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Abstract

Knowing the number of handovers that a user makes during a call session is

particularly important in cellular mobile communication networks in order to

make appropriate dimensioning of virtual circuits for wireless cells. In this

paper, we study the probability distributions and statistical moments for the

number of handovers per call for a variety of combinations of the call holding

time (CHT) and cell residence time (CRT) distributions. We assume a mixed

platform environment, which means that the �rst CRT in the originating cell

has di�erent statistics from the CRTs in the subsequent cells. In particular, we

consider circular cells. Based on the formulation in terms of delayed renewal

processes, we obtain analytical expressions for the probability mass functions

and moments of the handover number distribution.
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1. Introduction

In cellular wireless communication networks, the wireless cells have limited coverage

range, which means that mobile users will be crossing several cell boundaries during his

call duration. Each boundary crossing may need switching of a communication channel,

whether it is a frequency band, a time slot or a code, which is necessary in order to

maintain the connectivity with the network as well as the tracking of the location

of the user. This cell switching, or handover, tends to cause connectivity disruption

and/or extra transmission delay if it is not handled properly. In multimedia service

environment, the connectivity and timely transmission are essential. For instance,

real-time audio and video information is less tolerant to both overall delay and delay

variation than traditional voice calls. Thus, the traÆc disruption/delay, as a result of

handover failure, can seriously a�ect the Quality of Service (QoS) of the network.

Wireless multimedia networks are intended to be direct extension of the �xed/wireline

broadband ATM networks with uniform end-to-end QoS guarantee. The handover

traÆc in cellular wireless networks is a complex function of many factors such as

the size of wireless cells, user's mobility and call patterns, etc. However it has a direct

impact on the signaling traÆc, the call admission policy for new users, and also the QoS

for the admitted users. Therefore, the study of the handover process is a fundamental

issue in the design of multimedia cellular wireless communication networks.

In this paper, we study the statistical characteristics of the number of handovers

that a mobile user makes during a call session in a cellular network for a variety of

combinations of the call holding time (CHT) and cell residence time (CRT) distribu-

tions. In the past, Nanda [9] considered the case of exponentially distributed CHT and

CRT. The same case has been extensively studied by Lin et al. [7]. However, the CHT

cannot be assumed as an exponentially distributed random variable in multimedia

services which typically have long tail in distribution. The CRT is not exponentially

distributed either. Recently, Fang et al. [3, 4] have derived a set of recursive equations

for the Erlang distributed CHT. Rodr��guez-Dagnino [11] has initiated an innovative

method based on the renewal theory for obtaining the distribution and moments of

the number of handovers explicitly for a mixture of Erlang (including exponential)

distributions for the CHT; this work is elaborated later in [13, 14]. However, these
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studies only consider a single homogeneous platform where the same distribution is

assumed for the CRTs in all the wireless cells. Recently, Orlik and Rappaport [10]

have presented some results for a mixed platform where it is assumed that each CRT

may have di�erent distribution. In the present paper, we extend the methodology

of [11, 13, 14] to the case of a mixture of two platforms, in which the �rst CRT

and the subsequent CRTs may have two di�erent distributions. We present closed-

form expressions for the probability distribution and the moments of the number of

handovers per call [12]. Our approach can be extended to the case of a mixture of

three or more platforms such as in [10].

Our approach is based on the renewal theory. Let N(t) be the number of renewals in

a �xed time interval [0; t], and the interrenewal times occur according to a sequence of

random variables fX1; X2; : : : ; Xi; : : : g, where X1 is started at time 0. This represents

the sequence of CRTs that a mobile user experiences during a call such that Xi is the

CRT in the ith cell (i = 1; 2; : : : ). Now, let T be a random variable representing a

CHT; throughout the paper we do not take into account the forced termination of calls

due to the blocking of handover process. Let us also assume that T is independent of

fX1; X2; : : : ; Xi; : : : g. Hence N(T ) is a random variable which represents the number

of renewals (handovers) in a random interval [0; T ] (a CHT). The problem of �nding

the probability distribution of N(T ) has been solved in several speci�c cases by Cox

in his monograph [2, sec. 3.4] under the title \The number of renewals in a random

time." Most of the results presented by Cox are based on the ordinary renewal process,

i.e., all the random variables Xi; i = 1; 2; : : : come from the same distribution [2, p.25].

However, a common situation in cellular networks is that a mobile user begins his call

somewhere inside a cell. Thus it is more appropriate to consider the case in which only

Xi; i = 2; 3; : : : come from the same distribution as a random variable X2 while X1

may come from a di�erent distribution. Such a case is called the modi�ed or delayed

renewal process [2, p.28]. This is just the process that we will use as a model of the

sequence of CRTs in this paper. As a special case of the delayed renewal process, if

X1 is a residual life of X2, we have the equilibrium renewal process [2, p.28]. This case

has been studied by Lin [6] and the present authors [11, 13, 14]. As a generalization

of the delayed renewal process, we may assume that each CRT X1; X2; : : : may have

di�erent distribution. See Figure 1 for the diagram of a CHT and CRTs associated
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Figure 1: Mobility of a user in a cellular network.

with a mobile user in a cellular network.

The remainder of this paper is organized as follows. In Section 2 we present the

basic methodology to calculate the probability generating function (pgf) for N(T ) for

the CHT with Erlang distribution and for the CRT with any distribution. In Section

3, we consider special cases in which the CHT is exponentially distributed. We derive

explicit expressions for the probability mass function (pmf) P [N(T ) = j] as well as

the binomial moments E[
�
N(T )
`

�
] of N(T ) in terms of the Laplace transforms of the

probability density function (pdf) for X1 and X2. In particular, we give simple results

for the case of exponentially distributed CRTs. In Section 4, we extend the method of

Section 2 to the CHT with a mixture of several exponential distributions, and present

closed-form expressions for the pmf and the binomial moments of N(T ) when the CRT

has exponential, gamma, and generalized gamma distributions. We also analyze the

case of circular cells such that the �rst CRT X1 corresponds to the distance from an

arbitrary point in a circle to its perimeter in an arbitrary direction and the subsequent

CRTsX2; X3; : : : correspond to the length of a straight line segment cut by a circle. We

call this case the circularly distributed CRT. In Section 5 we turn to the case in which

the CRTs are exponentially distributed while the CHT has arbitrary distribution. In
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this case, the pmf and the binomial moments of N(T ) can be expressed in terms of the

Laplace transform of the pdf for T . In Section 6, we treat the case in which each CRT

X1; X2; : : : may have di�erent distribution. Finally, concluding remarks are made in

Section 7.

2. The pgf method for Erlang CHT

Let GN(T )(z) be the pgf for N(T ), the number of handovers in a random interval

[0; T ], where T represents a CHT. It is given by

GN(T )(z) =

Z 1
t=0

GN(T )(t; z) fT (t) dt; (1)

where fT (t) is the pdf of the random variable T , and

GN(T )(t; z) := E
h
zN(t)

i
=

1X
j=0

P [N(T ) = jjT = t]zj (2)

is the pgf of N(t), the number of handovers in a �xed interval [0; t]. Once GN(T )(z) is

obtained, the pmf of N(T ) is given by

P [N(T ) = j] =
1

j!

dj

dzj
GN(T )(z)

�����
z=0

; j = 0; 1; 2; : : : : (3)

The `th binomial moment of N(T ) is given by

E

��
N(T )

`

��
=

1

`!

d`

dz`
GN(T )(z)

�����
z=1

; ` = 0; 1; 2; : : : : (4)

Let us consider a special case in which the CHT can be �tted by a k-stage Erlang

pdf, say

fT (t) =
�ktk�1e��t

(k � 1)!
; t � 0 (5)

with mean E[T ] = k=�. In this case the relation between GN(T )(z) and GN(t)(t; z) has

been solved by Cox [2, p.43, eq.(4)] as

GN(T )(z) =
�k

(k � 1)!

�
� @

@s

�k�1 n
G�N(T )(s; z)

o �����
s=�

; (6)

where G�N(T )(s; z) is the Laplace transform of GN(T )(t; z) de�ned by

G�N(T )(s; z) :=

Z 1
t=0

e�stGN(T )(t; z)dt: (7)
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For the delayed renewal process fX1; X2; : : : g of CRTs, we have [2, p.38, eq.(5)]

G�N(T )(s; z) =
1

s
+

(z � 1)f�X1
(s)

s[1� zf�X2
(s)]

; (8)

where f�X(s) is the Laplace transform of the pdf fX(x) for the random variable X .

Hence we get

GN(T )(z) =
�k

(k � 1)!

�
� @

@s

�k�1�
1

s
+

(z � 1)f�X1
(s)

s[1� zf�X2
(s)]

� �����
s=�

= 1 +
�k(z � 1)

(k � 1)!

�
� @

@s

�k�1 f�X1
(s)

s[1� zf�X2
(s)]

�����
s=�

: (9)

From this we can express the pmf of N(T ) as

P [N(T ) = j] =

8>>>>>>><
>>>>>>>:

1� �k

(k � 1)!

�
� @

@s

�k�1 f�X1
(s)

s

�����
s=�

; j = 0

�k

(k � 1)!

�
� @

@s

�k�1 f�X1
(s)

s
[1� f�X2

(s)][f�X2
(s)]j�1

�����
s=�

; j = 1; 2; : : :

:

(10)

We can also express the `th binomial moment of N(T ) as

E

��
N(T )

`

��
=

�k

(k � 1)!

�
� @

@s

�k�1 f�X1
(s)[f�X2

(s)]`�1

s[1� f�X2
(s)]`

�����
s=�

` = 1; 2; : : : : (11)

We note that if f�X1
(s) � f�X2

(s), we have an ordinary renewal process for the

sequence of CRTs. On the other hand, if.

f�X1
(s) � 1� f�X2

(s)

E[X2]s
; (12)

we have the equilibrium renewal process. The latter case has been studied extensively

by the authors in [14].

3. Exponentially distributed CHT and general CRT

Assume that the CHT T is modeled by an exponential pdf, say

fT (t) = �e��t; t � 0 (13)
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with mean E[T ] = 1=�. Then the pgf of N(T ) is given by

GN(T )(z) = �
n
G�N(T )(s; z)

o �����
s=�

= 1 +
(z � 1)f�X1

(�)

1� zf�X2
(�)

: (14)

The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) =

j!f�X1
(�)[1� f�X2

(�)][f�X2
(�)]j�1

[1� zf�X2
(�)]j+1

; j = 1; 2; : : : : (15)

Substituting (15) into (3), we obtain the pmf of N(T ) as

P [N(T ) = j] =

8<
: 1� f�X1

(�) ; j = 0

f�X1
(�)[1� f�X2

(�)][f�X2
(�)]j�1 ; j = 1; 2; : : :

: (16)

Substituting (15) into (4), we obtain the `th binomial moment of N(T ) as

E

��
N(T )

`

��
=

f�X1
(�)[f�X2

(�)]`�1

[1� f�X2
(�)]`

` = 1; 2; : : : : (17)

In particular, we have the mean

E[N(T )] =
f�X1

(�)

1� f�X2
(�)

: (18)

The variance is given by

Var[N(T )] =
2f�X1

(�)f�X2
(�)

[1� f�X2
(�)]2

+E[N(T )]�E2[N(T )]: (19)

We can study several interesting cases by specifying the pdf for both types of CRTs.

However, let us defer the most results until Section 4 where we deal with a mixture of

exponential distributions for the CHT. In the following subsection, we only consider

the case of exponentially distributed CRTs as it reduces to a particularly simple result.

3.1. Exponentially distributed CRT

Let us assume that the �rst CRTX1 is exponentially distributed with mean E[X1] =

1=�1, and the subsequent CRTs, each being represented by X2, are also exponentially

distributed with mean E[X2] = 1=�2. The corresponding Laplace transforms are given

by

f�Xr
(s) =

�r
s+ �r

; r = 1; 2: (20)



8 Rodr��guez-Dagnino and Takagi

Hence, the pmf in (16) reduces to

P [N(T ) = j] =

8>><
>>:

1

1 + �1
; j = 0�

�1
1 + �1

��
1

1 + �2

��
�2

1 + �2

�j�1
; j = 1; 2; : : :

; (21)

where �r = E[T ]=E[Xr] = �r=� for r = 1; 2. The `th binomial moment of N(T ) is

given by

E

��
N(T )

`

��
= �1

�
1 + �2
1 + �1

�
�2

`�1; ` = 1; 2; : : : : (22)

Therefore, we have

E[N(T )] = �1

�
1 + �2
1 + �1

�
; Var[N(T )] =

�1(1 + �2)(1 + 2�2 + �1�2)

(1 + �1)2
: (23)

4. Hyperexponentially distributed CHT and general CRT

Let us �rst assume that the CHT T is well modeled by a mixture of M Erlang

distributions, say

fT (t) =

MX
i=1

pi
�kii t

ki�1e��it

(ki � 1)!
; t � 0; (24)

where
PM

i=1 pi = 1, and ki; i = 1; 2; : : : ;M is a positive integer. This model may

represent a situation such that there are several applications each user can choose

from, such as the voice conversation, data transmission for making ticket reservation,

and browsing www information on his mobile phone. Application i is chosen with

probability pi; i = 1; 2; : : : ;M . The pgf of N(T ) is then given by

GN(T )(z) =

MX
i=1

pi
�kii

(ki � 1)!

�
� @

@s

�ki�1 n
G�N(T )(s; z)

o �����
s=�i

; (25)

where G�N(T )(s; z) is given by (8). Thus we can obtain the expressions for the pmf and

moments of N(T ) similar to (10) and (11).

If we consider a mixture of exponential distributions for the CHT, or ki = 1 for all

i in (24), we have a hyperexponential pdf

fT (t) =
MX
i=1

pi�ie
��it; t � 0; (26)
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where
PM

i=1 pi = 1. In this case, the coeÆcient of variation for T is larger than unity,

which is typical for data communication. Then the pgf of N(T ) is given by

GN(T )(z) =
MX
i=1

pi�i

n
G�N(T )(s; z)

o �����
s=�i

; (27)

where G�N(T )(s; z) is still given in (8). Thus we get

GN(T )(z) = 1 + (z � 1)

MX
i=1

pi
f�X1

(�i)

1� zf�X2
(�i)

; (28)

where T =
PM

i=1 piTi is the mixture of M exponentially distributed random variables

Ti with mean E[Ti] = 1=�i. The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) = j!

MX
i=1

pi
f�X1

(�i)[1� f�X2
(�i)][f

�
X2

(�i)]
j�1

[1� zf�X2
(�i)]j+1

; j = 1; 2; : : : : (29)

Hence, the pmf of N(T ) is given by

P [N(T ) = j] =

8<
: 1�PM

i=1 pif
�
X1

(�i) ; j = 0PM
i=1 pif

�
X1

(�i)[1� f�X2
(�i)][f

�
X2

(�i)]
j�1 ; j = 1; 2; : : :

: (30)

The `th binomial moment of N(T ) is given by

E

��
N(T )

`

��
=

MX
i=1

pi
f�X1

(�i)[f
�
X2

(�i)]
`�1

[1� f�X2
(�i)]`

` = 1; 2; : : : (31)

Thus we have the mean

E[N(T )] =

MX
i=1

pi
f�X1

(�i)

1� f�X2
(�i)

: (32)

The variance is given by

Var[N(T )] = 2

MX
i=1

pi
f�X1

(�i)f
�
X2

(�i)

[1� f�X2
(�i)]2

+E[N(T )]�E2[N(T )]: (33)

We can obtain several interesting cases by specifying the Laplace transforms of the

pdf for both types of CRTs, as it is shown in the following subsections [12].
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4.1. Exponentially distributed CRT

Let us assume that CRTs are exponentially distributed as in (20). Then the pmf in

(30) reduces to

P [N(T ) = j] =

8>>>><
>>>>:

1�
MX
i=1

pi
�1;i

1 + �1;i
; j = 0

MX
i=1

pi

�
�1;i

1 + �1;i

��
1

1 + �2;i

��
�2;i

1 + �2;i

�j�1
; j = 1; 2; : : :

;

(34)

where �r;i = E[Ti]=E[Xr] = �r=�i for r = 1; 2. The `th binomial moment of N(T ) is

given by

E

��
N(T )

`

��
=

MX
i=1

pi�1;i

�
1 + �2;i
1 + �1;i

�
�`�12;i ; ` = 1; 2; : : : : (35)

Therefore, the mean value is given by

E[N(T )] =

MX
i=1

pi�1;i

�
1 + �2;i
1 + �1;i

�
: (36)

and the variance is given by

Var[N(T )] = 2

MX
i=1

pi�1;i�2;i

�
1 + �2;i
1 + �1;i

�
+E[N(T )]�E2[N(T )]: (37)

4.2. Gamma distributed CRT

We can apply the above formulas to any distribution for X1 and X2 with closed-

form Laplace transforms. For instance, we can assume that CRTs X1 and X2 are

gamma distributed with di�erent scale parameters, namely, X1 is gamma distributed

with parameters (�1; �1), and X2 has the parameters (�2; �2). Their mean values are

given by E[Xr] = �r=�r; r = 1; 2, and their Laplace transforms are as follows:

f�Xr
(s) =

�
�r

s+ �r

��r
; r = 1; 2: (38)
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Hence the pmf for N(T ) is given by

P [N(T ) = j] =

8>>>>>>><
>>>>>>>:

1�
MX
i=1

pi

�
�1;i

�1�1 + �1;i

��1
; j = 0

MX
i=1

pi

�
�1;i

�1�1 + �1;i

��1 �
1�

�
�2;i

�2�1 + �2;i

��2�� �2;i
�2�1 + �2;i

��2(j�1)
j = 1; 2; : : : :

(39)

The `th binomial moment of N(T ) is given by

E

��
N(T )

`

��
=

MX
i=1

pi

�
�1;i

�1�1 + �1;i

��1
�

�2;i
�2�1 + �2;i

��2 ���2�1 + �2;i
�2;i

��2
� 1

�` ; ` = 1; 2; : : : :

(40)

Therefore, the mean value is given by

E[N(T )] =

MX
i=1

pi

�
�1;i

�1�1 + �1;i

��1

1�
�

�2;i
�2�1 + �2;i

��2 : (41)

4.3. Generalized gamma distributed CRT

According to Zonoozi and Dassanayake [16], the CRT for the �rst cell and that for

the subsequent cells can be modeled by generalized gamma distributions with the pdf

fXr
(x) =

crx
�rcr�1

br
�rcr�(�r)

e�(x=br)
cr

; x � 0; �r; br; cr > 0; r = 1; 2; (42)

where �(�) =
R1
0

u��1e�udu, � > 0, is the gamma function. In fact, by simulations

of mobile patterns, a good matching has been produced by assuming that �1 = 0:62,

b1 � 1:85R, and c1 = 1:88 for the �rst cell, and that �2 = 2:31, b2 � 1:22R, and

c2 = 1:72 for the subsequent cells, where R is the radius of circular cells. It is interesting

to note that these values remain unchanged even for more general assumptions in the

simulation such as the changes in velocity and direction of the user movement [16].

The pdf in (42) may not have a rational Laplace transform, but its kth moment

about the origin is given by

E[Xk
r ] =

br
k�(�r + k=cr)

�(�r)
; k = 0; 1; 2; : : : : (43)
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We can obtain several special cases of (42) by selecting the corresponding parameters.

For instance, we can obtain the gamma distribution by choosing cr = 1 and br = 1=�r,

and from here the exponential distribution by letting �r = 1.

We should remember that for a random variable X with pdf fX(x), its Laplace

transform f�X(s) can be expanded in the moments of X as follows:

f�X(s) =

1X
k=0

(�1)k s
k

k!
E[Xk]: (44)

Hence, by using the moments in (43), we can expand f�Xr
(�i) as

f�Xr
(�i) = 1 +

1X
k=1

(�1)k Gk;r

k!�r;ik
; r = 1; 2; (45)

where

Gk;r =
�k�1(�r)�(�r + k=cr)

�k(�r + 1=cr)
; r = 1; 2 (46)

and

�r;i =
E[Ti]

E[Xr]
=

�(�r)

�ibr�(�r + 1=cr)
; r = 1; 2: (47)

Note that the dependence on the parameters �i and br is concentrated only in the

relative mobility ratio �r;i given in (47). The expansion in (45) can be substituted into

(30) and (31) to obtain the pmf and the moments of N(T ), respectively. We also note

that the series expansion for f�X(s) in (44) is useful to obtain the pmf and the moments

of N(T ) for those distributions of X that do not have closed-form expression for the

Laplace transform.

4.4. Circularly Distributed CRT

The hexagonal geometry for the wireless cells has been approximated by circles by

Hong and Rappaport [5] and Yeung and Nanda [15]. They have derived the CRT

distributions under the assumptions that the mobile users are uniformly distributed in

the system and that they move in straight lines with direction uniformly distributed

over [0; 2�). The pdf for the distance Z1 from an arbitrary interior point of a circle

with radius R to its boundary in an arbitrary direction is given by [5, eq.(46)]

fZ1(z) =
2

�R2

r
R2 �

�z
2

�2
; 0 � z � 2R: (48)
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Hence the CRT in the �rst cell is given by the random variableX1 := Z1=V , where V is

the velocity of the user, which we will assume to be constant in the rest of this paper.

In fact, this is a typical assumption also made in [5] and [15]. Under this assumption

of constant velocity, the kth moment of X1 about the origin is given by

E[X1
k] = E

"
Z1

k

V k

#
=

1

V k

Z 2R

z=0

zkfZ1(z)dz; (49)

or equivalently

E[X1
k] =

2

�R2V k

Z 2R

z=0

zk
p
R2 � (z=2)2dz =

�
�
k+1
2

�
p
��
�
k
2 + 2

� �2R
V

�k
: (50)

Substituting (50) into (44), we obtain

f�X1
(�i) =

1X
k=0

(�1)k Mk;1

k!�1;ik
; (51)

where

Mk;1 = �k�
1
2

�
3

4

�k �
�
k+1
2

�
�
�
k
2 + 2

� ; �1;i =
E[Ti]

E[X1]
=

3�V

8R�i
: (52)

Similarly, the pdf for the distance Z2 from an arbitrary point on the boundary of a

circle with radius R at which the mobile user enters the cell to another point on the

boundary in a random direction at which he exits from the cell in a straight line is

given by [5, eq.(51)]

fZ2(z) =
2

�
p
4R2 � z2

; 0 � z < 2R: (53)

We note that the path of a user in this case is equivalent to the random chord of a

circle which has been studied in the �eld of geometrical probability [8, p.198]. There are

several ways to de�ne the randomness of the chord which lead to di�erent probability

measures. The most appropriate one in the modeling of user movement in cellular

systems seems to be that the direction of the path is uniformly distributed over [0; 2�),

which is called S-randomness [1]. In fact, the pdf in (53) is exactly the same as the pdf

for the length of a random chord of a circle with radius R in the sense of S-randomness

[8, eq.(2.3.41), p.198]. Then the kth moment of the CRT X2 := Z2=V for the second

and subsequent cells is given by

E[X2
k] =

�
�
k+1
2

�
p
��
�
k+2
2

� �2R
V

�k
: (54)
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Figure 2: Plots of Gk;1=k! and Mk;1=k! as a function of k. The generalized gamma

case assumes �1 = 0:62 and c1 = 1:88, and the adjusted circular case �1 = 1:0 and

c1 = 1:88.

Substituting (54) into (44), we obtain

f�X2
(�i) =

1X
k=0

(�1)k Mk;2

k!�2;ik
; (55)

where

Mk;2 =
�k�

1
2

2k
�
�
k+1
2

�
�
�
k
2 + 1

� ; �2;i =
E[Ti]

E[X2]
=

�V

4R�i
: (56)

Let us call the above distributions for X1 and X2 the circular distributions.

We note that the dependence of f�Xr
(�i) on the parameters �i; V; and R is all

concentrated in the relative mobility ratios �r;i given in (52) and (56). We also observe

that the series expansions in the above for the circular distributions are similar to the

series expansion of the generalized gamma distribution in (45). In the above derivation,

the parameter Mk;r is a function of only k for r = 1; 2. Thus we can match the series

expansion for the generalized gamma distribution in (45) with those in (51) and (55)

for the circular distributions. We have found that the parameters reported in [16]

for �r and cr produce reasonable matching, as shown in Figures 2 and 3. We can
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Figure 3: Plots of Gk;2=k! and Mk;2=k! as a function of k. The generalized gamma

case assumes �2 = 2:31 and c2 = 1:72, and the adjusted circular case �2 = 1:85 and

c2 = 1:72.

present better matching to the circularly distributed case by adjusting the parameters

of the generalized gamma distribution. While many combinations of the values for �r

and cr are possible, we show in Figure 2 only one of them by �xing c1 = 1:88 and

�nding �1 = 1:0. Similarly, in Figure 3 we �x c2 = 1:72 and �nd �2 = 1:85 for the

best matching. We may call the generalized gamma distribution with these parameter

values the adjusted circular distribution.

It may also be interesting to compare the pdf fZ1(z) for Z1 given in (48) and the

pdf for Ẑ2, the residual life of Z2, which is given by

fẐ2(z) =
1

E[Z2]

�
1�

Z z

0

fZ2(x)dx

�
=

�

4R

�
1� 2

�
arcsin

� z

2R

��

=
1

2R
arccos

� z

2R

�
; 0 � z � 2R: (57)

As shown in Figure 4, they are di�erent. This fact may justify the analysis of the two

platform system in this paper.
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Figure 4: Plots of the pdf fZ1(z) for Z1 and the pdf for the residual life of Z2.

5. General CHT and exponentially distributed CRT

In this section, we consider a general pdf for the CHT, say fT (t), and exponentially

distributed CRTs as in (20).

In this case, the pgf for N(t) is given by

GN(T )(t; z) =
(�2 � �1)(z � 1)

�1 + �2(z � 1)
e��1t +

�1z

�1 + �2(z � 1)
e��2(1�z)t: (58)

This follows by substituting (20) into (8), expanding the resulting function in partial

fractions in s, and then inverting the Laplace transform. We remark that the corre-

sponding pgf for the ordinary and equilibrium renewal processes can be obtained by

making �1 = �2 = �. In such a case, we get GN(T )(t; z) = e��(1�z)t [14].

The pgf for N(T ) is given by

GN(T )(z) =
(�2 � �1)(z � 1)

�1 + �2(z � 1)
f�T (�1) +

�1z

�1 + �2(z � 1)
f�T [�2(1� z)]; (59)

which follows by substituting (58) into (1).

We need the jth derivative of GN(T )(z) in order to �nd the pmf and the moments
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of N(T ). It is given by

djGN(T )(z)

dzj
=

(�1)j�1j!�1(�2 � �1)�2
j�1

[�1 + �2(z � 1)]j+1
f�T (�1)

+ (�1)jj!�1(�2 � �1)�2
j�1

j�1X
i=0

f
�(i)
T [�2(1� z)]

i![�1 + �2(z � 1)]j�i+1

+
(�1)j�1�2jz
�1 + �2(z � 1)

f
�(j)
T [�2(1� z)]; j = 1; 2; : : : ; (60)

where

f
�(j)
T (s) :=

djf�T (s)

dsj
= (�1)j

Z 1
t=0

tje�stfT (t)dt; j = 1; 2; : : : : (61)

From (60), we �nd the pmf for N(T ) as

P [N(T ) = j] =

8>><
>>:

f�T (�1) ; j = 0

�1�2
j�1

(�2 � �1)j

"
f�T (�1)�

j�1X
i=0

(�1 � �2)
i

i!
f
�(j)
T (�2)

#
; j = 1; 2; : : :

:

(62)

The `th binomial moment of N(T ) is given by

E

��
N(T )

`

��
=

�
1� �1

�2

��
�2
�1

�`(
(�1)`�1f�T (�1) +

`�1X
i=0

(�1)`�i
i!

�1
iE[T i]

)

+
�2

`

`!
E[T `]; ` = 1; 2; : : : : (63)

For example, the mean is given by

E[N(T )] =
�2 � �1
�1

[f�T (�1)� 1] + �2E[T ]: (64)

If the CHT is exponentially distributed as in (13), we recover the results in Section

3.1.

6. Generalized delayed renewal process for CRTs

Let us generalize the delayed renewal process of CRTs so that each CRT X1; X2; : : :

may have di�erent distribution. A similar situation is considered in [10].

Suppose that the �rst R CRTs X1; X2; : : : ; XR may have di�erent distributions for

which the Laplace transforms of the pdf are given by f�X1
(s); f�X2

(s); : : : ; f�XR
(s), re-

spectively, and that the subsequent CRTs XR+1; XR+2; : : : have the same distribution



18 Rodr��guez-Dagnino and Takagi

as XR. As special cases of this process, we have an ordinary renewal process for R = 1,

a delayed renewal process for R = 2, and the case in which all CRTs are distinct for

R =1.

For this process, from [2, p.37,eq.(3)], we have

G�N(T )(s; z) =
1

s
+
z � 1

s

2
4R�1X
j=1

zj�1
jY

r=1

f�Xr
(s) +

1X
j=R

zj�1F �R(s)
�
f�XR

(s)
�j�R35

=
1

s
+
z � 1

s

R�1X
j=1

zj�1
jY

r=1

f�Xr
(s) +

(z � 1)zR�1F �R(s)

s
�
1� zf�XR

(s)
� ; (65)

where we have introduced for notational convenience

F �R(s) :=
RY
r=1

f�Xr
(s): (66)

This result is a generalization of (8).

6.1. Exponentially distributed CHT

If the CHT T is exponentially distributed with mean E[T ] = 1=� as in (13), we have

the pgf for N(T ) as

GN(T )(z) = �G�N(T )(s; z)

�����
s=�

= 1 + (z � 1)

R�1X
j=1

zj�1
jY

r=1

f�Xr
(�) +

(z � 1)zR�1F �R(�)

1� zf�XR
(�)

: (67)

It is straightforward as before to obtain the pmf and moments of N(T ) from (67).

As the coeÆcient of zj in the expansion of (67) in powers of z, the pmf of N(T ) is

given by

P [N(T ) = j] =

8>>>>>>>>>>><
>>>>>>>>>>>:

1� f�X1
(�) ; j = 0

h
1� f�Xj+1

(�)
i jY
r=1

f�Xr
(�) ; 1 � j � R� 1

F �R(�)
�
1� f�XR

(�)
� �
f�XR

(�)
�j�R

; j � R

: (68)



Counting Handovers in a Cellular Network 19

As the coeÆcient of (z�1)` in the expansion of (67) in powers of z�1, the `th binomial

moment of N(T ) is given by

E

��
N(T )

`

��
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

R�1X
j=`

�
j � 1

`� 1

� jY
r=1

f�Xr
(�) + F �R(�)

`�1X
j=0

�
R� 1

`� j � 1

�
[f�XR

(�)]j

[1� f�XR
(�)]j+1

;

1 � ` � R� 1

F �R(�)

`�1X
j=`�R

�
R� 1

`� j � 1

�
[f�XR

(�)]j

[1� f�XR
(�)]j+1

; ` � R

:

(69)

In particular, the mean is given by

E[N(T )] =

R�1X
j=1

jY
r=1

f�Xr
(�) +

F �R(�)

1� f�XR
(�)

: (70)

All the above expressions reduce to those in Section 3 when R = 2.

For R = 1, by assuming that limR!1 F �R(�) = 0 for � > 0, the pgf of N(T ) is

given by

GN(T )(z) = 1 + (z � 1)

1X
j=1

zj�1
jY

r=1

f�Xr
(�): (71)

Thus we have

P [N(T ) = j] =

8>><
>>:

1� f�X1
(�) ; j = 0h

1� f�Xj+1
(�)
i jY
r=1

f�Xr
(�) ; j = 1; 2; : : :

(72)

and

E

��
N(T )

`

��
=

1X
j=`

�
j � 1

`� 1

� jY
r=1

f�Xr
(�); ` = 1; 2; : : : : (73)

6.2. General CHT and exponentially distributed CRTs

As an extension to the case of Section 5, we can consider a general pdf for the CHT

and exponentially distributed CRTs as

f�Xr
(s) =

�r
s+ �r

; r = 1; 2; : : : ; R: (74)
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Let us assume for simplicity that all �r's are distinct. Substituting (74) into (65) and

expanding in partial fractions in s yields

G�N(T )(s; z) = (1� z)
R�1X
r=1

Br(z)

s+ �r
+

C(z)

s+ �R(1� z)
; (75)

where

Br(z) :=

(�r � �R + �Rz)

R�2X
j=r

zj�1

"
jY

i=1

�i

#24 R�1Y
i=j+1

(�i � �r)

3
5+ zR�2(�r � �R)

R�1Y
j=1

�j

�r(�r � �R + �Rz)

R�1Y
j=1(j 6=r)

(�j � �r)

;

r = 1; 2; : : : ; R� 1 (76)

and

C(z) := zR�1
R�1Y
j=1

�j
�j � �R + �Rz

: (77)

Substituting the inversion of (75) into (1), we obtain the pgf of N(T ) as

GN(T )(z) = (1� z)

R�1X
r=1

Br(z)f
�
T (�r) + C(z)f�T [�R(1� z)]; (78)

where f�T (s) is the Laplace transform of the pdf for the generally distributed CHT T .

It is possible to derive the pmf and moments of N(T ) from (78). For example, the

mean is given by

E[N(T )] = �
R�1X
r=1

Br(1)f
�
T (�r) +R+ �R

 
E[T ]�

RX
r=1

1

�r

!
; (79)

where

Br(1) =

�r

R�2X
j=r

"
jY

i=1

�i

#2
4 R�1Y
i=j+1

(�i � �r)

3
5+ (�r � �R)

R�1Y
j=1

�j

�r
2

R�1Y
j=1(j 6=r)

(�j � �r)

;

r = 1; 2; : : : ; R � 1: (80)

These results reduce to those in Section 5 when R = 2.
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7. Conclusions

In this paper, we have derived explicit forms for the pmf and the statistical moments

of the number of handovers during a random call holding time (CHT) when the

CHT distribution is well-�tted by a mixture of exponential distributions while the

cell residence time (CRT) is arbitrarily distributed. As speci�c distributions for the

CRT, we have dealt with exponential, gamma, and generalized gamma distributions

as well as the distribution that comes from the length of a random chord of a circle

for a model of circular cells. We have provided good numerical matching between the

generalized gamma distribution and the circular distribution, which improves the result

in [16]. We have also considered the case of general CHT and exponentially distributed

CRTs.

In the present study, we have �rst assumed two di�erent platforms for cellular

regions. This model may be interesting for situations where the call originates in a pic-

ocellular cell and the portable moves into the microcellular environment or vice versa.

Our mathematical framework is the delayed renewal process [12] as a generalization of

the equilibrium renewal process studied in [11, 13, 14] for the homogeneous platform.

We have also presented the case of more than two platforms.

Many other interesting combinations of the CHT and CRT distributions can be

handled in the same framework. We also remark that obtaining the pmf and the

moments for the number of handovers during a call is an important step for obtaining

other performance measures, including the probability of completing a call and the

handover traÆc rate, for mobile communication networks.
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