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Abstract

Knowing the number of handovers that a user makes during a call session is

particularly important in wireless cellular mobile communication networks in order

to make appropriate dimensioning of virtual circuits for wireless cells. In this paper,
we study the probability distributions and statistical moments for the number of

handovers per call for a variety of combinations of the call holding time (CHT)

and cell residence time (CRT) distributions. Based on the formulation in terms of

equilibrium renewal processes, we obtain analytical expressions for the probability

mass functions and moments of the handover number distribution. Numerical

examples are provided that show a heavy-tail in the handover number distribution

when the CHT has heavy tail.

Keywords: Cellular mobile communication networks; multimedia service; handover

number; call holding time; cell residence time; renewal theory; equilibrium renewal

process

1 Introduction

The evolution of wireless cellular mobile communication systems to provide multimedia
services has motivated the study of new network performance issues. In multimedia
networks it is expected to provide various services such as the traditional voice calls, fac-
simile, internet, data, still images, videotelephony, videoconference, and real-time video.
In spite of the call holding time (CHT) and cell residence time (CRT) measurements re-
ported in the literature for some of these services, we believe that most of them have not
been fully characterized in the cellular multi-service environment in which the session for
each service may present a di�erent behavioral pattern. A large variety of requirements
of di�erent services would demand eÆcient sharing of communication channels, thus the
characterization of the handover process arises as an important problem [11, 13]. The
handover traÆc is a complex function of many factors such as the size of a wireless
cell, user's mobility pattern, radio channel environment, the call duration, etc. However,
it has a direct impact on the signaling traÆc, the call admission policy for new users,
and also the quality of service (QoS) for the admitted users. For instance, the service
disruption in the handover process may signi�cantly degrade the speci�ed QoS of time-
constrained services such as real-time audio and video. Hence the study of the handover
process is a fundamental issue in the design of multimedia wireless cellular networks.
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There are many studies dealing with the handover statistics for voice calls. However
the handover behavior of the new services is still in its early stage of investigation. A
major di�erence is that the CHT cannot be assumed as an exponentially distributed ran-
dom variable in multimedia services. The CRT is not exponentially distributed either.
In this paper, we focus on the number of handovers during a call. Our approach is based
on renewal theory arguments (see below), as it has been initiated in [15]. We obtain
analytical expressions for the probability distribution and the statistical moments of the
handover number for a variety of combinations of the CHT and CRT distributions. In
particular, we present explicit results in the following cases: (a) a mixture of exponential
or Erlang distributions for the CHT and a general distribution for the CRT, (b) an expo-
nential distribution for the CRT and a general distribution for CHT (including gamma,
lognormal, inverse Gaussian, and Pareto distributions), and (c) 2-Erlang distributions for
both CHT and CRT. An important parameter to characterize the CHT is the coeÆcient
of variation, denoted by CV . By an exponentially distributed CHT we can model the
call with CV = 1 as for traditional voice calls. A mixture of exponential distributions for
the CHT allows us to model the heavy-tail traÆc with CV > 1. The Erlang distributed
CHT is a good model when CV < 1, and a mixture of Erlang distributions o�ers even a
richer class for the CHT.

Nanda [14] uses a di�erent methodology to solve this problem for the special case of
exponentially distributed CRT and CHT. The same case has been extensively studied by
Lin [10]. Recently, similar results have been obtained by Fang et al. [5, 6] by following
another approach. They have obtained solutions as a set of recursive equations depending
of the k parameter in the k-Erlang distribution for the CHT. However, they observe that
the recursive equations for obtaining the probability of call completion become much
more involved as k increases [5, p.1572]. In fact, they are not �nding a general explicit
solution to the k-Erlang or Pareto CHT, as we will do in this paper.

Let N(t) be the number of renewals in a �xed time interval [0; t], and the interrenewal
times occur according to a sequence of random variables fX1; X2; : : : ; Xi; : : :g, where X1

is started at time 0. This represents the sequence of CRTs that a mobile user experiences
during a call such that Xi is the CRT in the ith cell (i = 1; 2; : : :). Now, let T be a
random variable representing a CHT; throughout the paper we do not take into account
the forced termination of calls due to the blocking of handover process. Let us also
assume that T is independent of fX1; X2; : : : ; Xi; : : :g. Hence N(T ) is a random variable
which represents the number of renewals (handovers) in a random interval [0; T ] (a CHT).
The problem of �nding the probability distribution of N(T ) has been solved in several
speci�c cases by Cox in his monograph [3, sec. 3.4] under the title \The number of
renewals in a random time." Most of the results presented by Cox are based on the
ordinary renewal process, i.e., all the random variables Xi; i = 1; 2; : : : come from the
same distribution. However, a common situation in cellular networks is that a mobile
user begins his call somewhere inside a cell. Thus it is more appropriate to consider the
case in which only Xi; i = 2; 3; : : : come from the same distribution as a random variable
X while X1 is the residual life of X, as noted by Lin [12]. This renewal process has also
been studied by Cox in a di�erent context, called the equilibrium renewal process in his
monograph [3, sec. 2.2]. We denote by fX(x) the probability density function (pdf) of
X, and by f �X(s) :=

R
1

0 e�sxfX(x)dx its Laplace transform. Similarly, the pdf and its
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Figure 1: Mobility of a user in a cellular network. The random variable Xi represents
the CRT in the ith cell (i = 1; 2; : : :), and T represents the CHT.

Laplace transform of T are denoted by fT (t) and f �T (s), respectively.
Most of the results in this paper will be expressed as a function of the mobility ratio

parameter

� :=
Expected value of CHT

Expected value of CRT
=

E[T ]

E[X]
; (1)

which represents the average number of handovers a mobile user makes per call. See
Figure 1 for the diagram of a CHT and CRTs associated with a mobile user in a cellular
network.

The remainder of this paper is organized as follows. In Section 2 we present the
basic methodology to calculate the probability generating function (pgf) for N(T ) for
CHT with Erlang distribution and for the CRT with any distribution. In Section 3,
we consider special cases in which the CHT is exponentially distributed. We derive
simple expressions for the probability mass function (pmf) P [N(T ) = j] as well as the

binomial moments E[
�
N(T )
`

�
] of N(T ) for the exponentially and gamma distributed CRT.

In Section 4, we extend the method of Section 2 to the CHT with a mixture of several
Erlang distributions, and present closed-form expressions for the pmf and the binomial
moments of N(T ) when the CRT has exponential distribution and generalized gamma
distribution. This richer class for the CHT allows us to model distributions with CV � 1
or CV > 1 for the CHT. In Section 5 we turn to the case in which the CRT is exponentially
distributed while CHT has arbitrary distribution. In this case, the pmf P [N(T ) = j]
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can be expressed in terms of f �T (s) and the moments of N(T ) in terms of those of T . In
particular, we discuss the gamma, a mixture of gammas, lognormal, inverse Gaussian,
and Pareto distributed CHT. We compare the resulting pmf's in these cases numerically,
and �nd the heavy tail in P [N(T ) = j] for the Pareto CHT. The case of an Erlang
distribution for the CHT and another Erlang distribution for the CRT seems to be
cumbersome. In Section 6, we solve the case of 2-Erlang (�) distribution for the CHT
and 2-Erlang (�) distribution for the CRT, and evaluate the mean and variance of N(T ).
In Section 7, we derive a general formula for the variance of N(T ) that is valid in the
framework of the equilibrium renewal process. Finally, concluding remarks are made in
Section 8.

2 The pgf Method for Erlang CHT

Let GN(T )(z) be the pgf for N(T ), the number of handovers in a random interval [0; T ].
It is given by

GN(T )(z) =
Z
1

t=0
GN(t)(t; z)fT (t)dt; (2)

where fT (t) is the pdf of the random variable T , and

GN(t)(t; z) := E

h
zN(t)

i
=

1X
j=0

P [N(T ) = jjT = t]zj (3)

is the pgf of N(t), the number of handovers in a �xed interval [0; t]. Once GN(T )(z) is
obtained, the pmf of N(T ) is given by

P [N(T ) = j] =
1

j!

dj

dzj
GN(T )(z)

�����
z=0

; j = 0; 1; 2; : : : : (4)

The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
=

1

`!

d`

dz`
GN(T )(z)

�����
z=1

; ` = 0; 1; 2; : : : : (5)

By taking the derivative with respect to z at both sides of (2), and evaluating at
z = 1 we �nd the following expression for the mean of the number of handovers:

E[N(T )] =
Z
1

t=0
E[N(T )jT = t]fT (t)dt: (6)

As shown by Cox [3, p.46, eq.(3)], it holds for the equilibrium renewal process that

E[N(T )jT = t] =
t

E[X]
(7)

for any distribution fX(x) having E[X]. Hence, we obtain

E[N(T )] =
Z
1

t=0

t

E[X]
fT (t)dt =

E[T ]

E[X]
= �: (8)
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This general result has been obtained by a rather di�erent argument by Nanda [14].
However, we remark that it is valid only for the equilibrium renewal process and for the
ordinary renewal Poisson process.

Let us consider a special case in which the CHT can be �tted by a k-stage Erlang
pdf, say

fT (t) =
�ktk�1e��t

(k � 1)!
; t � 0 (9)

with mean E[T ] = k=�, so � = k=(�E[X]). In this case the relation between GN(T )(z)
and GN(t)(t; z) has been solved by Cox [3, p.43, eq.(4)] as

GN(T )(z) =
�k

(k � 1)!

 
� @

@s

!k�1 n
G�

N(t)(s; z)
o �����

s=�

; (10)

where G�

N(t)(s; z) is the Laplace transform of GN(t)(t; z) de�ned by

G�

N(t)(s; z) :=
Z
1

t=0
e�stGN(t)(t; z)dt: (11)

For the equilibrium renewal process, we have [3, p.38, eq.(6)]

G�

N(t)(s; z) =
1

s
+

[1� f �X(s)](z � 1)

E[X]s2[1� f �X(s)z]
; (12)

where f �X(s) is the Laplace transform of the pdf fX(x) for the CRT X. Hence we get

GN(T )(z) =
�k

(k � 1)!

 
� @

@s

!k�1 (
1

s
+

[1� f �X(s)](z � 1)

E[X]s2[1� f �X(s)z]

) �����
s=�

= 1 +
�k(z � 1)

(k � 1)!E[X]

 
� @

@s

!k�1
1� f �X(s)

s2[1� f �X(s)z]

�����
s=�

(13)

From this we can express the pmf of N(T ) as

P [N(T ) = j] =

8>>>>>>><
>>>>>>>:

1� �k

(k � 1)!E[X]

 
� @

@s

!k�1
1� f �X(s)

s2

�����
s=�

; j = 0

�k

(k � 1)!E[X]

 
� @

@s

!k�1 "
1� f �X(s)

s

#2
[f �X(s)]

j�1

�����
s=�

; j = 1; 2; : : :

:

(14)
We can also express the `th binomial moment of N(T ) as

E

" 
N(T )

`

!#
=

�k

(k � 1)!E[X]

 
� @

@s

!k�1
1

s2

"
f �X(s)

1� f �X(s)

#`�1 �����
s=�

` = 1; 2; : : : : (15)

Thus we con�rm that

E[N(T )] =
�k

(k � 1)!E[X]

 
� @

@s

!k�1
1

s2

�����
s=�

=
k

�E[X]
= � (16)

regardless of the distributional form of fX(x).
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3 Exponentially Distributed CHT and General CRT

If we take k = 1 in (9), we obtain an exponential pdf for the random variable T :

fT (t) = �e��t; t � 0 (17)

with mean E[T ] = 1=�. In this case, the pgf of N(T ) can be readily derived from (13)
with k = 1 as

GN(T )(z) = �fG�

N(t)(s; z)g
�����
s=�

= 1 +
�[1� f �X(�)](z � 1)

1� f �X(�)z
; (18)

where � = 1=(�E[X]). The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) =

j!�[1� f �X(�)]
2[f �X(�)]

j�1

[1� f �X(�)z]
j+1

; j = 1; 2; : : : : (19)

Substituting (19) into (4), we obtain the pmf of N(T ) as

P [N(T ) = j] =

8><
>:

1� �[1� f �X(�)] ; j = 0

�[1� f �X(�)]
2[f �X(�)]

j�1 ; j = 1; 2; : : :
; (20)

which has also been obtained in [13, eq.(6)] by a di�erent method.
Substituting (19) into (5), we obtain the `th binomial moment of N(T ) as

E

" 
N(T )

`

!#
= �

"
f �X(�)

1� f �X(�)

#`�1
; ` = 1; 2; : : : ; (21)

from which the variance of N(T ) is given by

Var[N(T )] =
2�f �X(�)

1� f �X(�)
+ �(1� �): (22)

3.1 Exponentially Distributed CRT

Now, let us assume that the CRT is exponentially distributed as

fX(x) = �e��x; x � 0 (23)

with mean E[X] = 1=�, then � = �=�. The Laplace transform of fX(x) is given by

f �X(s) :=
Z
1

x=0
e�sxfX(x)dx =

�

s+ �
: (24)

Hence the pmf in (20) simpli�es to

P [N(T ) = j] =

 
1

1 + �

! 
�

1 + �

!j

; j = 0; 1; 2; : : : ; (25)
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which is a geometric distribution as shown in [13, eq.(8)]. Since both CHT and CRT
have memoryless pdf, it is not surprising that the number of handovers during a call also
has a (discrete) memoryless pmf, which can therefore only be geometric distribution.

The `th binomial moment is simply given by

E

" 
N(T )

`

!#
= �`; ` = 0; 1; 2; : : : : (26)

Hence, the variance is given by

Var[N(T )] = �(1 + �): (27)

3.2 Gamma Distributed CRT

In some cases, the CRT may be well-�tted by a gamma distribution, say

fX(x) =
�(�x)��1

�(�)
e��x; x � 0 (28)

with mean E[X] = �=�, so � = �=(��). Here �(�) :=
R
1

0 u��1e�udu; � > 0, is the
gamma function. The Laplace transform of fX(x) is given by

f �X(s) =

 
�

s+ �

!�

: (29)

In this case we get the pmf of N(T ) as

P [N(T ) = j] =

8>>><
>>>:

1� �
h
1�

�
��

1+��

��i
; j = 0

�
h
1�

�
��

1+��

��i2 � ��
1+��

��(j�1)
; j = 1; 2; : : :

: (30)

The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
= �

2
4 1

(1 + 1
��
)� � 1

3
5
`�1

; ` = 1; 2; : : : ; (31)

which yields the variance

Var[N(T )] =
2�

(1 + 1
��
)� � 1

+ �(1� �): (32)

4 The pgf Method for Mixed-Erlang CHT

Let us assume that the call holding time T is well modeled by a mixture of M Erlang
distributions, say

fT (t) =
MX
i=1

pi
�kii t

ki�1e��it

(ki � 1)!
; t � 0; (33)
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where
PM

i=1 pi = 1. Then the pgf of N(T ) is given by

GN(T )(z) =
MX
i=1

pi
�kii

(ki � 1)!

 
� @

@s

!ki�1 n
G�

N(t)(s; z)
o �����

s=�i

; (34)

where G�

N(t)(s; z) is given by (12). Thus we can obtain the expressions for the pmf and
moments of N(T ) similar to (14) through (16).

Some special cases are studied below.

4.1 Mixture of Exponential Distributions for the CHT

If we consider a mixture of exponential distributions for the CHT, or ki = 1 for all i in
(34), we obtain

GN(T )(z) = 1 +
MX
i=1

pi
[1� f �X(�i)](z � 1)

�iE[X][1� f �X(�i)z]
; (35)

where T =
PM

i=1 piTi is the mixture of M exponentially distributed random variables Ti
with mean E[Ti] = 1=�i. The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) = j!

MX
i=1

pi
�i[1� f �X(�i)]

2[f �X(�i)]
j�1

[1� f �X(�i)z]
j+1

; j = 1; 2; : : : ; (36)

where we have de�ned �i := E[Ti]=E[X] = 1=(�iE[X]).
Hence, the pmf of N(T ) is given by

P [N(T ) = j] =

8><
>:

1�PM
i=1 pi�i[1� f �X(�i)] ; j = 0

PM
i=1 pi�i[1� f �X(�i)]

2[f �X(�i)]
j�1 ; j = 1; 2; : : :

: (37)

The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
=

MX
i=1

pi�i

"
f �X(�i)

1� f �X(�i)

#`�1
; ` = 1; 2; : : : : (38)

Thus we have E[N(T )] =
PM

i=1 pi�i = �, and

Var[N(T )] = 2
MX
i=1

pi
�if

�

X(�i)

1� f �X(�i)
+ �(1� �): (39)

4.2 Exponentially Distributed CRT

If we assume in (37) that each CRT is exponentially distributed with mean 1=�, as in
(24), the pmf for N(T ) is a mixture of geometric random variables as follows:

P [N(T ) = j] =
MX
i=1

pi

 
1

1 + �i

! 
�i

1 + �i

!j

; j = 0; 1; 2; : : : ; (40)
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where �i = �=�i.
The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
=

MX
i=1

pi�
`
i ; ` = 0; 1; 2; : : : : (41)

The variance is given by

Var[N(T )] = 2
MX
i=1

pi�
2
i + �(1� �): (42)

4.3 Generalized Gamma Distributed CRT

According to Zonoozi and Dassanayake [22], the CRT can be modeled as a generalized
gamma distribution with the pdf

fX(x) =
cxc��1

�(�)bc�
e�(x=b)

c

; x � 0; �; b; c > 0: (43)

The pdf in (43) may not have a rational Laplace transform, but its kth moment about
the origin is given by

E[Xk] =
bk�(� + k=c)

�(�)
; k = 0; 1; 2; : : : : (44)

We can obtain several special cases of (43) by selecting the corresponding parameters.
For instance, we can obtain the gamma distribution by choosing c = 1 and b = 1=�, and
from here the exponential distribution by letting � = 1.

We should remember that for a random variable X with pdf fX(x) its Laplace trans-
form f �X(s) can be expanded in the moments of X as follows:

f �X(s) =
1X
k=0

(�1)k s
k

k!
E[Xk]: (45)

Hence, by using the moments in (44), we can expand f �X(�i) as

f �X(�i) = 1 +
1X
k=1

(�1)k Gk

k!�ki
; (46)

where

Gk =
�k�1(�)�(�+ k=c)

�k(� + 1=c)
; k = 1; 2; : : : (47)

and

�i :=
E[Ti]

E[X]
=

�(�)

�ib �(� + 1=c)
: (48)

Note that the dependence on the parameters �i and b is concentrated only in the
relative mobility ratio �i given in (48). The expansion in (46) can be substituted into
(37) and (38) to obtain the pmf and the moments of N(T ), respectively. We also note
that the series expansion for f �X(s) in (45) is useful to obtain the pmf and the moments
of N(T ) for those distributions of X that do not have closed-form expression for the
Laplace transform.
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5 General CHT and Exponentially Distributed CRT

We now turn to assume that the CRT X is exponentially distributed as in (23). Since
E[X] = 1=�, we have

� = �E[T ]: (49)

In this case, the sequence of CRTs is called a Poisson renewal process. Thus the pgf for
N(t), the number of renewals in [0; t], is given by

GN(t)(t; z) =
1X
n=0

(�t)n

n!
e��tzn = e��(1�z)t: (50)

This is a well-known result [9, p.63, eq.(2.134)]. As a consequence of the memoryless
property of the exponential distribution, this result is valid for both the ordinary and
the equilibrium renewal processes.

It can be observed from (2) and (50) that for any distribution for the CHT we can
�nd that

GN(T )(z) =
Z
1

t=0
e��(1�z)tfT (t)dt = f �T [�(1� z)]; (51)

where f �T (s) is the Laplace transform of fT (t). The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) =

Z
1

t=0
(�t)je��(1�z)tfT (t)dt; j = 0; 1; 2; : : : : (52)

Substituting (52) into (4) we can obtain the following pmf for N(T )

P [N(T ) = j] =
Z
1

t=0

(�t)j

j!
e��tfT (t)dt =

(��)j
j!

f
�(j)
T (�); j = 0; 1; 2; : : : ; (53)

which is a Poisson mixture of the pdf fT (t).
It is also possible to obtain a general expression for the binomial moments of N(T ).

Substituting (52) into (5), we obtain

E

" 
N(T )

`

!#
=

�`

`!
E[T `]; ` = 1; 2; : : : : (54)

Thus we get
E[N(T )] = �E[T ] = � (55)

and
Var[N(T )] = �2E[T 2] + �(1� �): (56)

For instance, if fT (t) = �e��t, we have E[T `] = `!=�`, and

E

" 
N(T )

`

!#
=
�
�

�

�`
= �`; ` = 0; 1; 2; : : : ; (57)

which agrees with (26).
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5.1 Gamma CHT

Let us �rst assume Gamma(�; �) for the CHT, which is more general than the k-
Erlang(�) distribution, as

fT (t) =
�(�t)��1

�(�)
e��t; t � 0 (58)

with mean E[T ] = �=�, so � = ��=�. The Laplace transform of fT (t) is given by

f �T (s) :=
Z
1

t=0
e�stfT (t)dt =

 
�

s+ �

!�

: (59)

By substituting (58) into (53) we �nd

P [N(T ) = j] =
�(� + j)

�(�)j!

 
�

� + �

!�  
�

�+ �

!j
; j = 0; 1; 2; : : : : (60)

This is the P�olya-Eggenberger pmf. The `th binomial moment is given by

E

" 
N(T )

`

!#
=

�(� + `)

�(�)`!

�
�

�

�`
=

�(� + `)

�(�)`!

�
�

�

�`
; ` = 0; 1; 2; : : : : (61)

The variance is given by

Var[N(T )] = �
�
1 +

�

�

�
: (62)

If � = k (a positive integer), it corresponds to a negative binomial pmf

P [N(T ) = j] =

 
k + j � 1

k � 1

! 
k

k + �

!k  
�

k + �

!j

; j = 0; 1; 2; : : : ; (63)

where � = k�=�. The special case k = 1 reduces to (25).

5.2 Mixture of Gammas for CHT

We next consider a general mixture of Gamma distributions for the CHT

fT (t) =
MX
i=1

pi
�i(�it)

�i�1

�(�i)
e��it; t � 0; (64)

where
PM

i=1 pi = 1. This has the mean E[T ] =
PM

i=1 pi�i=�i, so � = �
PM

i=1 pi�i=�i.
The pmf of N(T ) is given by

P [N(T ) = j] =
MX
i=1

pi
�(�i + j)

�(�i)j!

 
�i

�i + �i

!�i  �i
�i + �i

!j

; j = 0; 1; 2; : : : ; (65)

where �i = ��i=�i. The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
=

MX
i=1

pi
�(�i + `)

�(�i)`!

�
�i
�i

�`
; ` = 0; 1; 2; : : : ; (66)

which leads to the variance

Var[N(T )] =
MX
i=1

pi�
2
i

�
1 +

1

�i

�
+ �(1� �): (67)

A special case in which �i = 1 for i = 1; 2; : : : ;M reduces to the case in Section 4.2.
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5.3 Lognormal CHT

The lognormal distribution and a mixture thereof have been proposed as a model to
capture the statistics of the CHT for several internet-related services, such as the circuit
holding time in the dial-up access to an internet service provider (ISP), the number of
message bytes in TCP/IP 
ows, and the e-mail message length [1].

The pdf for the lognormal distribution of the CHT is given by

fT (t) =
1p
2��t

exp

"
�(ln t�m)2

2�2

#
; t > 0: (68)

This can be obtained from the Y � Gaussian (m,�2) distribution by making the trans-
formation T = eY . By substituting (68) into (53) and changing the parameter by
� := ln(�t), we obtain the Poisson-lognormal distribution

P [N(T ) = j] =
1

�
p
2� j!

Z
1

�=�1
exp

"
�e� + j�� (�� ln��m)2

2�2

#
d�; j = 0; 1; 2; : : : :

(69)
It is well-known that this does not have an explicit expression, and it has been tabulated
in many places, e.g. in [20].

The `th central moment for the lognormal distribution is given by

E[T `] = e`m+ 1

2
`2�2 ; ` = 0; 1; 2; : : : : (70)

Hence we get

E

" 
N(T )

`

!#
=

�`

`!
e`m+ 1

2
`2�2 ; ` = 0; 1; 2; : : : : (71)

In particular, we have
E[N(T )] = �E[T ] = �em+ 1

2
�2 = � (72)

and
Var[N(T )] = �2e2(m+�2) + �(1� �): (73)

5.4 Inverse Gaussian CHT

The inverse Gaussian pdf has been proposed as an alternative to the lognormal distri-
bution. It has an advantage that it is possible to �nd an explicit expression for the pmf
of the Poisson-inverse Gaussian distribution which has behavior similar to the Poisson-
lognormal one. There are several related expressions to de�ne the inverse Gaussian pdf,
and the so-called canonical de�nition is as follows [8]:

fT (t) =

s
�

2�t3
exp

"
��(t�m)2

2m2t

#
; t > 0; m; � > 0: (74)

Note that E[T ] = m and that � is another parameter.
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Substituting (74) into (53), we obtain the following Poisson-inverse Gaussian pmf for
N(T ):

P [N(T ) = j] =
�je�=m

j!

 
2�

�

!1

2

2
4 �

2
�
�+ �

2m2

�
3
5
1

2(j�
1

2)

Kj� 1

2

2
4
vuut2�

 
�+

�

2m2

! 35 (75)

for j = 0; 1; : : :, where K�(z) is the modi�ed Bessel function of second kind, or the Kelvin
function, de�ned by

K
�
1

2
(z) =

r
�

2z
e�z ; K�(z) =

1

2

�
z

2

�� Z 1

t=0

e�t�
z2

4t

t�+1
dt; j arg zj < �

4
; � > �1

2
: (76)

The pgf of N(T ) is given by

GN(T )(z) = exp

8<
: �

m

2
41�

s
1 +

2m2

�
�(1� z)

3
5
9=
; : (77)

From this pgf we get E[N(T )] = m� = � and

Var[N(T )] = �
�
1 +

m

�
�
�
: (78)

It seems that there are no simple expressions for a general moments of N(T ).

5.5 Pareto CHT

The Pareto pdf has been proposed in several statistical data �tting for the www and http
traÆc which show heavy-tail behavior [2, 4]. Let us consider the following Pareto pdf for
the CHT:

fT (t) =
���

t�+1
; 1 < � < 2; t � � > 0: (79)

This is a heavy-tail distribution with mean E[T ] = ��=(� � 1). It is well-known that
the higher moments of this distribution do not exist. The tail is heavier as � is closer to
unity. From (55), we have

� =
���

�� 1
: (80)

The pgf for N(T ) can be readily obtained from (51) as

GN(T )(z) = �[��(1� z)]�
Z
1

u=��(1�z)
u���1e�udu: (81)

We get the pmf for N(T ) from (53) as

P [N(T ) = j] =
�(��)�

j!

Z
1

u=��
u��+j�1e�udu; j = 0; 1; 2; : : : ; (82)
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which can be rewritten as

P [N(T ) = j] =
�(��)

�+j�1
2

j!
e�

��
2 W j���1

2
; j��

2

(��); j = 0; 1; 2; : : : : (83)

Here

W�;�(�) :=
��e��=2

�(� � � + 1
2
)

Z
1

t=0
t����

1

2 e�t
 
1 +

t

�

!�+�� 1

2

dt; <(� � �) > �1

2
; j arg�j < �

(84)
is the Whittaker's function [21, p.340], and we have used the formula [7, p.318]

Z
1

x=�
e�xx��dx = ���=2e��=2W

�
�
2
; 1��

2

(�); � > 0: (85)

Since �� = �(� � 1)=�, the pmf for N(T ) in (83) is a function of the mobility ratio �
and the parameter � of the Pareto distributed CHT. We also note that the variance for
N(T ) is not de�ned, because the second moment for the Pareto pdf does not exist.

5.6 Numerical Comparison

In Figure 2 we plot the pmf P [N(T ) = j] for the mobility ratio � = 2 for three Pareto
CHT cases, � = 1:1; 1:5, and 1.9, and also for the 3-Erlang and exponentially distributed
CHT. We can observe that the pmf in the 3-Erlang case decays faster than the exponential
case. However, all the Pareto cases have heavier tails, and the speed of decay in these
cases depend on the parameter �; the heavier is the tail in the CHT distribution (� is
closer to unity), the slower is the decay in the pmf P [N(T ) = j]. In Figure 3, we can
observe a similar behavior when � is �xed at 20. In this situation, the decay is slower
than the cases with � = 2 shown in Figure 2.

It is interesting to compare the tails in the pmf P [N(T ) = j] for the Poisson-
lognormal, Poisson-inverse Gaussian, and Poisson-Pareto distributions for the CHT. In
Figure 4, we have �xed the mean of all pmf's equal to 0.1, and the variance equal to 0.2
for the �rst two distributions. For the Poisson-Pareto distribution, we have assumed the
same mean and considered � = 1:1; 1:5, and 1.9. We observe that the Poisson-lognormal
has a heavier tail than the Poisson-Inverse Gaussian, and that all Poisson-Pareto cases
have heavier tails than the Poisson-lognormal. As it has been discussed above, the
Poisson-Pareto with � = 1:1 has the heaviest tail. A similar behavior can be observed in
Figure 5, where we have considered the mean value of 6 for all pmf's, and the variance
of 10 for the Poisson-lognormal and Poisson-inverse Gaussian distributions.

6 2-Erlang CHT and 2-Erlang CRT

We consider an interesting special case where the exponential distribution is not assumed
either for the CHT or for the CRT. Speci�cally, let us assume the 2-Erlang(�) for CHT,
i.e., k = 2 in (9), and the 2-Erlang(�) for CRT, i.e., � = 2 in (28).
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Figure 2: Logarithm of the pmf of the number of handovers, log10(P [N(T ) = j]). We
have �xed the mobility ratio as � = 2, and we are comparing the following distributions
for the CHT: Pareto with � = 1:1; 1:5, and 1.9, 3-Erlang, and exponential. We assume
the exponentially distributed CRT.

In this case we have E[T ] = 2=� and E[X] = 2=�, and so � = E[T ]=E[X] = �=�. By
following the same procedure as above, it can be shown that the pgf of N(T ) is given by

GN(T )(z) = �
(1� q)2

(1� qz)2
+ (1� �)

(1� q)2z

(1� qz)2
; (86)

where

� :=
1 + �

1 + 2�
; q :=

 
�

1 + �

!2

: (87)

This corresponds to a mixture of two negative binomial pmf's as

P [N(T ) = j] =

8><
>:

�PNB(0; 2; q) ; j = 0

�PNB(j; 2; q) + (1� �)PNB(j � 1; 2; q) ; j = 1; 2; : : :
; (88)

where

PNB(j; k; q) :=

 
k + j � 1

k � 1

!
(1� q)kqj; j = 0; 1; 2; : : : : (89)

The `th binomial moment of N(T ) is given by

E

" 
N(T )

`

!#
= �

(`+ 1)q`

(1� q)`
+ (1� �)

(q + `)q`�1

(1� q)`
; ` = 1; 2; : : : : (90)
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Figure 3: Logarithm of the pmf of the number of handovers, log10(P [N(T ) = j]). We
have �xed the mobility ratio as � = 20, and we are comparing the following distributions
for the CHT: Pareto with � = 1:1; 1:5, and 1.9, 3-Erlang, and exponential. We assume
the exponentially distributed CRT.

Thus we can con�rm that E[N(T )] = �, and the variance is given by

Var[N(T )] =
�(1 + �)(1 + 2�+ 2�2)

(1 + 2�)2
: (91)

We should mention that even though (88) is a mixture of two negative binomial
distributions, the resulting pmf is unimodal. A plot of this pmf for several values of � is
shown in Figure 6. It is clear that the decay is slower when � is larger.

In order to examine the dependence of the variance of N(T ) on the distributions of
CHT and CRT, we compare several combinations numerically. To do so, let us use the
following notation in Figure 7: EG means the exponentially distributed CHT and gamma
distributed CRT; EE means both exponentially distributed CHT and CRT; kErE means
the k-Erlang CHT and exponentially distributed CRT; and 2Er2Er means both 2-Erlang
CHT and CRT. From left to right in Figure 7, the �rst curve corresponds to EG with
� = 0:1, which shows the highest variance that increases as � is increased. The second
curve corresponds to EG with � = 0:5, and the third to EE. We observe that all the
cases for EG with � < 1 have the higher variance than EE. The fourth and �fth curves
correspond to EG with � = 1:5 and 3, respectively, for which the variance is no further
reduced by increasing �. Signi�cant reduction in the variance is attained in the kErE
cases shown by the sixth (2ErE) and eighth (8ErE) curves, where the reduction is large
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Figure 4: Logarithm of the pmf of the number of handovers, log10(P [N(T ) = j]). We
are comparing the Poisson-lognormal and the Poisson-Inverse Gaussian for mean 0.1 and
variance 0.2. We are also comparing the Poisson-Pareto with mean 0.1 and � = 1:1; 1:5,
and 1.9. We assume the exponentially distributed CRT.

when k is large (the CHT has a shorter tail). On the other hand, the seventh curve for
2Er2Er is only slightly lower than the sixth curve for 2ErE. Thus it seems that changing
the parameters in the CHT distribution has more important e�ect on the variance of
N(T ) than changing the CRT parameters.

7 General Expression for the Variance

In Section 2, we have shown that E[N(T )] = E[T ]=E[X] for the equilibrium renewal
process in (8). In this section, we derive

Var[N(T )] =
Z
1

t=0
Var[N(T )jT = t]fT (t)dt+

Var[T ]

E2[X]
: (92)

To do so, we begin with the formula

Var[N(T )] = G00

N(T )(1) +G0

N(T )(1)[1�G0

N(T )(1)]; (93)

where, from (2), we have

G00

N(T )(1) =
Z
1

t=0

d2

dz2
GN(t)(t; z)

�����
z=1

fT (t)dt (94)
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Figure 5: Logarithm of the pmf of the number of handovers, log10(P [N(T ) = j]). We
are comparing the Poisson lognormal and the Poisson Inverse Gaussian for mean 6 and
variance 10. We are also comparing the Poisson-Pareto with mean 6 and � = 1:1; 1:5,
and 1.9. We assume the exponentially distributed CRT.

and

d2

dz2
GN(t)(t; z)

�����
z=1

= Var[N(T )jT = t] +E
2[N(T )jT = t]�E[N(T )jT = t]: (95)

Substituting (95) into (94) and then into (93), we get

Var[N(T )] =
Z
1

t=0
Var[N(T )jT = t]fT (t)dt

+
Z
1

t=0
E
2[N(T )jT = t]fT (t)dt� E

2[N(T )]: (96)

Equation (96) is valid not only for the equilibrium renewal process but also for the delayed
renewal process. For the equilibrium renewal process, we have E[N(T )jT = t] = t=E[X]
and E[N(T )] = E[T ]=E[X] as in (7) and (8), respectively. Hence we obtain (92).

Thus, if we have an explicit expression for the conditional variance Var[N(T )jT = t],
we can apply (92) to obtain Var[N(T )]. For instance, when the CRT is distributed as
2-Erlang(�), the conditional variance has been obtained by Cox [3, p.58, eq.(12)] as

Var[N(T )jT = t] =
�t

4
+

1

8
� 1

8
e�2�t: (97)
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Figure 6: Logarithm of the pmf of the number of handovers, log10(P [N(T ) = j]), for
di�erent values of � when both CHT and CRT have 2-Erlang distributions.

Substituting this into (92) we get

Var[N(T )] =
�

4
E[T ] +

1

8
� 1

8

Z
1

t=0
e�2�tfT (t)dt +

1

4
Var[T ]�2: (98)

By considering 2-Erlang(�) for the CHT, it is easy to recover (91).

8 Conclusions

In this paper, we have derived many explicit forms for the pmf and the statistical mo-
ments of the number of handovers during a random call holding time (CHT) when (a)
the CHT distribution is well-�tted by a mixture of Erlang distributions while the CRT
is arbitrarily distributed, and (b) the CRT is exponentially distributed while the CHT
is arbitrary. The arbitrary distributions include the short-tailed Gamma distribution
as well as the long-tailed lognormal, inverse Gaussian, and Pareto distributions. Many
other interesting combinations of the CHT and CRT distributions can be handled in
the same framework. Our method can be applicable to a variety of traÆc situations in
multimedia wireless networks with CHT whose coeÆcient of variation is larger or smaller
than unity.

We should remark that obtaining the pmf for the number of handovers during a call
is an important step for obtaining other performance measures, including the probability
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Figure 7: Variances of N(T ) for several distributions. From left to right, we have EG
with � = 0:1; 0:5; EE; EG with � = 1:5; 3; 2ErE; 2Er2Er; and 8ErE.

of completing a call and the handover traÆc rate, as it has been shown in [16, 17, 19] as
well as for designing the optimal mobility management algorithms [18].

We have proved that the mean number of handovers per call is always equal to the
mobility ratio �, the ratio of the mean CHT to the mean CRT. We have also derived
a general expression for the variance of the number of handovers. They are valid for
any combination of the CHT and CRT distributions in the framework of the equilibrium
renewal process.
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