers in which sign and/or magnitude conditions in
an upper bound case, a lower bound case and a range case are employed,
respectively; and ’H}il,?{ﬁz, ?{33 C M;

[ IV ] the following inequality for the Jarque-Bera normality test must hold to
maintain the null hypothesis Hy : U is normally d1str1buted with the expecta-~
tion £(U) = O at a 100n % significance level of a x? test” :

7By =1 {08 B2 <) @

for
ELEYTY | on_ TEEDYT
S = ipipmy - = gy

where x3(n) = n percentile of a x? distribution with 2 degrees of freedom;

[ V] the following inequality must be satisfied to adopt the specified alternative
hypothesis H; or maintain the specified null hypothesis Hy at a 1008 % signif-
icance level of a ¢-test, depending on the purpose of the research, if necessary:

(i) to adopt Hy for Hy : Gi, A = g4, against H; : G}y A # g,

! T

|Gia AT L ~ & > tr,(8/2) if e Dy for dy=1,2,---, D", (8)
idy '

(i) to adopt H, for Hy : Gi;, AT = g4, against H; : Gl AT > gg,,

"d Aﬁ — Edg 2
zz—:ﬁl—>tﬂ.(ﬂ) if ?’ﬁEDdz for d231,2,°-',D2, (9)
idg
(iii) to adopt Hy for Hy : Giy AT* = g, against H; : G, AP < g,
8 — gdsﬁz‘ﬁw if e DS for dy=1,2, -, D° 10
- — n,(6) if he Dy, for dg=1,2,---,D%  (10)
ida

or
(iv) to maintain Hy for Ho : Gjy, A = gq, against H; : Gy, AT # ga,,

LA |
Isz“ Jm B StT,(ﬁ/Z) if me DE for dy = 1:2,"':D4: (11)
idy

7 87 and K — 3 correspond to skewness and kurtosis, respectively.
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for
(S5)? = Glg,C(AMGy, and S5 =+/(S2)2 for all £=1,2,3,4,

where G;q, = {(K;+1) x 1}-vector of known coefficients of the d-th hypothesis
concerned with A7 for £ = 1,2,3,4; gg, = a priori known value of the ds-th
hypothesis; tr,(8/2) = percentile of a two-tailed ¢-test of a 1008 % significance
level with T; degrees of freedom; ¢, () = percentile of a one-tailed #-test of a
1008 % significance level with T} degrees of freedom; D', D?, D%, D* =numbers
of hypothesis testings in (i), (i), (iii) and (iv), respectively; D} , D%, D3, D4,
=sets of the Box-Cox transformation numbers in which the hypothesis testings
(1), (i), (iii) and (iv) are made, respectively; and D} , D3,, D3, D, C M;

[ VI ] the Durbin-Watson serial correlation test statistic DWW :n defined below must
satisfy the following inequality at a 100 % significance level, if time series data
are used (Durbin and Watson, 1950 and 1951, Wallis 1972): for 7 > 6

DW; > di(y) if DWi <2 or 4—DW; > di(y) if DW; >2  (12)
_ for annual data (r = 1) or for quarterly data (r = 4)

D’ﬁ/; - 231:1+1‘(€£1 - E{?—r)z .
’ i (E)?

where d;(y) = d¥k,,1(7) if an inconclusive case is regarded as subjectively .
unacceptable or d(7v) = d% k., (v) if an inconclusive case is regarded as sub-
jectively acceptable; dfx.,,(7) = upper limit of the Durbin-Watson serial
correlation test of a 100y % significance level with (T, K; + 1) degrees of free-
dom for annual (r = 1) or quarterly (r = 4) data; dfi ., (v) = its lower
limit;

(13)

[ VII ] the Chow equal coefficients test statistic & must satisfy the following
inequality at a 1009 % significance level of an F test, if (i) it is considered
that structural changes may have happened and affected ﬁﬂ and (ii) the Chow
test need be applied to maintain the null hypothesis Hy: AT = A2 against
the alternative hypothesis Hy: APl % A™2 (A™ for £ = 1,2 is expressed in
column vectors) (Chow, 1960)8 :

».!r‘h,r Am _ A'_'_me‘_l_m Aﬁlf A'fh. r’h+ﬁ1, A-i-'ﬁ'!.
E* E‘ E“ % Ez' Ea‘ — B Ei

¥ o*(K; +1) K F1I £
o= E’.‘Fﬁ"‘: Efm - B < FriSiwan(®)  (14)
o*{T — 2(K; + 1)} T—2(K; +1)

8 If some explanatory variable like a 0-1 dummy variable is included in X, then [XY' X} =0 or
|X? X% = 0 may occur, even if | X1.X;| # 0. In this case, the Chow test must not be applied. In
the System OEPP, a user must specify such a variable to notify a computer of it. If a meaningful
subset includes such a variable, the Chow test will be antomatically suspended for it. The same
treatment is needed for the Goldfeld-Quandt homoscedasticity test in the condition [ VIII ].
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where (Y™, X;) is partitioned into {T? x (K; + 2)}-submatrix (Y™, X}) and
{T? x (K; + 2)}-submatrix (Y2, Xf) for T=T"+T2%T">0and T2 > 0 s0
that Y™ = (Yﬁﬂr sz:) and X, (Xlr er) E--m = (Em: Emz:) Eme =
(T x 1)-vector of residuals resulted from regressing yme on Xfforf=1, 2 and
Ef ;(IK‘ +1y(¥) = 9 percentile of an F distribution with {K; +1 T-2(K;+1)}
degrees of freedom;

[ VIII ] the Goldfeld- Quandt homoscedasticity test statistic GQ concerned with
equal variance o® of the disturbance term U must satisfy the following in-
equality at a 100w % significance level of an F test, if (i) it is considered that
structural changes may have happened and af‘fected o? and (ii) the Goldfeld-
Quandt test need be applied to maintain the null hypothesis Ho: V(u;) = o2
for all ¢t (and covariance C(usu,) = 0 for all s = 1,2,---, T but £ # s) against
the alternative hypothesis Hy: V(u;) # V(u,) for at least one of pairs {¢,s}
(Goldfeld and Quandt, 1965) '

i v :
o e K,—1) _ EmEm
GQ; = (@.M LU o g 15
W= mpEp T RpEp STORSW W
UZ(Q—Ki—l)

where (Y™, X;) for % € M is rearranged into (Y*™, X}) by the order of the
unknown but user-properly-guessed magnitudes of variances V(u;)’s and then
partitioned into three submatrices (¥, X};), (¥, X7;) and (¥3™, X3,) in
such a way that the number @ of samples Y™ is equal to that of ¥;™ for
user-specified @ such that @ > K; +1, T = 2@ + Qc and ¢. > 0 so that
Y* = (Y™, Y VY and X = (XI;,X*’ Y BrP = (Q x 1)-vector
of residuals resulted from regressing Y™ on the ﬁrst Q samples X7, of X7;
Bz = (@ x 1)-vector of residuals resulted from regressing Y, on ‘the last
Q samples X3; of X7 (Y™, X%) =central submatrix to be omitted; and
F§Flw=w percentile of an F' distribution of (@ — K; - 1,Q — K; - 1)
degrees of freedom;

[ IX ]| (i) B must satisfy the following ¢-test for a residual outlier at a 100v %
31gn1ﬁcance level for a rather small sample size T with T; > 1, if necessary
(Sawa, 1979)? :

maxO M < tn_1(v/2T) forsomet=1,2,---,T (16)

® If the sample size T' is large, the outlier t-test is not effective, because /2T —+ 0 so that
tr—-1(v/2T) — +oo. In regression analysis, an outlier test to identify an outlier in Y™ before
estimation is unimportant or less important than an outlier test through residuals. If an outlier-
like y* is well tracked with outlier-like z5%s, it is not regarded as an outlier.
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for

g gm
ore - S1-at i@
VEMER — @2/ —ap)  VEMER — 602/ - g
7T~ 1 V-1
(17)
and/or

(i) all standardized residuals ;s defined below must not exceed the user-
specified criterion value ¢, if necessary*®

max 6| <e for somet=1,2,---,T (18)
for -
& = , (19)

=rf =7
51— @

where 7,1 (v/2T") = v/2T percentile of a two-tailed ¢-test with T, — 1, ie,T—
K;—2 degrees of freedom; and §jf* = (¢, t)-diagonal element of X (XX ;)1 X/;

[ X ] ¥/ must satisfy the following turning point test defined by the user-specified
¢, if (i) time series or longitudinal data are used (T > 3) and (i) it is necessary

if
(" — yt—l)(yt+1 — % ) <0 o (20)
and
7 " .
min{ 1—-y-§-‘ﬁ—} ,11— yt—;': } >¢ for t=2,3,---,T—1 and m € M, (21)
Ye Yy : -
then
(v — yt-—- @7 yzt 1) >0 (22)
and " . )
(?}ﬁl - y?)(ﬁé?g+1 - Jg) >0 . (23)

and

[ XTI ] the specified adjusted coefficient of determination (R)? of ¥/ defined be-
low is greater than or equal to & and the j-th largest among the specified

10 The standardized residual test may be applied with some flexibility, when cross-sectional data
are used. Pr{]e,tl < 1} = 0.6827; Pr{[g;| < 1.6449} = 0.9000; Pr{[eﬂ| < 1 9600} = 0.9500;
Pr{|e,t | < 2} =0.9545; and Pr{le,tl < 3} =0.9983.
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adjusted coefficients of determination of the subsets which satisfy (z) all those
applied from among the conditions [ I ] to [ X ] and (#) (24) in [ XTI ' :

LN (Y
T;

(R7)? = max |1 0| >0 (24)

for o
e Fm pm
RIMP =1 = Pael Mo 58 e [] 25

3.5 Remarks on a Solution, Diagnosis and Prediction

When a user obtains an unsatisfactory regression equation as the best, he may be
disappointed very much. Sooner or later, a distrust of statistics may be instilled in
users’ minds. Therefore, thorough scrutiny is needed to search for the practically-
best regression equation. The first condition [ I | in the j-th OLS-best subset
problem for the Box-Cox transformation is not related to statistical computing but
is a knowledge-based and decisively important condition for the research. The second
condition [ II | calculates the Box-Cox transformation parameter, the estimates of a
dependent variable Y™, the variance and standard deviation of a disturbance term U,
regression coefficients with their variances, standard deviations and ¢-ratios, etc. The
third condition [ III | deals with scientific conditions about regression coefficients
which statistics can hardly handle at present but the professional knowledge of an
applied field requires. The conditions [ IV ] to [ IX ] are concerned with statistical
hypothesis testing. The tenth condition [ X | is a data-analytic test. The last
eleventh condition [ XI ] is concerned with fitting. The conditions [I ] and [ III ] to
[ X ] are pass or failure checks, whereas the condition [ XI | is a continuous measure.
All regression subequations which passed all conditions employed from among the
conditions [ I ] and [ III | to [ X ] are finally ranked by the condition [ XI |. It
must be noted that the practically j-th best regression subequation depends on Q
and M specified by a user. If severe criteria are set at Q, no solution may exist.

It is easy to make a computer print until which condition a meaningful subset has
passed in the conditions [ III | to [ XI |. If all meaningful subsets failed to pass
the sign and/or magnitude condition [ III |, there is no statistical and data-analytic
diagnosis when the professional knowledge used is correct. However, if at most one
meaningful subset passed the condition [ III ] but all meaningful subsets failed to
pass one of statistical and data-analytic conditions [ IV | to [ XI ], it is possible to

11 1f the Akaike information criterion (Akaike, 1973) defined as
AIC; = T{ln2r + 1+ In(B™E™/T))} + 2(K; +2)

is employed instead of (7%{")2 in the System OEPP, then (24) must be replaced with ﬁ"cf‘ <4,
the phrase “the j-th largest” must be replaced with “the j-th smallest” and an arbitrarily large
positive number should be given to 6. T(In27 + 1) + 4, which is constant, is not essential. The 2
of (K; + 2) implies that a constant term a* and variance ¢? of a disturbance term are counted as

unknowns. —oo < ATC’? < +o00. The smaller A’f‘c{"’ is, the better will ¥ fit to Y.
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provide the user such a diagnosis that a weaker criterion for that statistical or data-
analytic test may yield a solution. Needless to say, a prediction must be made by
each of the first at most j practically-best regression subequations, if requested. The
total significance level ¢ for the practically best regression equation may be
defined as ¢ =1~ (1 = B)(1 —n)(1 — 7)(1 — ¥)(1 — w)(1 — »). If a statistical test is
not applied, a zero value should be substituted into the corresponding significance
“level. Roughly speaking, the practically best regression equation is adopted, if it
exists, with a 100¢ % risk of committing a type I error or with a 100¢ % risk that
it was actually not best.

4 Processing of Professional Knowledge

4.1 A Priori Known Signs of Regression Coefficients

Here a computational method adopted in the System OEPP is explained to solve
the j-th OLS-best subset problem for the Box-Cox transformation, although a com-
puter programmer can develop his own computational techniques. The information
about the signs of some regression coefficients is often available from the profes-
sional knowledge related to research at hand. A user may want to test hypotheses
about the signs of some regression coefficients. In this situation, it is convenient
to attach the a priori known or to-be-hypothetically-tested signs, + or —, to the
fronts of such explanatory variables in loading a dependent variable together with
all possible explanatory variables into a computer. Let ¢> denote +, — or nothing
and braces { and } stand for a set or subset of variables. Therefore, ¢.X implies
+X, =X or X. {+X1,—Xs, X5} implies a (sub)set of variables X;, X, and X3
the a priori known signs of whose regression coefficients are positive, negative and
unavailable, respectively.

4.2 Basic Variable Classifications

Double variable classifications of (i) single or grouped variables and (ii} combina-'
torial or sequential variables must be applied for all possible nonconstant explanatory
variables in order to solve the condition [ I] in the j-th OLS-best subset problem for
the Box-Cox transformation. Although we omit the proof, double variable classifi-
cations are necessary and sufficient for a computer to generate only all meaningful
subsets in a run of a computer, no matter what research is conducted.

4.2.1 Single or Grouped Variables

A single variable is defined as one which has its meanings or role by itself in
interpreting the regression equation. Most explanatory variables are usually treated
as single variables. On the other hand, a grouped variable is defined as
one which cannot have its clear meanings or role by itself but can have it only
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when it is used together with the other appropriate variables. In most research,
grouped variables represent (i) complementary relations such as a pair of patients’
expenditures of medical doctors’ services in hospitals and the prescribed medicines
bought in pharmacies or a pair of computer hardware and software or (i¢) a choice
of an aggregate variable X or a cluster (or set) of all X' componentwise variables
X1, Xoy + o+, Xg for K = 2,3, -, where X = K @, X; where & =known weight
for X. It is understood that a cluster of grouped variables must be treated just like
a single variable in variable selection.

In order to distinguish a single variable with/without the a priori known sign
of the regression coefficient from a cluster of grouped variables with/without the
a priori known signs of their regression coefficients, we postulate that the latter is
enclosed within parentheses ( and ) like (¢.X7, O X, -+, O Xk) for some K = 2,3,---
and, furthermore, in variable selection, it is treated just like a single variable and the
parentheses are ignored in the subsets which include the cluster of grouped variables.

Let X represent a single variable with/without the sign, ¢X, or a cluster of
grouped variables with/without their signs, (0X;,0Xs, -+, 0Xk). X is called a
condensed variable. Forinstance, if ¥ = +X, then X means a single variable
X whose regression coefficient must be positive, implying that it is a priori known
or must be hypothetically tested that an increase (or a decrease) in X increases (or
decreases) the dependent variable, ceteris paribus. Furthermore, if a user wants to
apply a t-test, +X requires a one-tailed ¢-test but not a two-tailed t¢-test, implying
that an F' test is inappropriate. If X = X, then X means a single variable X whose
regression coefficient can be positive or negative and requires a two-tailed t-test or
an F' test. If ¥ = (+X;, —X3), then X means a cluster of grouped variables X; and
X, whose regression coefficients must be positive and negative, respectively. The
grouped variables X; and X5 cannot be separately selected.

Example 1:

Xy, X, X3, Xy = =X, (+ X3, —X3), + X4, X5
implies that &} = —X;, X5 = (+X5,—X3), A3 = +X4 and Ay = X;5. There are
5 explanatory variables X, X5, X3, X4 and X5 with/without their signs, whereas
there are 4 condensed variables A, A;, X3 and A}.
4.2.2 Combinatorial or Sequential Variables
Only condensed variables are here focussed on. Let 2 = {0,1,2,---, K} and
e =41,2,::-,K}.

@® Basic Combinatorial Variables

Let P € &k, Q € ok, P* = min{P,Q}, @* = max{P,@} and K =number of
condensed variables where 0 < P 4+ Q. We postulate that

S i e SRR S e (26)
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() generates ZE;P. ( }p{ ) meaningful subsets, § if P* = 0 and {X,,, &,,, -+,

Xp,-} for P1,P2, P = 1:2)"'1K: ;i # P, i 7£ bhuj= P*:P* + L'":Q*: and,
furthermore, (i7) investigates whether or not the estimated regression coefficients of
the variables in all meaningful nonempty subsets derived from (26) meet the + or
— signs, if indicated in A}’s for k = 1,2,.--, K, when (26) is used for estimation.
X1, Xy, ++ -, X in (26) are called a cluster of combinatorial condensed
variables. ,

A user introduces condensed variables A), X, - -+, X% and knows the appropri-
ate integers for P and @ from the viewpoints of the professional knowledge. It is
impossible for him to implement his research well, otherwise. It must be noted that
the positions of A%’s within a pair of combinatorial variable classifiers < P < and
> ¢ > do not matter. Needless to say, if P = 0 or @ = 0, then an empty subset
- becomes meaningfiul with respect to these condensed variables and is usually used
together with other clusters of classified variables.

Example 2: case of K =4, P=0and Q = 2,
<0< (+X1,X), X3, X4 > 2>

which is regarded as < 0 < &y, X, A3 > 2 > for X = (+X1,X2), X = —X3 and
X3 = X4, (i) generates the following 7 meaningful subsets with respect to -+.X. 1y X2,
—Xgand Xq: (i) §; (i) {0, Xo}; (1) {~Xs}; (iv) {Xa}; (v) {+X1, Xp, —X3}; (vi)
{+X1, 32, X4}; and (vii) {—X3, X4} and (43) investigates the signs of the regression

coefficients of these meaningful subsets, where ( g ) -+ ( ? ) + ( g ) =143+3=
7.

® Basic Sequential Variables

Let P € (%x or P € (1) and K =number of condensed variables, We postulate

that
< P <A, A, X >> or <<XK,"',X2,X1> P> (27)

(¢-1) generates (K — P + 1) meaningful subsets {X;, X, -, Ay} for p = P, P +
1=+, K f P & fhx or (i-2) generates (K + 1) meaningful subsets §) and {X;, Xa,
oo X} for p=1,2,--+, K if P = 0 and, furthermore, (4i) investigates whether or
not the estimated regression coefficients of the variables in all nonempty meaningful
subsets derived from (27) meet the + or — signs, if included in Ay’s for k € 1.
A1, &g, --+, Xx in (27) are called a cluster of sequential condensed
variables. It must be kept in mind that the positions of sequential variables
within a pair of sequential variable classifiers < P < and >> or << and > P > are
decisively important.
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Example 3: caseof K =5and P=2
<2< 4+X,+ X, — X35, Xy, + X5 >> or << +X5, Xy, — X3, +X0,+X1 > 2>

(#) generates the following 4 meaningful subsets: (i) {+X1, +X,}; (i) {+X, +X5,
—Xg}; (iii) {+X1, + X, -.Xs,X4}; and (IV) {+X1, +X,, — X3, Xy, +X5} and (ZZ)
investigates the signs of the regression coefficients of these 4 meaningful subsets.

Example 4:

<0< +X, (X2, X3),+ Xy >>, <1< X5 > 1>
or ﬂ
<1< Xs>1>, << +X, (X5, X3),+X1 > 0>

(i) generates the following 4 meaningful subsets: (i} {X5}; (i) {+Xi, Xs}; (iii)
{+X1, =X, X35, X5}; and (iv) {+X1,—Xa, X3, +X4, X5}, which are obtained by
the combinations of [1] the 4 partially meaningful subsets @, {X1}, {X;, X2} and
{X1, A, A3} generated by < 0 < A, A, X3 >> or << X3, Ap, A1 > 0 > with
respect to +X;, —X,, X3 and +X4 and [2] only one partially meaningful sub-
set {X5} generated by < 1 < X5 > 1 > with respect to X5, and, furthermore,
(¢1) investigates the signs of the estimated regression coefficients of the signed
variables in these 4 meaningful subsets, where X} = +X;, X; = (—X5, X3) and
A3 = +X4. Needless to say, the following are equivalent to the above entries:
<1< X;5,+X, (—XQ,X3), +X; >> and << +X4, (X3, —Xz),-I-X]_,Xs >1>.

4.3 Functional Form

All meaningful subsets generated through (26) and/or (27) are equivalent to
each other before estimation and evalvation. In other words, it is not known before
estimation and evaluation which meaningful subset becomes practically best. Let
Xyo be a constant term. We postulate that X is not enclosed within any symbols,
a dependent variable is expressed as a function of a constant term, if needed, and a
set of all possible explanatory variables which are classified and X is automatically
included in all derived meaningful subsets.

Let us give an example. Suppose that the Box-Cox transformation is utilized with
the following functional form!? : for M Box-Cox transformations

Y = F(Xo,<1<4X1>1>, <1< -X(X;3,4+Xy) > 1 >,
<0< +X;, +X5,.—X7 >>) (28)

where Y =original dependent variable; Xy =constant term; X;, X, =single and
combinatorial variables (X; =absolutely important, fixed or core variable in other

12 A functional form need not be unique. If a computer can correctly identify signs, variables
and classifiers, a comma or blank is not necessarily needed.
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words); X3, X4 =grouped and combinatorial variables; and Xj, X, X7 =single and
sequential variables. The regression coefficients of X;, X4, X5 and X, must be
positive as (part of) scientific conditions, whereas those of X, and X7 must be
negative. It is clear that no a priori known signs are available for the regression
coeflicients of the constant term X, and the explanatory variable X5. The functional
form (i) generates the following 8x M meaningful subsets: (i) {Xo, +X1, —Xa}; (i)
{Xo, +X1, Xa, +X4}; (i) {Xo,+X1, ~Xo,+X5}; (iv) {Xo, +X1, X3, + X4, + X5 };
(v) {Xo, + X1, =X, +X5, +Xe}; (Vi) {Xo, +X1, X5, +X4, +X5, +Xs}; (vii) {Xo,
+X3, - X3, +X5, +X6, —X-(}; and (Vlll) {X0,+X1,X3, + X4, + X5, +X5, '—X7} for
each of Y™s for m = 1,2,---, M and (i) investigates whether or not the signs of
the estimated regression coefficients @J,’s of the following regression subequations
except for those of the constant term and X; coincide with the specified signs:

Y™ = o + ol Xy + al X, + U, (29)

Y™ =af + a5 Xs + any Xz + afy Xy + U, (30)

Y™ = agz + a3X1 + aggXa + apXs + 0, (31}

Y™ = agy + ol X1 + agy X3 + a3 Xy + aff X + U, (32)

Y™ = agg + a5 Xy + a Xo + e Xs + az Xg -+ U, (33)

Y™ = ags + ajg X1 + azXs + af Xy + afs X5 + aBe X + U, (34)
Y™ = agh + ab X1 + ap Xo + R X5 + 0 X + agr Xy + U, (35)

and

Y™ = agg + ag Xa + aggXs + afg Xy + ez X5 + ol Xs + amX7 + U,  (36)
where Y1 = Y; Y™ = {(Y)* — 1}/A, with M\, = (M = m)/(M ~ 1) for m =
2,3, , M —1; Y™ = In(Y); and U =disturbance term. '

For instance, by +.X; introduced in the functional form, the estimated regression
coefficients a7 > 0 for all £ =1,2,3,4,5,6,7,8 and all m = 1,2,-- -, M are required
as one of the preconditions for application of statistical and data-analytic tests.
Only the regression subequations which passed all sign conditions are, furthermore,
scrutinized by magnitude conditions for the regression coefficients and statistical
and data-analytic tests, if required. \

5 Computational Procedure

Let us illustrate the essential computational procedure for a computer. Suppose
that L =number of all meaningful subsets X,’s derivable from X, which can be
easily calculated by variable classifications.
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e Step 1: Identify a dependent variable Y, all possible explanatory variables X
and variable classifications made on X in a functional form, the number M
of all Box-Cox transformations!® | scientific conditions, statistical and data-
analytic criteria @ and the number j of the first j practically-best regression
subequations.

e Step 2: Calculate X’'X.

e Step 3: Initialize as m = 1 or increase m by 1 and calculate Y if m > 1 and
X'ym,

e Step 4: Initialize as £ = 1 or increase £ by 1. Construct X, X, and X,¥™
from X'X and X'Y™, respectively, for a meaningful subset X,.

o Step 5: Calculate AJ' = (XX )1 XY™, Yi* = X, A7, Ep = Y™~ ¥/, ete.
and all test statistics.

e Step 6: Check all scientific conditions about fl}", if employed. Go to Step 9 if
one of the scientific conditions is unsatisfied.

o Step 7: Calculate all necessary percentitles of statistical tests employed and
make all statistical and data-analytical tests employed. Go to Step 9 if one of
the statistical and data-analytic tests fails.

e Step 8: Memorize AT, f’}m, etc., if all first j practically-best regression sube-
quations are not memorized yet or replace the j-th practically-best regression
subequation with AP, Y/, etc., if the j-th practically-best regression sube-
quation was already memorized. Upgrade the fitting criterion & to the degree
of fitting of the new j-th practically-best regression subequation.

e Step 9: Go back to Step 4, if £ < L.
e Step 10: Go back to Step 3,if £=L and m < M.

o Step 11: Print the first at most j practically-best regression subequations with
important fest statistics.

12 In the System OEPP, only OLS is-applied, if the first parameter OLS is inputted immediately
after the command METHOD. Furthermore, the second and third parameters BC (or BCE or EBC)
and the number M of the Box-Cox transformations are inputted for the command METHOD,
then OLS for m = 1 and Box-Cox transformation for OLS for m = 2,3,---, M are applied. BCE
conducts estimation for the Box-Cox transformations only for explanatory variables, whereas EBC
does so for the Box-Cox transformation extended to both a dependent variable and explanatory
variables, where all data relevant to the Box-Cox transformation must be positive.
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6 An Example

6.1 Variable Selection

Suppose that we have sufficient professional knowlede about the administrations
of local governments and rich modelling experiences, plausible significance levels are
subjectively selected for statistical tests and 7 = 1 is set. Let us demonstrate from
the heuristic viewpoints how to use the proposed method in three steps together
with two contingent steps by the System OEPP. OLS is directly used in the first
and second steps and then Box-Cox transformation is applied in the third step
as a result of the failures in the previous 2 steps. The purpose is to search for the
scientifically reasonable and statistically best regression equation, i.e., the practically
best regression equation, by trial and error, for the numbers of civil servants in the
assembly and general affairs combined sectors in 46 prefectural governments, except
for the Tokyo metropolitan government, in the research on an administrative reform
for prefectural governments. Since Tokyo is the capital of Japan, the administrative
functions of the Tokyo metropolitan government differ from those of the other 46
prefectural governments. Thus, the sample size is 46 and cross-sectional data in
1996 are used and listed in Appendix. We use the following variable notation:

Y =number of civil servants in assembly and general affairs combined sector (unit:
persons); Xy = constant term; X; =number of households (1,000 households);
X2 =number of citizens in all cities (1,000 persons); Xz =number of residents in
all towns and villages (1,000 persons); X, =habitable area (=administrated area
minus mountainous and lacustrine areas) (km?®); Xy =administrated areas (km?);
Xg =number of citizens in ordinance-designated cities (shitei toshi in Japanese)
whose populations are one million or more and to which various administrative
rights of importance are transferred from prefectual governments (1,000 persons);
X7 =number of citizens in core or kernel cities (chuukaku toshi in Japanese) whose
populations are less than one million but exceed 200 thousands and to which some
administrative rights are transferred from prefectural governments, where no ordinance-
designated cities are near (1,000 persons); X =number of residents in high population-
density areas (1,000 persons); Xy =net population movements {100 persons); X, =areas
administrated by ordinance-designated cities (km?); X;; =standard financial sizes
(100 million yen); X;» =number of all towns and villages (towns or villages);
X33 =dummy variable for the presence of the largest-in-the-Orient US military forces
in Okinawa, which pushes the Qkinawa government to hire more civil servants to
deal with many problems on noise pollution by air planes, relocation of air force
bases, criminal affairs, etc., whose regression coefficient is expected to be positive,
if X3 is adopted.

We set the following statistical tests and criteria:

f = significance level 0.1 (10 %) of a one- or two-tailed ¢-test hypothesis testing for
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the regression coefficients;
n = significance level 0.05 (5 %) of the Jarque-Bera normality test (x? test);
v = significance level 0.05 (5 %) of a two-tailed ¢-test for detecting a residual outlier;
€ = 2.5 standardized residual tolerance level with acceptance of up to 2 violations;
¥ =significance level 0.05 (5 %) of the Chow equal coefficients test (F test) for
a group (Kantou or Eastern Japan) of cross-sectional unit numbers 1 to 23
and a group (Kansai or Western Japan) of cross-sectional unit numbers 24 to 46;
w = significance level 0.05 (5 %) of the Goldfeld-Quandt homoscedasticity test (F
test) for a group (snowy area) of cross-sectional unit numbers 1 to 15 and
a group (typhoon-often-hit area) of cross-sectional unit numbers 32 to 46;
# = 0.7 minimum tolerance level for an adjusted coefficient of determination which
is used to determine the ordering of practically best regression subequation
candidates.

The total significance level for the practically best regression equation defined as
1-(1-801-m1-v)1-9)1 - w)is 0.26694 or 26.694 %, when the dummy
variable Xy3 is not selected, i.e., when the Chow equal coefficients test and the
Goldfeld-Quandt homoscedasticity test are used. However, the total significance
level for the practically best regression equation defined as 1 ~ (1 - 8)}(1 —n)(1—v)
is 0.145 or 14.5 %, when the dummy variable X3 is selected, i.e., when the Chow
equal coefficients test and the Goldfeld-Quandt homoscedasticity test cannot be used
due to the special data structure of X;s.

The following three steps are conducted by a notebook-type PC (VAIO, Sony).

Step 1 in which the professional knowledge both for variable classifi-
cation of all possible explanatory variables and for scientific conditions
on the signs (and magnitudes) of their regression coefficients is not used
at all, although available here, and variances of a disturbance term are
assumed to be constant (OLS without Box-Cox transformation is used
for all possible regressions under the above statistical tests and criteria):

The number of all possible regressions of 13 possible explanatory variables is 8,191
due to 2'3 — 1 = 8191. They are easily generated and estimated by the following
functional form and evaluated with the above statistical criteria:

Y = F(Xo <1< X1, X2, X3, X4, X5, X6, X7, X5, X5, X10, X11, X12, X13 > 13 >).
‘ (37)
Since the signs of the regression coefficients of all possible explanatory variables
are not shown in the functional form (37), a two-tailed ¢-test is made for hypothesis
testing for all regression coefficients. The statistically best regression subequation
(38) was searched for among 8,191 possible regression subequations estimated with
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QLS in less than 6 seconds of CPU time: _
171309 = 555.7625 +0.3183152.X, +0.1475850.X3

(S.DEV.) (64.63306) (0.6345661 x 10~1)  (0.7611922 x 10~1)

(T-RATIO) (8.598734) (5.016265) (1.938866)
+0.2875088 x 1071X;  +0.2216401X, +0.1271108X,

(0.3647111 x 1072)  (0.4292448 x 10~1)  (0.6428338 x 10~1)

(7.883192) (5.163491) (1.977351)
—0.3709955X, . —1.858752Xy  +323.3830X;;  (38)

(0.1064525) (0.5589328) (98.52871)
(—3.485081) (—3.325537) (3.282120)

R? = 0.9608, 7 R2 = 0.9523, AIC—558 6327, 5D = 96.1938,
V = 9253.25, DF = 37, JB--O4368 OT = 3.303, TSL = 0.145

where Yigys =estimate of ¥ by the 1,809-th meaningful subset; (S.DEV.) = stan-
dard deviations (errors) of the estimated regression coefficients; (T-RATIO) = ¢-
ratios of the estimated regression coeflicients; f R2 —coeﬂicmnt of determination;
_’7?:2 = adjusted coefficient of determination; ATC =Akaike information criterion;
SD V =standard deviation and variance of a disturbance term, , respectively; DF =
degrees of freedom; JB=1] arque-Bera normality test statistic; OT' = ¢-test statistic
for a residual outlier; and T°'SL =total significance level.

Eight explanatory variables are selected. Their ¢-ratios in absolute values are large
enough, the number of residual outliers is 1 which is within the specified tolerance
level, normality is guaranteed and the fitting is very good. The statistically best
regression subequation (38) looks really good and useful. Let us examine the mean-
ings or roles of selected explanatory variables and implications of the regression
coefficients in detail from the viewpoints of prefectural administrations. First of all,
it is clear that X, requires more civil servants than X;. Unfortunately, X, was not
selected but X3 was. The selection of both X; and X3 implies a sort of redundancy.
X¢ assumes a positive regression coefficient. This implies that more civil servants
are needed in spite of the fact that various administrative rights are transferred
from prefectural governments to ordinace-designated cities and the related civil ser-
vants are transferred to other sectors or are not replaced after they retire. Civil
servants have job security, if they behave well without committing serious crimes.
The regression coefficient of X1, shows negative. However, the larger the standard
financial sizes are, the more civil servants prefectural governments will be allowed
to hire. The regression coefficients of X and X;; contradict these facts. Thus,
the accountability is very poor. As a result, the above statlstlcally best regression .
subequation (38) cannot be adopted for pohcy making!

)4 Nowadays, convenient and cheap communication systems like e-mail, internet, fax and tele-
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Step 1’ in which the Box-Cox transformations for M = 6 are applied
for the above Step 1:

The Box-Cox transformations for M = 6 (just for demonstration) were also ap-
plied for all possible regressions without any professional knowledge. Unfortunately,
the same statistically best regression subequation as (38), which corresponds to
m = 1, was obtained from among all 49,146 possible subsets in about 8 minutes
29 seconds of CPU time where 6x8191=49146. The Box-Cox transformations for
m=2,3,---,6 were not effective,

Step 2 in which the professional knowledge for variable classification
of all possible explanatory variables is available and actually used but
that for scientific conditions on their regression coeflficients is not used,
although available here, and variances of a disturbance term are assumed
to be constant (OLS without Box-Cox transformation is used for all mean-
ingful subsets with no sign conditions):

Let us classify all 13 possible explanatory variables X to X3 from the administra~
tive viewpoints of prefectural governments. Since variable X, and a pair of X, and
X3 are alternatively important, < 1 < Xj, (X», X3) > 1 > is appropriate, because
prefectural governments must definitely offer administrative services to the residents.
Variables X4 and X5 are also alternatively important so that <1 < X4, X5 > 1 >
is appropriate, because administrative services must.be offered whether the admin-
istrated areas are large or small. Since variables Xg to X3 are considered to be
completely optional, < 0 < X¢, X7, Xs, Xo, X10, X11, X12, X13 > 8 > is proper. All
regression coefficients are examined by a two-tailed ¢-test. We inputted the following
functional form together with the same statistical criteria:

Y = F(X0<1<X1,(X2,X3) >1> <1< Xy, Xs>1>"
< 0 < Xg, X7, X3, Xg, X10, X11, X12, X13 > 8 >). (39)

The number of all meaningful subsets of the functional form (39), which correspond
to 1,024 primitive one-regression-at-a-~time procedures, is 1,024 by 2 x 2 x 28 = 1024.
The following statistically best regression subequation was searched for in about 1

phone are available. We are in the age of information disclosure so that accountability is sought. If
the statistically best but ineffective regression subequation (38) is employed in the local government
administrative reform policy, the policy makers will be severely criticized and surely condemned
by saying that they have been pursuing intellectual exercises and wasting residents’ taxes.
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second of CPU time:

P = 553.0272 +0.3154005.X +0.4618258.X;
(S.DEV.) (64.32450) (0.6303144 x 10~1)  (0.9829663 x 10~1)
(T-RATIO) (8.597457) (5.003860) \ (4.698287)
+0.2858288 x 10~1X;  +0.2212731X; +0.1211306X,
(0.3625663 x 10~2)  (0.4297600 x 10~%)  (0.639346 x 10~1)
(7.883492) (5.148760) (1.894602)
—0.3706472X 10 ~1.830162X;;  -+323.1120X;3  (40)
(0.1065621) (0.5547306) (98.62510)
(~3.478225) (—3.209190) (3.276164)

R?=0. 9607, 7 R:=0. 9522, ATC = 558.7247, 5D = 96.2901,
V =9271.79, DF = 37, JB = 0.4063, OT = 3.305, TSL = 0. 145

The variable classification really reduced the calculation time. The statistically
best regression subequation (40) is similar to but slightly worse than (38) in Step
1. X, is selected instead of X;. The regression coefficients of Xz and X;; are not
considered to reflect the facts by the same reasons mentioned above. As a result, the
statistically best regression subequation (40) cannot be adopted for policy making.

Step 2' in which the Box-Cox transformations for M = 6 are apphed
for the above Step 2:

The Box-Cox transformations for M = 6 were also applied for all meaningful
subsets with no sign conditions. Unfortunately, the same statistically best regression
subequation as (40), which corresponds to m = 1, was obtained from among all 6,144
meaningful subsets in about 1 minute 19 seconds of CPU time where 6x1024=6144.
The Box-Cox transformations for m = 2,3, - - -, 6 were not effective.

So far the practically best regression subequation has not been found in the pre-
vious two steps of trial and error. Let us introduce scientific conditions on the
regression coefficients in addition to the knowledge for variable classification and
extend OLS to Box-Cox transformation.

Step 3 in which the professional knowledge both for variable classifica-
tion of all possible explanatory variables and for scientific conditions on
the signs of their regression coefficients is available and actually used and
variances of a disturbance term are assumed to be constant with respect
to the original data of a dependent variable (m =1) or become constant
with respect to the Box-Cox transformed data (m =2,3,..., M) where
OLS and Box-Cox transformation are used for all meaningful subsets with
the sign conditions:

24



The increases in the data of variables X;’s for & = 1,2,3,4,5,11,12 press the
prefectural governments to hire more civil servants, requiring that their regression
coeflicients assume the + signs and then leading to a one-tailed ¢-test hypothesis
testing for these regression coefficients. On the other hand, the increases in the
data of variables Xg and Xy reduce the amount of administrative work so that
the prefectural governments can reduce the number of civil servants, requiring that
their regression coeflicients assume the — signs and then leading to a one-tailed
i-test hypothesis testing for these regression coefficients. The regression coefficients
of X7, X3 and Xy (and Xj,) can assume either a positive or negative sign, leading
to a two-tailed f-test hypothesis testing for these regression coefficients. Variable
X; and a pair of X; and X3 are specified as < 1 < +X, (+Xs,+X3) > 1 >.
Variables X, and Xj should be set as < 1 < +X4,+X5 > 1 >. Finally, < 0 <
—Xs, X7, X3, Xo, —X10, +X11, + X132, +X13 > 8 > is proper.

We set M = 6 for the Box-Cox transformation so that the total number of all
possible regressions is 49,146, where 6x8191=49146, whereas the number of all
meaningful subsets is 6,144, where 6 x 1024 = 6144. Hence, the remaining 43,002
nonempty subsets are regarded as meaningless from the administrative viewpoints.
The following functional form was inputted together with the same statistical criteria
as before:

Y = F(Xo,( 1< +X,, (+X2,+X3) >1>, <1 <4Xy,+Xs > 1 >,
<0 < =X, X7, X3, Xg, —X10, +X11, + X12, + X133 > 8 >). (41)

The following practically best regression subequation was obtained from among
6,144 meaningful subsets in less than 3 seconds of CPU time:

Vhet =  27.35750  +0.2521440 x 1072X; +0.1796585 x 10~3X;
(S.DEV)) (0.4637656)  (0.1390876 x 10~%)  (0.2421109 x 10~4)
(T-RATIO) (58.98992) (18.12844) (7.420507)
+4.823520X 13 - (42)
(1.912091)
(2.522646)

=4, 5 =04, (B)? = 0.9137, (R4)? = 0.9076, ATC" = 192.4663,
SD" = 1.88065, * = 3.53683, DF = 42, TB* = 0.3023, OT" = 2.972,
TSL =0.145

where . = 4 implies the fourth Box-Cox transformation for Y and is used as a
superscript; Y4q, =estimate of Y4, ie., (Y®* — 1)/0.4 by the 4,094-th meaningful
subset. ‘

Needless to say, the (inversely-transformed) estimates ' , which correspond to
4094
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the original data Y, of the fourth Box-Cox transformed estimates Yj,, are auto-
matically calculated and plotted in the diagram (not cited here). The CPU time
was furthermore reduced. If a + or — sign is specified in front of an explanatory
variable in a functional form, the CPU time is reduced, because the calculation of
percentiles of statistical distributions is not needed, if the regression coefficient of a
+ or — signed explanatory variable is not consistent with the specified sign, implying
that that regression subequation is already unsatisfactory. The Chow equal coeffi-
cients test and the Goldfeld-Quandt homoscedasticity test were not utilized because
X3 was selected in (42). Accordingly, we subtract from yss the number of civil ser-
vants hired for dealing with the work related to the US military forces in Okinawa
(t = 46) characterized by the dummy variable X3 in (42), denote the new data set
by Y., calculate {(Y,)%* — 1}/0.4, denote it by ¥}* and run Y = F(X,, X1, Xs).
Since the null hypotheses of these tests were maintained, the practically best regres-
sion subequation (42) was finally adopted for policy making with a 14.5 % total risk
of committing a type I error or with a 14.5 % total risk that (42) was actually not
best.

6.2 Normal Random Simulations

We regard the practically best regression subequation (42) as true and conduct 100
simulations by normal random numbers with A (0, 3.53683), which are assigned to
a disturbance term, under the following 5 simulation environments.

Simulation 1 by normal random numbers:

Suppose that we do not have the professional knowledge about variable classifi-
cation and the signs of regression coefficients. The functional form (37) was used

under the same statistical tests and criteria as in Step 1’ (with the normal ran-
dom number command). Then, 0 out of 100 simulations (0 %) revealed the best
subset { X, X1, X5, X13} of (42) in 9 minutes 627 milliseconds of CPU time. 819,100

possible subsets were examined.
Simulation 2 by normal random numbers:

Next, we assumed that we have the professional knowledge about variable classi-
fication but not about the signs of their regression coefficients. The functional form
(39) was used under the same statistical tests and criteria as in Step 2. Then,
2 out of 100 simulations (2 %) revealed the best subset {Xp, X1, X5, X13} in about 1
minute 24 seconds 972 milliseconds of CPU time. 102,400 meaningful subsets were

examined.
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Simulation 3 by normal random numbers:

Furthermore, we assumed that we have the professional knowledge about variable
classification and the signs of their regression coefficients. The functional form (39)
was used under the same statistical tests and criteria as in Step 3. Then, 31 out
of 100 simulations (31 %) revealed the best subset {Xp, X1, Xs, X13} in 43 seconds
452 milliseconds of CPU time. 102,400 meaningful subsets were examined.

Simulation 4 by normal random numbers:

We regard the practically best regression subequation (42) as.true and conduct
100 simulations by normal random numbers, which are assigned to a disturbance
term. Suppose that we do not have any professional knowledge about the signs of
regression coefficients. The following functional form was inputted

Yi= F(Xu, <3< X,X5,X13>3 >). (42)

Then, 45 out of 100 simulations (45 %) revealed the best subset {Xo, X1, X5, X13}
of (42) in 620 milliseconds of CPU time.

Simulation 5 by normal random numbers:

Next, the professional knowledge about the signs of their regression coefficients
was used. The following functional form was inputted

= F(XD, <3< +Xy,+X5,+X13 >3 >). ‘ (43)

Then, 64 out of 100 simulations (64 %) revealed the best subset {XO,XI,X5,X13}
in 460 milliseconds of CPU time.

We can say from the Steps 1 to 3 and the Simulations 1 to 5 that the correct
professional knowledge for variable classification and the sure sign (and magnitude)
conditions must be employed, if they are a priori known and available. An unac-
countable regression subequation is easily selected as best, otherwise.

7 Concluding Remarks

Various statistical tests and estimation methods have been proposed in the litera-
ture. Nonetheless, any method to systematically utilize them has not been proposed
to search for the best regression equation. It is impossible to define the perfect, op-
timal or impeccable regression equation, so long as the Neyman-Pearson approach is
taken. In actual and responsible applications of regression analysis, the professional
knowledge or information based on the science(s) related to the research in question
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is usually needed in addition to statistical and data-analytic knowledge. The author
has defined the practically best regression equation. Users of regression analysis
have been waiting for a method to concretely solve a variable selection problem for
the Box-Cox transformation. It is urgent to create such a method, because valuable
resources have been wasted in the world every day.

'To shed some light on the problem, the author concretely formulated the j-th OLS-
best subset problem for the Box-Cox transformation, proposed a knowledge-based
variable selection method to solve it and demonstrated how to solve it in three steps
and five normal random simulations. The proposed variable selection method is quite
resource-saving. The following cases are not here referred to: (i) lagged dependent
variables are used as possible explanatory variables, (ii) the Box-Cox transformation
is used for all or some possible explanatory variables and (iii) constraints are imposed
on the regression coefficients of some explanatory variables. However, it is not
difficult to handle them. The concepts and computational techniques proposed are
quite effective for reducing research costs and for teaching beginners in statistics,
including undergraduate students, up to advanced applied researchers, including
business strategists and policy makers, regression analysis and its extensions. The
author hopes that this will contribute to making statistics a more useful and pleasant
science than at present.
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Appendix

The data used for the demonstration in Section 6 are listed below. See the names

-of variables and the measuring units of the data in the same section!® . .

15 Since the administrative functions of the Tokyo metropolitan government differ from those
of the other 46 prefectural governments, the data of the Tokyo metropolitan government are

-not cited here. For instance, the land of the Diet of the Japanese government belongs to the

Tokyo metropolitan government so that there is a special and strong pipe line between the central
government and the Tokyo metropolitan government.
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No. Prefectures Y X1 Xg X3 X4 X5 X5 X7
1 Hokkaido 2651 5692 4356 1336 26752.2 83451.6 1768 0
2 Aomori 8563 1508 965 543 3096.4 9605.6 0 0
3 Iwate 811 1430 865 565 3661.6 152778 O ¢
4 Akita 894 2324 1513 811 30855 7284.6 957 0
5 Miyagi 781 1219 669 550 3142.8 116117 O 309
6 Yamagata 784 1253 896 357 2857.7 9323.3 0 0
7 Fukushima 0987 2140 1366 774 41277 137825 0 323
8 Niigata 973 2975 1675 1300 3913.9 6093.8 0 0
9 Ibaraki 709 1989 1302 687 28864 6408.3 0 435
10 Tochigi 651 2005 1234 771 22575 6363.2 0 0
11 Gunma 1491 6766 5817 949 2539.8 3797.2 0 0
12 Chiba 1268 5807 5053 753 3449.5 5155.9 846 0
13 Saitama 2327 8217 7832 385 14348 2413.6 4487 O
14 Kanagawa 832 2491 1606 885 4562.5 12581.8 O 484
15 Yamanashi 600 1128 788 340 1844.8 4246.5 0 322
16 Nagano 621 1174 807 367 1386.3 4184.8 1] 4]
17 Toyama 561 827 556 271 1056.5 4188.4 0 0
18 Ishikawa 633 881 410 471 9421 44654 0 0
19 Fukui 864 2194 1408 786 3285.8 135852 0 403
20 Shizuoka 982 2103 1346 757 2078.6 10598.2 O 436
21 Gifu 1141 3742 2912 830 27055 7779.0 0 1029
22 Aichi 1724 6801 5714 1088 2906.8 5150.5 2085 0
23 Shiga 869 1849 1251 598 1983.8 5773.7 0 0
24 Mie 674 1294 713 581 1290.0 40174 0 0
25 Kyoto 085 2555 2182 373 11295 46124 1390 O
26 Osaka 1615 8607 8376 232 1298.0 1892.1 2479 791
27 Nara 1441 5447 4591 835 2670.8 8386.6 1442 470
28 Wakayama 674 1441 1031 410 833.3  3691.1 0 0
29 Hyogo 842 1098 670 428 1088.6 4724.3 0 397
30 Tottori 467 619 370 249 8827  3507.0 0 0
31 Okayama 663 771 453 318 1295.0 = 6706.7 0 0
32 Shimane 859 1954 1429 624 2196.5 7111.1 0 608
33 Hiroshima 804 2873 2242 631 22145 84748 1093 O
34 Yamaguchi 671 1548 1201 347 1703.7 6110.1 0 0
35 Tokushima 564 837 431 406 1003.8 4144.4 0 0
36 Kagawa 583 1034 554 480 9814  1875.2 0 0
37 Ehime 754 1522 1084 438 1660.9 5675.2 0 0
38 Kochi 546 824 556 268 1161.1 7104.1 0 0
39 Fukuoka 1094 4920 3740 1180 2731.5 4967.6 2259 O
40 . Saga 491 886 458 427 13547  2439.0 0 0
41 Nagasaki 812 1547 968 580 16387  4090.7 0 430
42 - Qita 924 1868 1081 787 2665.9 7402.3 0 638
43 Kumamoto 713 1240 910 331 17704 6337.3 0 427
44 Miyazaki 612 1189 og00 389 1828.2 7733.7 0 0
45 Kagoshima 891 1795 1030 765 3295.6 9186.0 0 541
46 . Okinawa 922 1296 867 429 11123  2266.0 0 0




No. Prefectures - Xg _Xg Xlg Xll X12 X13
1 Hokkaido 3926 422 1121.1 1235 212 O
2 Aomori 646 -12 0 344 67 O
3 Iwate 406 34 0 356 59 0
4 Akita 1188 667 783.5 399 71 0
5 Miyagi 402 -132 0 312 69 O
6 Yamagata 496 -39 0 208 44 0
7 Fukushima 783 240 0 441 90 0
8 Niigata 902 814 0 495 85 0
9 Ibaraki 745 378 0 366 49 0
10 Tochigi 803 283 0 350 70 0O
11 Gunma 4899 3008 -0 830 92 0
12 Chiba 3844 1926 2721 748 80 O
13 Saitama 7284 2150 5783 970 37 O
14 Kanagawa 1097 128 0 523 112 O
15 Yamanashi 435 32 0 264 35 O
16 Nagano 561 123 0 1266 41 0
17 Toyama, 326 64 0 224 35 0
18 Ishikawsa, 288 183 0 221 64 0
19 Fukui 588 269 0 453 120 0
20 Shizucka, 824 252 0 387 99 0
21 Gifu 2023 474 0 688 74 0
22 Aichi 4693 1511 3264 977 88 0
23 Shiga 723 347 0 351 69 O
24 Mie 412 571 0 262 50 O
25 Kyoto 2098 133 6102 416 44 0
26 Osaka 8304 552 220.7 1184 44 0.
27 Nara 3967 431 546.9 807 91 0O
28 Wakayama 77T 494 0 259 47 0
29 Hyogo 455 68 0 2566 50 O
30 Tottori 175 3 0 190 39 O
31 Okayama, 96  -81 0 247 59 0
32 Shimane 736 174 0 373 78 0
33 Hiroshima 1730 221 7409 483 8 0
34 Yamaguchi 748 -139 0 324 56 O
35 Tokushima 248  -11, 0 227 50 O

36 Kagawa 347 42 0 224 43 0
37 Ehime 714 -53 0 311 70 0
38 Kochi 337 -68 0 246 53 0
39 Fukuoka 3199 1199 8205 707 97 0
40 Saga 234 44 0 224 49 .0
41 Nagasaki 700 -141 0 337 79 O
42 Oita 708 167 0 367 94 0
43 Kumamoto 536 22 - 0 292 58 O
44 Miyazaki 476 90 39 O 280 44 0
45 Kagoshima, 754 9 0 396 9 0
46 Okinawa 743 479 0 268 53 1
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