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Abstract

We propose the following mathematical model for optimal rescue problems concerning hostages. Suppose that & person is
taken as a hostage and that a decision has to be made from among three alternatives: storm for rescue, or wait up to the

next point in time for an opportumty to present itdelf, or take one action &f negotiation whick mlght gave the situation. It
is assumed that the action of negotla.tlon can only be taken once and it will'be effective up to the deadline. The objective
is to find an optimal decision rule £0 a8 to'maximniize the probability of a-hostage not being killed. Several properties of the
optimal decision rule are revealed. : . . e

1 Introduction L

Acts involving hostage taking occur for different. reasons, e.g., social inequality, poverty, religious brob—

lems, racial problems, political problems, and so on. The problem has become an urgent issue to be

tackled worldwide. Typlca.l examples in recent years include: B

1 A 17-year-old youth w1e1d1ng a knife, hua.cked a bus on the Sanyo Expressway in Japa.n and killed a
68-year-old hostage. After 15 hours, the police stormed the bus, the other hostages were rescued, and
the hijacker was arrested (May 4, 2000). '

2 An armed man took a Finance Ministry official hostage in the Tokyo Stock Exchange Buildin_g and
demanded a meeting with the Finance Minister. He surrendered to the police after a tense, five and
half hour standoff (January 12, 1998).

3 Fourteen guerrillas stormed the home of the Japanese ambassador to Peru and took about three
hundred people hostage, including diplomats and government officials attending a birthday party for
the emperor. All but one of the hostages were rescued while all the rebels were killed when special
forces stormed the building (December 17, 1996).

4 A man with a knife broke into a house and took a 2-year-old boy hostage in Japan. The police finally
rushed into the house, set the uninjured boy free, and arrested the criminal (December 1, 1995).

Although the information is not available for accurate statistics, it could be said that different scenarios
of the above continue to occur all over the world. The most important decision for the person in charge
of crisis settlement is the timing to enact rescue of the hostages. Wrestling with the problem, needless to
say, involves many factors, political, economical, sociological, psychological, and so on, and all must be
taken into acount, together with the safety of hostages, the demands of criminals, the repercussions of
success or failure in a rescue attempt, and so on. The purpose of this paper is to propose a mathematical
model of an optimal hostage rescue problem by using the concept of a sequential stochastic decision’
processes and examine properties of an optimal decision rule. The author has proposed and examined
a model based on the problem in [1] where orﬂy two alternatives, storming for rescue or waiting up to
the next point in time for an opportunity to present itsilf, were available. However, as is seen in many
hostage cases, negotiators take varied actions to condescend to the kidnapper(s), for example, presuading
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~ point in time, then it is effective up to the deadline.

2 Model 2

him/her to surrender by subjecting him/her to his/her mother’s voice, or submitting to his/her demands
to be airlifted to another country, or providing a means of escape, paying the ransom, releasing his /her
comrades in prison, and so on. Therefore, it is necessary to put such an action of negotiation in our rescue
decision, that is, we should make a rescue decision from among three alternatives: storm for rescue, or
wait up to the next point in time for an opportunity to present itsilf, or take one action of negotiation
which hopefully will save the situation. The author has already proposed and examined a basic model
in [2] where such an action of negotiation can only be taken once and will be effective only at that time,
i.e., the effectiveness vanishes thereafter. In this new paper we propose another basic model where such
an action of negotiation can only be taken once and will be effective up to the deadline. Unfortunately,
concerning this problem, with the exception of the author’s two papers [1] (2], we have been unable to
find any reference material based on any mathematical approach. Accordingly, we cannot list references

G be directly cited except for the two above.

2 Model

Consider the following sequential stochastic.decision process with a finite planning horizon. Here, for
convenience, let points in time be numbered backward from the final point in time of the planning
horizon, time 0, as 0, 1, ---, and so on. Let the time interval between two successive points, say times ¢
and ¢ — 1, be called the period t. Here, assume that time 0 is the deadline at which storming for rescue is
considered to be the only course of action, prompted by some reason, say, the hostage’s health condition,
the degree of criminal desperation, and so on.

Suppose one person is taken hostage at any given point in time £, and a decision has to be make from
among three alternatives: storm for rescue, or wait up to the next point in time for an opportunity to
present itsilf, or take one action of negotiation which might save the situation. Here, let us assume that
the action of negotiation can only be taken once and that if the action of negotiation is taken at a certain

For simplicity, by S, W, and A let us denote the decisions of, respectively, “storm for rescue”, “wait up
to the next point in time for an opportunity to present itself”, and “take one action of negotiation which
might save the situation”. ‘ .

Provided that the action of negotiation has not yet been taken, let p (0 < p < 1) be the probability of
the hostage being killed if the decision S is made, let gand r (0 <g<land0<r < 1) be the probabilities
of the hostage being, respectively, killed and released up to the next point in time if the decision W is
made; accordingly 1 — g —r (0 < g +r < 1) is the probability of the hostage being neither killed nor set
free. Now, noting the fact that taking the action of negotiation will influence the probabilities p, g and
r to a greater or lesser degree, in this model let us suppose that the p, ¢ and r thus far change into ¢/, ¢’
and v, respectively, while the action of negotiation is taken at é, certain point in time, and that p/, ¢’ and
r are effective following thereafter. Consequently, provided that the action of negotiation has already
been taken, p' (0 < p' < 1) is the probability of the hostage being killed if the decision S is made, ¢', ',
andl—¢ —r (0<¢ <1,0< <1,and 0 < ¢ +r' < 1) are the probabilities of the hostage being,
respectively, killed, released, and neither killed nor released up to the next point in time if the decision
W is made. Now, the cases of p=p' =g¢=¢ =0, p=p =¢=¢ =r=r' =l,andg+r=¢ +7r' =1
make the problem trivial. Accordingly, all are excluded in the definition ‘of the model.

The objective here is to maximize the probability of the hostage not being killed.
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3 Optimal Equation

Provided that the action of negotiation has not yet (has already) been taken up to time ¢, let v, {v})
be the maxmium probability of the hostage not being killed, and let S=1-p (8" =1-1p'), be the
probability of the hostage not being killed if the decision S is made at any time. Then, we have

v, = max{S, W, As}, t2>1, vo=35, (3.1)

v, = max{S', W{}, t>1, =5 (3.2)
where, provided that the action of negotiation has not yet been taken up to time ¢, W, and A, are the
probabilities of the hostage not being killed from times £ to 0, respectively, if the decision W is made and if
the decision A is made, and provided that the action negotiation has already been taken up to time £, Wi
is the probability of the hostage not being killed from times ¢ to 0 if the decision W is made. Accordingly,
we can express the W;, A:, and W] for t > 1 as follows.

CWe=r+(1—g—1Ive-1, (3.3)
Ap=r'+(1-d -1y, (3.4)
W= +(1—q -, (3.5)

where the implications of the A, and Wy are different although both have the same expressions. The
above three expressions imply the following:

Note that the expression Eq (3.3) should be rewritten W; = ¢ x 0+ x 14 (1 — ¢ — r)vy—1. This can
be interpreted as follows. Suppose the action of negotiation has not yet been taken up to time ¢ and the
decision W is made at time £. Then, if the hostage is killed with the probability g, the probability of the
hostage not being killed is equal to g x 0, if the hostage is released with the probability r, the probability
of the hostage not being killed is equal to  x 1, and if the hostage is neither killed nor released with the
probability 1 — g — r, the probability of the hostage not being killed over the period from times ¢ — 1 to

. 0is equal to (1 — ¢ — r)ve—1. Further, Eq. (3.4) and Eq. (3.5) can be also similarly interpreted.

For convenience in later discussions, let us define

A=l—g-r, XN=1l-¢-r, 0<AN<] (3.6)
§= —(r' = 1) /(N — ), AEN, (3.7)
U=r+AS, U=r+XN5, | (3.8)
a=U/U", (3.9)
Z, = Ay — W, t>1. (3.10)
Then, from Egs. (3.3) to (3.5) we clearly have
Wy=r+ Avi_1, t>2, W= U, (3.11)
A=W =r+XNv_,, t22 A=W=U. (3.12)

4 Preliminaries

The two lemmas below will be used in the subsequent sections,

Lemma 4.1 v, v}, W, A;, ond W] are all nondecreasing in t, hence converage to finite numbers v,

v, W, A, and W', respectively, as t — oo.
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Proof. From Egs.(3.1) and (3.2) we have v; > § = vp and v} 2 &' = ;. Suppose -1 > Vi-2
and v,_; > vj_y. Then Wi > Wi, 4¢ 2 Ay, and Wi 2 Wi, from Egs. (3.11) and (3.12), hence
v = max{S, Wy, A} > max{S,Wi_1, 41} = v;-1 and v} = max{5', Wi} > max{S', W{_,} = ..
Accordingly, the monotonicities of v; and v; hold by induction. Further, the monotonicities of We, As,
and W also hold from Egs. (3.11) and (3.12). Now, noting the fact that v, v, W, A¢, and W{ are all
bounded because they are all probabilities, it follows that their limits as t ~ oo exist. Il

Lemma 4.2

(2) If Ay =1+ NApy fort 22, then 4 =7'(1- NN/ = XN+ XTI for t > 2.
(b) If Wy =1+ AW fort > 2, then Wy =r(1-X"1)/(1-A) + el fort > 2.

(©) IfWy=r+A Wiy fort >3 and vy = 4y, then Wy =7(1— N1/ = A) + A0 fort > 2.

Proof.
(a) Let A; = r'+ X Ay—y for t > 2. Then, noting A, =U', wehave Ay =r'(1+ X +-- D U IS Lt /s
(1N - X) + p Ut /LN

.(b) Tt is from Wi = U and @ = U/U’ that the assertion holds in the same way as (a).

(¢) Let v1 = As. Then Wy = r + AU from Egs. (3.11) and Egq. (3.12). Therefore, in the same way as (a)

we can prove that the assertion is true. B

5 Analysis
In this section, we examine the properties of the optimal decision rule for the problem, classifying all the
possible combinations of the parameters, p, ¢, 7, ¢, ¢ and 7' into tﬁe two cases below:
Case A: 8' 2 U, CaseB: ' <U'.
Further, the each of the above two cases is classified into the following three cases.

Case l: §>Uand §>U", Case2: U' > Sand U' 2 U, Case3: U>SandU >U".

5.1 Case A: S'>U

Lemma 5.1 Assume S' > U'. Thenv, =5 and Ay =U" fort> 1.

Proof. Assume S’ > U, From Egs. (3.2) and (3.12) we have v} = max{§",U'} = §'. Suppose t;_, = 5".
Then W} = r' + X'S’ = U’ from Eqs. (3.12) and (3.8), hence v; = max{S", W{} = max{S",U'} = §'.
Accordingly v, = & for t > 1 by induction. Further, from Eqgs. (3.12) and (3.8) weget A, =7+ XS =U"
fort>1. 1

5,11 Casel: S>Uand §>U'

Lemma 5.2 Assume S > U, S>U,and S>U'. Thenvy =5 fort > 1.

Proof. Assume §' > U', § > U, and § > U’. From Egs.(3.1), (3.11), and (3.12} we have v; =
max{S,U,U'} = S. Suppose v;—; = S. Then Wy =r+ A5 =U from Eqgs. (3.11) and (3.8), hence, noting
A; = U’ in Lemma 5.1, we get v, = max{S, Wy, 4;} = max{5, U, U'} = 8. Accordingly v, = Sfort 21
by induction. X
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512 Case2: '>Sand U' 22U
Lemma 5.8 Assume S' > U, U' 285, endU' 2 U.

(a) v = Ay and vy = max{Ws, A:} fort 2 1.
(b) U’ > r/(1— 1), then vy = A¢ fort 2 2.
(c) FU' =7/(1—2X), thenvy = Ay =W; fort 2 2.
(d) FU <rf(1-A), fhen vy = W; fort > 2.

Proof. Assume S’ >U,U' > S,and U' 2 U.

(a) From Egs.(3.1), (3.11), and (3.12) we have v, = max{8,U, U’} = U' = A;. In addition, noting
A, = U in Lemma 5.1, we get A, = U’ > 8 for t > 1, hence v; = max{S, Wy, A;} = max{Wi, A} for
t> 1.

(b) Let U' > r/(1—2X). Then Ag — Wy = Ao —r — Ay = U'—r— AU = (l—A)U‘-—r > 0 form
Eq. (3 11), v1 = A1, and Lemma 5.1, hence v; = max{Wg,Az} = A;. Suppose v—; = A;—3. Then
W, = r+ MA;_; = r+ AU’ due to Eq.(3.11) and Lemma 5.1. From this we get A, — Wiy =U' —r =AU’ =
(1 -2’ —r >0, hence v, = max{Ws, A;} = A;. Accordingly v = A, for £ > 2 by induction.

(c) Let U' = r/(1—A). Then Az — Wz = (1= XU’ —r =0, hence v3 = 4z = Wa. Suppose Vg1 =
Agy =W,_;. Then Wy = r+ AU, hence 4, —W,; = (1-X)U" —r =0, hence vy = Ay = W;. Accordingly
vy = Ay = W, for t > 2 by induction.

(d) Let U' < r/(1 —X). Then Ay — Wy = (1= A\U' —r < 0, hence v; = Wa. Suppose v4—1 = Wi-1. .
Then A;—; < Wi_; due to (2) and W; = r + AW;—, from Eq. (3.11). From these we get A — Wy =
Ay —1r—AWig < Ay —r— M1 = (1 - XU =7 <0, hence vy = Wh. Accordingly v, = Wt for ¢ > 2 by

induction. 1

518 Case3: U>Sand U >U"

Lemma 5.4 Agssume S'>U, U2 8,0ndU>U". Then ve=W; fort> 1.

Proof, Assume §&' > U, U > §, and U > U'. Since W; is nondecreasing in ¢ due to Lemma 4.1,

wehave W, > Wy =U > S from Eq.(3.11) and W 2 U > U' = A; due to Lemma 5.1. Accordingly
= max{S, W, A} =W, fort > 1. 1 :

5.2 Case B: &' < U

Lemma 5.5 Assume S' <U'.

() v, =W{ fort > 1.

(b) Av=1"+XNAtq fort > 2.

() A=r/(L-X).

(d) Ay is strictly increasing in t.

Proof. Assume §' <U'.

(a) Since W] is nondecreasing in ¢ due to Lemma 4.1, we have W} 2 W = U'> 8 fort >1 from
Eq.(3.12). Accordingly v} = max{§", W} = W{ fort > 1.

(b) From (a) and Eq. (3.12) we have v, = Wy = Ay for £ 2 1, hence A; =7 + XAy for ¢ > 2.’
{c) Due to (b) and Lemma 4.1 we have A = r' + X'A, hence A=7rf(1-X)
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(d) From Lemma 4.1 and Eq. (3.12) we have U" = A; < 4; < 4, ie, 41 < A. Suppose A; = A. Then
A, = U for t > 1, hence * + \'v,_, = U" from Eq. (3.12), and further we get v, = 5’ from Eq. (3.8).
Accordingly §' > Wi_, > U’ from Eq.(3.2), which contradicts the assumption S’ < U'. Consequently,
it must be 4; < A. Hence U’ < r/(1—X) due to U’ = 4; and (c). Now, from this and {b) we have
Ay — Ay =7 — (L= X)A; =+ — (1= X)U" > 0. Suppose A¢ — Asy =71' — (1= X)At—1 > 0. Then
A1 —Ap =7 = (L= X)Ag =1 — 1= X){r' + NAe) =X (r' — (1 = X)A¢1) > 0. Accordingly, the
assertion holds by induction. 1

For convenience in the later discussions, let ¢, and ¢, be such that, respectively,
to = {t| A1 <S< A, t, 22, (5.1)
ty= {t| A1 <8< A} 22 (5.2)
if they exist. It is clear from Lemma 5.5(d) that each of £, and ¢, is unique if they exist. Further, let
t, =min{t | 2,1 <0< %}, t, 22, (5.3)

which may be infinite.
Now, the lemma below will be used in the subsequent subsections.

Lemma 5.6 Let S' < U', and for any given 1 < t' < t" < co let v, = max{Wi, A} fort! <t <7 (1 <
t). Then '
(a) oy = Ay and (X =N A+ 7' —r 20 fort' <t < " (¢ <t), thenwvy = Ay for t! St <" (' < B).
(b) Ifvy =Wy and (N =N A +1 —r <0 fort' <t < t (¢ <t), thenv, =W, fort! <t <t (' <1).
() If Zv <0 and (N —XNA +7r—-r <0 fort! <t < < t), then Z, < 0 and v, = Wy for
gLt (<)
(d) Suppose Zy < 0 and ¥, € [1,¥'). .
117, € [t ([¢,00)) and (X = Ny +r' =r 20 fort, <t <i"(t, < 1), then v, = W, for
t<t<t, andv,= A fort, St <t (E, <1). -

o Ift, & [t',") ([t',00)). Thenv, =W fort <t <# (¥ <¥).

Proof. Let ' < U'. Then A; =r'+ N Ag—; for t > 2 due to Lemma 5.5(b). Further, consider ¢ and "
such that 1 < # < t¥ < o0, let v, = max{W;, 4,} for t' <t <t (¥ < 1), '

(a) Let vy = Ap. Suppose vy = A¢—y for t <t. Then Wy =r+ )\At_l for ¢ < ¢ from Eq.(3.11).
Therefore Ay — Wy = (¥ = AYAg—y + 7 —r for t' < t. Now, since (A’ = A)Ag +r' —r 20 fort' <t <t”
(¢ < t) by the assumption, we immediately get (A — A\ Ay +7' =720 for ' <t <t (t' <t). From
this we have A, > W, for ¢! < & <t (¢ < 1), hénce, noting vy = Ay = max{Wy, Ay} > Wy, we have
A > Wy fort' € trs # (' <1). Accordingly v; = max{W;, 4} = Ay for ' £¢ < (<)

(b) Let vy = Wy. Suppose v—y = Wiy for # <t Then A, < Wiy for t' <t and Wy = r + AWi1
for ' < t from Eq. (3.11). Therefore '

A=Wy =7+ XAy — r— M < + XAy -7 - Al
= (N =MNAp1+7r -r<0, t'<t<t"{' <H)

due to the assumption; that is, A, < W; for ¢ < ¢ < t" (¢’ < t), hence, noting vy = Wy 2 Ay, we have
A, < W, fort' <t <i" (¢’ <t). Accordingly v; =W for ¢’ <t <t (¢ < t). -
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(c) Let Zy < 0. ‘Then Ay < Wy due to Eq.(3.10). Suppose Z;—; < 0 for t' < ¢. Then A;—1 < Wiy,
hence vi—1 = Wi_1 for #' < t. Further, from Eq. (3.11) we get Wiy = r 4+ AWe_q, therefore Z; =
A=W, < (M = NAp1 +r' =1 <0fort' <t <t (' <t) due to the assuption. Accordingly, noting
Zy <0, we have % < 0 for ¢ < ¢ < £ (¢ <), ie., A; <W,, hence vy = W, for ¢ <t <t (¢ < 1).

(d) Let Z, <0 and t; &[L,t).

(d1) Assume that £, € [',¢") ([t',c0) ). Then, from the definition of ¢, and the assumption Zy < 0 we
have Z; < 0 for t! <t < t,,le, At < Wy for t' <& <¢;, hence vy = W fort' <t <t,. Now, Z; >0
by the assumption, i.e., A, > W;, , hence v, = A, , noting the assumption (¥ =NA;+7 —r 2 0for
t, <t <t" (¢, <t), we immediately get v, = Ag for i, SE< t" (£, <t) due to (a).

(d2) Assume that ¢, & [t',t") ([#,00) ). Then, it follows from the definition of t, and Zy < 0that Z; <0
for # <t <t (¢ <t). Hence A, < Wy for ¢! <t <t/ (¢ <t),ie vy =Wy fort! <t <t (<) ¥

5.2.1 Casel: S>U and S>U
Lemma 5.7 Assume S <U', §>U,and > U,
(a) 1 =S. |
(b) Let § > A, thenv, =8 fort > 1.
(¢) Let U’ < S < A. '
1 There must exist a unigue t5 > 2.
2u=5forl <t <.
3 vy, =4, andv = max{W;, Az} fort > t;.
4 Suppose X —X > 0. Then v, = A fort 2 ¢;.
5 Suppose X' — A < 0.
i IfU < S<ALS, thenvy = A fort 2 8.
i FU' < 8 <8< A, there must exist a unigue &; > i, hence v; = A fort, <t <t and
v =Wy fort>1t,. ‘ ' |
it If§ < S <A, thenv,=W; fort >t; whether§ >U" or 6 <U".

Proof. Assume §' <U', $>U, ‘and S > U".

(a) From Eqs. (3.1), (3. 11), and (3.12) we have v; = max{S,U,U'} = 5.

(b) Let S > A. Then A; < S for t > 1 due to Lemma 4.1, hence v; = max{S, Wy, A;} = max{8, W;}.
Now, the assertion is ture for ¢ = 1 due to (a). Suppose v;_3 = S. Then Wy =r+AS =U < § from
Eas. (3.11) and (3.8), hence v; = S. Accordingly v; = 5 for ¢ > 1 by induction.

(c)Let U' < S < A ThenA1 < § < A from Eq. (3.12).

(c1) Since A; is strictly mcreasmg in ¢ due to Lemma 5.5(d), there must exist a unique ¢, > 2 by the
definition of ¢;, hence A; < § for1<t<t;and A, > Sfort>i;.

" (c2) In almost the same way as (b), we obtain v, = § for 1 < <, due to Ai< Sforl<t<t,.

(c3) From (¢2) we have v; 1 = S, hence W, = r + A8 = U < S8 from Egs.(3.11) and (3.8). Noting
the fact that A; > S for ¢ > 1;, we get v, = max{5, W*s’Ats} =A;, and v = max{W,, A;} for t > 1,
from Eq. (3.1).

(c4) Let X' — X > 0.. Since A, 1 < § < Ay, , we have 4; 1 < § < A, < Atfort>t due to
Lemma 4.1, hence noting Eq. (3.8) and Lemma 5.5(b}), we get
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N =NA+r =1 2 (N =NS+r —r=r+X§-U
Sra XAy —U=A4 -U25-U>0, t2ts.

Accordingly, noting v, = A, from Lemma 5.6(a) we have v, = A; for t > ¢, where t' = t,.
(c5) Let X —A <O,
(cbi) Let U < § < A<§. Then 4, <dfort 21 due to Lemma 4.1. Thus (N — A)ds+r' —7 20
for ¢ > 1 from Eq.(3.7). Accordingly, noting v, = A, from Lemma 5.6(a) we have vy = A for t > &,
where t' = ¢.
(c5ii) Let U' < § <6 < A. Then 4; < § < 4 < A from Eq. (3.12). Since A, is strictly increasing in ¢
due to Lemma 5.5(d), there must exist a unique £, > 2 by the definition of ¢, further, since d > §, we
have t, > {, hence A; < é for t; <t <t; and Ay > dfort 2’t,. Now, from Eq. (3.7) we have

N =N4i+7 —-r>0 1 St<1, (5.4)

(M =NA+r —r<0, t214;. (5.5)
Accordingly, noting v;, = A¢, and Eq. (5.4), from Lemma 5.6(2) we get v, = A; for t; <& < ¢, where
t' =t_ and t' = t,. Thus v;, = As, . From this we have Wi, +1 =7+ A4, from Eq. (8.11), further noting
Lemma, 5.5(b) and Eq. (5.5) we get Ay 41— Wi 41 = (X —A)A; +1' —r <0, Le, As,+1 < Wi 41, hence
ve,+1 = max{Ws 11, 4s, 41} = Wi Accordingly, from Lerama 5.6(b) and Eq. (5.5) we have v, = W,
for t > t,41 wheret' =t;, +1,ie, 0 =Wifort > ¢,.
(chiii) Let & < § < A. Then, noting the fact that 4, 2 S for t > t, according to the proof of (cl), we
have A; > & for £ > t, whether § > U’ or § < U", hence (N = A)A,+7' —7 L0 for t > t, from Eq.(3.7).
Since v, = A, from Lemma 5.5(b) and Eq. (3.11) we get A 41— Wi 41 = (N — Ny, +1' —£ <0,
ie, Ai g1 £ Wi b1, hence v:_4+1 = Wi_41. Accordingly, it follows from Lemma 5.6(b) that v, = W, for
t>t, +1wheret' =t; +1,ie,up=Wifort>t;. W

522 Case2: U'>Sand U >U
Lemma 5.8 Assume S <U, U >8S,andU' > U.
(a) i =41, Z1 20, and v = max{W;, A} fort > 1.
(b) Let (X =AU +r' —r20.
1 Suppose N — A >0. Then v, = A fort 2 1.
2 Suppose N — A < 0.
il
ii Ifd > A, theny _:Ag fort>1,
iii IfU’ <8 < A, there must exist a unique t, 2> 2, hence v; = A foril <t<t, and v, =Wy for
t>1.
iv f6=U", thenvy= Ay =W and v, =W, fort 2 3.
(c) Let (M = NU' +7' —r <0, '
1w =W, and Z2 <0.
2 Suppose X' —A<0. Thenv, =W, fort > 2.
3 Suppose N —A > 0.
id>U.
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ii If6> A, thenv, =W, fort > 2.
i IfU" <6< A, thenv, =W, for 2<t <t, and v = A fort 2 1, where t, may be infinite.

Proof. Assume &' <U',U' > S,and U’ > U.
(a) Noting Eqgs. (3.11) and (3.12), we have v; = max{S,U,U'} = U’ = A; due to Eq. (3.1), and Z, =
U' — U > 0 due to Eq.(3.10). Further, from Lemma 4.1 we get Ay > Ay =U' > Sfort > 1, hence
vy = max{W,, A;} for ¢t > 1 from Eq. (3.1).
(b) Let (N =AU +7r' —r > 0.
(b1) Let X' — A > 0. From Lemma 4.1 and Eg. (3.12) we have (X' - NA+r —r 2N =NA +r—r=
(N = AU’ + 7' —r >0 for t > 1. Accordingly, noting vy = Ay, it is from Lemma 5.6(a) that v; = A, for
t > 1 wheret' = 1.
(b2) Let A — A <0.
(b2i) From (X' — AU’ +r' —r > 0 and Eq. (3.7) we get U’ < —( =r)/(N = A) =4
(b2ii) Let § > A. Then A, < é for ¢ > 1 due to Lemma 4.1. From Eq. (3.7) we obtain (X' —=X)A¢+r'—r 20
for t > 1. Accordingly, noting v; = A;, from Lemma 5.6(a) we have v; = A, for t > 1 where t' = 1.
(b2iii) Let U’ < § < A. Then A; < ¢ < A from Eq. (3.12). Since Ay is strictly increasing in t due to
Lemma 5.5(d), there must exist a unique ¢, > 2 by the definition of t,, hence, A; < dfor 1 <t <% and
Ag > 6 for t > t,. From these and Eq.(3.7) we have
(N =XNAg+r' —-r>0, 1<t (5.6)
N =XNAg+r' -r<0, t2t,. (5.7)
Accordingly, noting v; = A; and Eq. (5.6), it is from Lemma 5.6(a) that v, = Ay for 1 <t < ¢,
where t' = 1 and " = t,. Thus v;, = A;. From this, Lemma 5.5(b), Eqgs. (3.11), and (5.7) we have
At4r — Wy = (N = A4, +r' —7 <0, hence vy, 1 = ma.x{Wts.i-l,Ats.]-l} = Wi, +1: Accordingly,
from Lemma 5.6(b) and Eq. (5.7) we obtain v; = W for ¢ > £, +1 where t' = t, + 1, i.e., v, = W, for
$ »b
(b2iv) Let § = U'. Then § = Ay, hence (¥ — \)A; +7' —1 = 0 from Eq.(3.7). Since v; = A;, we get
Ay — Wy = (X — N)A4; + 7 —r = 0 due to Lemma 5.5(b) and Eq. (3.11), hence v, = Az = W,. Further,
from Lemma 5.5(d) we have A, > A; = U' = § for t > 2, hence (' = A)Ag +r' -7 < 0 for ¢ > 2 from
Eq. (3.7). Accordingly, it follows that v, =W, for ¢ > 2 due to Lemma 5.6(b) where t' = 2. Thus v; = W
fort > 3.
(c) Let (A =AU +r' —r <0.
(c1) Since v; = A; = U', we have Az —Wy= (N =AU’ +r' —r <0 due to Lemma 5.5(b) and Eq. (3.11),
i.e., Ay < W, hence va = max{W2, A2} =Wz and Z; = Ay — W3 <0
(c2) Let X' = A < 0. From Lemma 4.1 and Eq.(3.12) we get (N =XNA+r—r< (XN - ANA +r' =1 =
(M =AU’ +r' —r <0fort > 1. Accordingly, noting vz = W, from Lemma 5.6(b) we have v, = W, for
t > 2 where t' = 2.
(c3) Suppose A’ — A > 0.
(c3i) From (X' = AU’ + 7' —r < 0 and Eq. (3.7) we get U’ < —( =r)/(\ = X)) =4.
(c3ii) Let § > A. Then A, < & for ¢t > 1 due to Lemma 4.1. Then (X' = A)A¢ +1' =1 < 0 for ¢ > 1 form
Eq. (3.7). Accordingly, noting vz = W, from Lemma 5.6(b) we have v, = W; for ¢t > 2 where ' = 2.
(c3iii) Let U’ < 6§ < A. Then A; < § <A due to Eq. (3.12). Since A; is strictly increasing in ¢ due to
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Lemma 5.5(d), there must exist a unique £, > 2 by the definition of £, hence A; < § for 1 <t <4, and

Ay > dfort > ¢, _

1 Let € [2,t,). From the fact that A, < & for 2 <t < £, we have (X —)\)At' +r—r<0for2<t <t
due to Eq.(3.7). Accordingly, notint Z; < 0, from Lemma 5.6(c) we have Z; < 0 and v, = W} for
2 <t <t, where t' = 2 and t" = t,, implying that ¢{; > ¢, if it exists.

2 Let ¢ € [t;,00). Here, note Z; < 0. Let t, € [t;,00). From the fact that A; > 6 for ¢t > ¢; we
get A, > 6 for t > t,, hence (N = A)A;+r' —r > 0 for ¢t > ¢, from Eq. (3.7). Accordingly, from
Lemma 5.6(d1) we have v; = W; for t, <t <t, and v, = A, for t > 't, where t' = ¢,. Let t; € [t;, 00).
Then, from Lemma 5.6(d2) we have v, = W; for ¢ > t, where ¢ = ¢,.

According, if ¢, € [2,00), then v, = W for 2 < t < t, and vy = A; for t > ¢;, and if £, & [2,00), then

v, = W, for ¢ > 2. Consequently, v, = Wy for 2 < ¢ < t; and v = A, for t > ¢, where t, may be

infinite. N

523 Case3: U>Sand U>U'
Lemma 5.9 Assume S <U', U>5,andU >U".

(a) v = Wh, 2 <0, vy = max{Ws, A;} fort > 1 end a > 1.
(b) Let (N —a)U' +¢r' —7 2 0.
1 vg = As.
2 Suppose X — A > 0. Then vy = A, fort 2> 2.
3 Suppose N — A < (.
i6>U.
ii If6> A, thenvy = A fort 2 2.
fii If U’ < 6 < A, there must exist a unique t; > 2, hence vy = A: for 2<1 < ¢, and v, = W; for
t>t.
(c) Let (X —aNU' ++ =7 < 0.
1 Suppose X' — A > 0.
iIfé6> A, thenvy, =W; fort > 1.
i If6< A, thenv, =W, for 1 <t <t, andv, = A, fort > t, wheret, may be infinite, whether

S>U ord<U.
. 2 Suppose X' — A < 0.
i If6> A, thenv, =W, for L <t <t, and vy = A fort > ¢, where i, may be infinite.
" ii If U' < 8 < A, there must evist o unique t; 2> 2, hence v, = Wy for LSt <i;, v = Ay for

t, <t<t,, and vy = Wy fort > t, wheret, may be infinite.
iii Fo<U", thenvy =W, fort > 1.

Proof. Assume §' <U', U > S,and U > U".

(a) Noting Egs. (3.11) and (3.12), we get v1 = max{$,U,U’} =U = W1 due to Eq. (3.1),and Z; = U’ -
U < 0 due to Eq. (3.10). From Lemma 4.1 we get W, > Wy =U > S for £ > 1, hence v; = max{W;, At}
for t > 1 from Eq. (3.1). Further, using the assumption U > U’ and Eq. (3.9), we have a > 1.

(b) Let (M —aX)U’ +7r' —r 2 0.
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(b1) Since v; = Wi = U, we have Ag—Wo =71 + XU =17 =AU = (X —aAU' +7r' —r 2 0 from
Egs. (3.11), (3.12), and (3.9), i.e., A2 > W3, hence v; = max{ W2, A2} = Aa.
(b2) Let X' — X > 0. Since a > 1, we have A'— X > N —a). Thus (N =A)A¢+r' —r > (N =A)A1+r'—r =
N =MNU'+7—-r>N-a)U' +7' -r 20 for t > 1 due to Lemma 4.1. Accordingly, noting vz = As,
from Lemma 5.6(a) we obtain v, = A for ¢ > 2 where = 2.
(b3) Let A — A < 0.
(b3i) Since X' — XA > X — a}, we get (X' — AN+ =1 >N —a)U' +1r' =1 20 Accordingly,
U < —(r' —r)/(N = \) = 6 from Eq. (3.7).
(b3ii) Let 6 > A. Then 4; <dfort >1 from Lemma 4.1. Hence (\' — A)A; + ' —r > 0for ¢ > 1 from
Eq. (3.7). Accordingly, noting v; = Aj, from Lemma 5.6(a) we have v, = A; for t > 2 where t'=2.
(b3iii) Let U’' < 6 < A. Then 4; < ¢ < A from Eq.(3.12). Since A is strictly increasing in ¢ due to
Lemma 5.5(d), there must exist a unique t; > 2 by the definition of t,, hence Ay < & for 1 <t <t and
Ay > 6 for t > t,. From these and Eq.(3.7) we obtain
(N=WNA +7=r>0, 1<t<d, (5.8)
N=NA4s +7' =r <0, t2t. (5.9)
Accordingly, noting v; = Ap and Eq.(5.8), it is from Lemma 5.6(a) that vy = A4; for 2 < ¢t < ¢
where t = 2 and ¢ = t,. Thus v, = A¢. From this, Lemma 5.5(b), Egs. (3.11), (5.9) we have
Wi, 1~ Ay, = (X' = XA, + 7' —r <0, hence v 41 = Wi, +1. Accordingly, from Lemma 5.6(b) we
have v, = W, for t > t, + 1 where t' =t,41,1.e, v = Wi for t > t;.
(c) Let (N —aX)U' +7' —r <0.
(c1) Let ¥ —A > 0.
(cli) Let 6 > A. Then 4, < for ¢ > 1 due to Lemma 4.1. From Eq. (3.7) we have (X' = A)A¢+7'—r <0
for t > 1. Accordingly, noting v; = Wi, from Lemma 5.6(b) we have v, = W; for ¢ > 1 where ¥=1,
(clii) Let 6 < A.
1Let U' < 6§ < A. Then A; < 6 < A from Eq.(3.12). Since 4, is strictly increasing in ¢ due to
Lemma 5.5(d), there must exist a unique ¢; > 2 by the the definition of t,, hence Ay < dfor1 <t <t
and 4; > § for t > t;.

i, Let t € [1,t,). From Eq. (3.7) and the fact that A, <§forl<t<t, weget (N —A)A+r' -7 <0 .
for 1 < t < t,. Accordingly, noting Z; <0, from Lemma 5.6(c) we have Z; < 0 and vy = Wi for
1<t<t, where t' = 1 and t" =t,, implying that ¢, > ¢, if it exists.

ii. Let t € [t;,00). Here, note Z; < 0. Lett; € [t,,00). From the fact that A; > & for ¢ > ¢, we
get Ay > fort >t,, hence (V" — N4+ —r20 for t > t, from Eq.(3.7). Accordingly, from
Lemma 5.6(d1) we obtain v, = W, for t; <t <t, and v, = A; for t > t, where t' = t,. Let
t, & [t;»00). Then, from Lemma 5.6(d2) we have v; = W, for t > t, where t' =¢,.

Accordingly, if t, € [1,00), thenv, = Wy for 1 <t <t, and v, = A; for t > t,, and if t, & [1,00),
then v, = Wy for t > 1.

2 Let § < U'. From Lemma 4.1 and Eq. (3.12) we have A; > A1 = U’ > 6 for t > 1. Here, note 21 < 0.
Let ¢, € [1,00). Then A; > & for t > ¢,, hence (X' — NAg+r —r > 0for t > ¢, from Eq. (3.7
Accordingly, from Lemma 5.6(d1) we get v; = Wy for 1 <t <%, and v, = A, for t > t, where t' = 1.
Let t, & [1,00). Then, from Lemma 5.6(d2) we obtain v; = Wy for t > 1 where t' = 1.
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Consequently, whether § > U’ or § < U', we get v, = Wy for 1 <t <1, and v; = Ay for t > t, where t,

may be infinite.

(c2) Let N’ = A <0.

(c2i) Let § > A. Then A, < 4 for ¢ > 1 due to Lemma 4.1. Here note Z; < 0. Let t, € [1,00). Then

A, < 6fort >1,, hence (N —A)Ag+r' —r > 0fort > ¢, from Eq. (3.7). Accordingly, from Lemma 5.6(d1

) we have v, = Wy for 1 <t < t, andv, = A fort > t, wheret' = 1. Let t, ¢ [1,00). Then, from

Lemma 5.6(d2) we have v, = W, for ¢ > 1 where ¢ = 1. Consequently, v, = Wy for 1 <t < t, and

v, = A for t > t, where t, may be infinite.

(c2ii) Let U" < § < A. Then A; < d < A from Eq. (3.12). Since A is strictly increasing in ¢ due to

Lemma 5.5(d), there must exist a unique t, > 2 by the definition of ¢, hence A; < 6 for 1 <t <t; and

Ay >dfort > ;.

1. Let t € [1,¢,). Here, note Z; < 0. Let t, € [1,t;). From the fact that 4; < 6 for 1 <t < t; we have
A, < fort, <t<t,, hence (N —NA;+r' —r>0fort, <t <, from Eq. (3.7). Accordingly, from
Lemma 5.6(d1) we get v; = W, for 1 <t < t, and v; = A fort, <t<t, wheret' =1andt" =1,
Let ¢, ¢ [1,t,). Then, from Lemma 5.6(d2) we obtain vy = W, for 1 <t <t, wheret' =1and t" =t¢,.

2. Let t € [t;,00). Then, from Eq. (3.7) and the fact that Ay > 6fort > t, wehave (A=A A¢+r'—r <0
for t > t,. Ift, € [1,¢;), then v, = Ay, and further from Lemma 5.5(b) and Eq.(3.11) we have
A1 =Wy 1= (X = N4, +7' —r < 0, hence vg, 1 = Wi, 41- Accordingly, from Lemma 5.6(b) we
obtain v, = W; for t > t, + 1 wheret' = t,+1,i.e., v, =Wy fort > ¢,. If ¢, ¢ [1,t;), then vy, = Wg,.
Then, it is from Lemma 5.6(b) that v, = W, for t > ¢, where t' = t,, implying that ¢, & [t;,00).

Accordingly, if t, € [1,00), it follows that the ¢, must be on [1, t,), i.e, t, <t,. Hencev, = W; for

1<t<t,,v=Afort, <t <t andv =W fort > t,. If t, & [1,00), then v, = W, for ¢ 2 1:

Consequently, v, = W, for 1 <t < t,,vs = A fort; <t < t, and v; = W, for t > t, where {; may be

infinite.

(c2iii) Let § <U'. Then 4, > A, =U' 2 § for t > 1 due to Lemma 4.1 and Eq. (3.12). From Eq. (3.7) we

have (N = A)As+7r —r<0fort > 1. Accordingly, noting v; = Wi, from Lemma 5.6(b) we get vi = Wy

fort > 1 wheret'=1. 1

5.2.4 Calculations of t;, t,, and i,

From Eq. (3.12) we have A; = U’, and from Lemmas 5.5(b) and 4.2(a) we get the expression of A, for
¢t > 2. Therefore, t, and ¢, can be immediately obtained by Eqs. (5.1) and (5.2), respectively, if they
exist. The conditions on which whether or not they exist have already been stated in Lemmas 5.7, 5.8

and 5.9.

The lemma below is about the calculation of £,.
Lemma 5.10 Suppose that S’ < U', t, exist, and vy = max{Ws, As} fort > 1.
(a) Thet, in Lemma 5.8 can be found by using of Eq. (5.3) where
Z,=r' (1= X1 /(1= X) = r(1= A /(1 =) + V=X, 288t (5.10)
(b) Thet, in Lemma 5.9 can be found by using of Eq. (5.3) where

Z,=r' (1= A1 /@-X) -7l = A7) /(1= N+ W -adTHU, 28E<t, (5.11)
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Proof. Let §' < U'. Then A; = r' -+ XAy for £ > 2 from Lemma 5.5(b). Further, assume that ¢,
exist and v = max{ W, At} fort > 1.
(2) From Lemma 5.8(a) and (cl) we have Z; 2 0 and Z < 0. Then Z, < 0for 2 <t <%, and
th > 0 by the assumption of ¢, i.e, A1 2 W, and A; < Wt for 2 < t < t, from Eq.(3.10), hence
=max{Wi1,4:1} = 4 and v, = max{W;, A} = W, for 2 < £ < {;. Further, from this and Eq.(3.11)
we get Wy = r + AWy for 3 <t < 1. Accordingly, we have the assertion is true from Eq. (3.10),
Lemma 4:2(a) and (c).
(b) From Lemma 5.9(a) we have Z; < 0. Then Zy < 0for1<t<t, and Z;, > 0 by the definition of
t,, e, Adg <Wiforl1 <¢<t;, hencen = W, for 1 < t < t,. Purther, from this and Eq. (3.11) we get
W, = r + AW,y for 2 < ¢ < t,. Accordingly, the assertion holds due to Eq (3.10), Lemma 4.2(a) and (b
). &

Although ¢, in Lemmas 5.8 and 5.9 can be ca.lculated by using Lemma 5.10(a) and (b), respectively,
if it exists, the condition on which whether or not it exists on [2, co) can not be found. However, for a
glven starting point in time £°, we can confirm whether or not t, exists on [2, £°] by calculating all of Zs,
Zg , and Z; using Lemma 5. 10 in other words, if Z3, Zs, ++-, and Z are all negative, we can say
that ¢, does not exist on [2, ¢°], or else exists, which is given by the first ¢ at which Z; 2 0,2<¢ < t°.

6 Summary of Conclusions

Taking all the results obtained up to the previous sections together, we are led to the conclusion that

one of the following eight decision rules becomes optimal, according to parameters p, ¢, 7, P’ ¢ and r*,

when a hostage event occurs at time ¢.

DR-A Storm for rescue immediately.

DR-B Take the action of negotiation immediately, and if the criminal(s) do not surrender at the next
time, i.e., time ¢ — 1, storm for rescue.

DR-C Take the action of negotiation immediately, and if the criminal(s) do not surrender-at the next
time, i.e., time ¢t — 1, wait up to time 0 and storm for rescue. ’

DR-D Wait up to time 0 and storm for rescue.

DR-E Wait up to time 1 and take the action of negotiation at time 1; if the criminal(s) do not surrender
at time 0 and storm for rescue.

DR-F Wait up to time 2 and take the action of negotiation at time 2; if the criminal(s) do not surrender
at time 1, wait up to time 0 and storm for rescue.

DR-G Wait up to time #, and take the action of negotiation at that time; if the criminal(s) do not
surrender at time ¢, — 1, wait up to time 0 and storm for rescue.

_DR-H Wait up to time ¢, and take the action of negotiation at that time; if the criminal(s) do not

surrender at time ¢, — 1, wait up to time 0 and storm for rescue.

Note that clearly the action of negotiation has not yet taken at time ¢ when a hostage event occurs by the
deﬁmtxon of the model. It is suffcient to consider only v, at that time, and once the action of negotiation
ig taken at a certain time £° < ¢, it is suff(:lent to consider only v} thereafter so long as the criminal(s) do
not surrender at the next time, i.e., time t° — 1. Noting the above and the assumption which storming for
rescue is always made at the time 0 (the deadline), from Lemmas 5.1 to 5.5 and further from Lemmas 5.7
to 5.10 we can exhaustively prescribe the optimal decision rules of our model as in Optimal Decision
Rules 6.1 to 6.4 below.
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Optimal Decision Rule 6.1 Suppose s> U

(a) Let S > U and § > U’. Then DR-A is optimal for ¢ > 1.
(b) Let U" > S and U' 2 U.

i DR-B is optimal for £ = 1.

9 U’ > r/(1~ A), then DR-B is optimal for £ 2> 2.

3 I U’ =r/(1—)), then DR-B and DR-E are indifferent for
> 2.
4 XU < r/(1—)), then DR-E is optimal for ¢ > 2.

(c) Let U > S and U > U". Then DR-D is optimal for ¢ > 1.

Optimal Decision Rule 6.2 Suppose S <U,S>Uand §>U".
(a) DR-A is optimal for.$ = L.
(b) If § > A, then DR-A is optimal fort > 2.
(c) f U" < S < A, there must exist a unique 5 > 2.

1 DR-A is optimal for 2 < ¢ < ;.

2 DR-C is optimal for ¢ = ;.

3 Let A’ — A > 0. Then DR-C is optimal for ¢ > ¢;.

4 Let ¥ — 2 <0,

i FU' < S < A< 4§, then DR-C is optimal for ¢ > .

it TV’ < 8 < & < A, there must exist aunique ¢; > s,
hence DR-C is optimal for t; < ¢t < ¢; and DR-H is
optimal for ¢ > ¢;.

iit If§ € S < A, then DR-G is optimal for ¢ > .

Optimal Decision Rule 6.3 Suppose 5'-< U,Ur2S8and U 2 U.

(a) DR-B is optimal for £ =1.
(b) Let (N =AU ++' —720.
1 Let A — A > 0. Then DR-C is optimal for £ > 2.
2 Let ¥ —A<0.
i If § > A, then DR-C is optimal for £ > 2.

it U < § < A, there must exist a unique £, > 2,
hence DR-C is optimal for 2 < ¢ < ¢, and DR-H is
optimal for ¢ > ¢;."

i If § = U, then DR-C and DR-E are indifferent for
¢t = 2, and DR-E and DR-F are indifferent for ¢ 2 3.

(c) Let (N =AU +r" =7 <0.

1 Let X' — A < 0. Then DR-E is optimal for ¢ > 2.
2 Let X —A> 0. '
i If § > A, then DR-E is optimal for ¢ > 2.

ii f U’ <6 < A, then DR-E is optimal for 2 < £ < ¢,
and DR-C is optimal for ¢ > ¢, where t, may be
infinite. .

< Lemma 5.2

< Lemma 5.3(a)
& Lemmas 5.3(b) and 5.1

< Lemmas 5.3(c), (a), and 5.1
< Lemmas 5.3(d) and (a)

<« Lemmas 5.4

< Lemma 5.7(a)
< Lemma 5.7(b)

« Lemma 5.7(c2)
< Lemmas 5.7(c3) and 5.5(a)
< Lemmas 5.7(c4) and 5.5(a)

< Lemmas 5.7(c5i) and 5.5(a)

<= Lemmas 5.7(c5ii) and 5.5(a}).
< Lemmas 5.7(c5iii) and 5.5(a)

< Lemma 5.8(a)
< Lemmas 5.8(b1) and 5.5(a)

& Lemmas 5.8(b2ii) and 5.5(a)

< Lemmas 5.8(b2iii) and 5.5(a)

& Lemmas 5.8(b2iv) and 5.5(a)

4« Lemmas 5.8(c2) and (a)

< Lemmas 5.8(c3ii} and (a)

< Lemmas 5.8(c3iii), (a), and 5.5(a)
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(d) t, can be found by using Lemma 5.10(a) if it is finite.

Optimal Decision Rule 6.4 Suppose S’ < U, U>S8andU>U".

(a) DR-D is optimal for £ = 1.
(b) Let (X —aX)U' +r' —7 20.
1 Let N’ — A > 0. Then DR-C is optimal for ¢ > 2.
2 Let M — A <0.
i If § > A, then DR-C is optimal for ¢ > 2.

iit If ' < & < A, there must exist a unique ¢, 2> 2,
hence DR-C is optimal for 2 < ¢ < ¢, and DR-H is
optimal for ¢ > §,.

(c) Let (¥ —aX)U' +1r' —7<0.
1 Let M=A20.
i If § > A, then DR-D is optimal for ¢ > 2.

ii If.§ < A, then DR-D is optimal for 2 < ¢ < ¢, a.nd
DR-C is optimal for ¢ > ¢, where t, may be mﬁmte
2 Let X =A<,

i If § > A, then DR-D is optimal for 2 < ¢ < ¢, and
DR-C is optimal for ¢ > ¢, where t, may be mﬁmte
it FU7 < § < A, there must exist a unique ¢, > 2,
hence DR-D is optimal for 2 < ¢ < t,,DR-C s optimal
for t, <t <t,, and DR-H is optimal for ¢ > £; where
t, may be infinite.
iii If § < U", then DR-D is optimal for ¢ > 2..

(d) £, can be found by using Lemma 5.10(b) if it is finite.

<« Lemma 5.10(a)

4= Lemma 5.9(a)
< Lemmas 5.9(b2) and 5.5(a)

< Lemmas 5.9(b3ii) and 5.5(a)

- '¢= Lemmas 5.9(b3iii) and 5.5(a)

<« Lemma 5.9(cli)

& Lemmas 5.9(clii) and 5.5(a)

<= Lemmas 5.9(c2i} and 5.5(a)

< Lemmas 5.9(c2ii) and 5.5(a)
<= Lemma 5.9(c2iii)

<= Lemma 5.10(b)

The optimal decision rules prescribed above have a very complicated structure, so, in order to made
them understandable, let us summarize them as in Table 6.1. In the table, we use the symbols DR-As>1,

DR-Cagice, s *°
DR-Xr(z) implies that DR-X is optimal for ¢ satisfying 7'(t).

where, in general, for a given statement T(i) as to time t when the hostage event occurs,

Taking as examples the three cells, Ex.1, Ex.2 and Ex.3, let us demonstrate how to interpret the

contents of the table.

Ex.1 (DR-A;>1) : DR-A is optimal when the hostage event occurs at time ¢ > 1.
Ex.2 ([DR—Cr_vDR—E]t—_-z, [DR-E~DR-Fs»s ) : Any of DR-C and DR-E is optimal when the hostage event

occurs at time ¢ = 2, and any of DR-E and DR-F is optimal when the hostage event occurs at

time ¢ > 3.

Ex.3 (DR-Dz<t<t, , DR-Cy_ <e<t, DR-Hese, ) : When a hostage event occurs at time.?, we can calculate

t, by using Lemma 5.10(b). I ¢, can not be found on [2, ¢}, then t < ¢,, hence DR-D is optunal

for 2<t< tz
using Eq. (5.2), A1
and if ¢ > t,, then DR-H is optimal for ¢ > ¢,.

If +, can be found on [2, &}, then ¢ > #,, and further we can caIculate i by
= U, and Lemma 4.2(a). If ¢ < t,, then DR-C is optimal for tz <t<i,
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7 Suggested Future Studies

In this paper we propose a basic model of an optimal rescuing problem involving hostages. Taking
different real hostage situations into account, we feel a need to modify the model from the following

viewpoints:

1

3

We should consider the case with which an action of negotiation can only be taken once and its
eflectiveness decreases gradually after it was taken.

In real hostage events, several acts of negotiation are available. The problem therefore arises as to
when and what action of negotiation should be taken.

The author examined the case where more than one hostage was taken in [1]. The case should be
generalized by introducing the concept of taking multiple actions of negotiation.

In many real cases, criminal(s) operate with confused motives. This causes the probabilities p, ¢, and
r to change randomly from one minute to the next. This consideration leads us to the model in which
P g, 7, Py ¢', and 7' are random variables with a known or unknown distribution function. When it is
unknown, we can and must update its unknown parameters by using Bays’ theorem.

In many real cases, the deadline is not always definite. In other words, it should be regarded as a
random variable. A model with this assumption should be examined in the future.

In order for our models to be more realistically effective, the probabilities p, ¢, 7, p', ¢, and ' must
be measured and known in advance for each hostage crisis. Although such a measurement would be a
very difficult task, it should be tackled through the united efforts of researchers in different fields, say,

psychologists, sociologists, political scientists, engineers, and so on.
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