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How Important is Non-farm Sector for Agriculture:
A Dynamic Panel Approach for India

Introduction

The non-farm sector in developing countries has come under the spotlight with
the increasing realization among policymakers that a comprehensive approach to the
alleviation of chronic poverty in rural areas of developing countries must focus on both
agriculture and non-agriculture. A viable industrialization strategy in the rural areas
needs to understand the characteristics of the rural non-farm sector, and its linkages with
the other important rural sector, namely agriculture.

There is general agreement that in the initial stages of the growth process of any
developing country, a growing agriculture helps to sustain the rural non-farm economy.
The impoftance of the non-farm sector increases with increasing technological
advancement in agriculture, both from the demand and the supply sides (see Lanjouw
and Lanjouw, 1995, for an extensive discussion of the literature).

Improvement in productivity in agriculture requires a flow of both consumption
and investment goods from the non-farm sector. Although a part of this démand can be
met through imports from the urban areas, although such a process would entail various
costs (such as transportation, inventory etc.) to the agricultural sector. In such a case, a
well-developed non-farm sector in the rural areas supplying such goods and services is
efficient both from the production and cost aspects. On the other hand, increasing
specialization in agriculture and technological improvement gives rise to opportunities
for industries such as food processing and allied activities, that are ideally located in the
rural areas close to the source of production of their inputs. In such a case, the value
addition that takes place in this process would benefit both agriculture and non-

agriculture in the rural areas.



Another important aspect that has come to light in the recent past is the linkage
between agriculture and non-agriculture in rural areas through income from labor
market participation. It has been seen in previous studies that non-farm sector income
provides nearl'y one-third of the total income for rural households in parts of Africa and
Asia (Chuta and Lieldholm, 1978; Lieldholm and Kilby, 1989). A host of studies on
poverty, especially using micro-level data for India have indicated that income from off-
farm work can be used for consumption and risk-smoothing in years of idiosyncratic
agricultural shocks (Walker and Ryan, 1990; Townsend, 1994; Kochar, 1999). A
lowering of such risk and smoothing of future consumption would logically lead to
greater investment in agriculture, since it is the main occupation of a majority of the
population in the rural areas.

Therefore, on the one hand, the development of nonfarm sector generates more
income in the rural sector and may lead to greater investment in agriculture; on the
other hand, development of the nonfarm sector maj also cause an increase in
lébor's opportunity cost in agricultural production by means of an increase in the
employment choice of the rural workers and through its consumption and risk
smoothing effect. This may result in lower agricultural labor input, Therefore, the net
effect of nonfarm sector development on TFP is an empirical question subject to test
and this paper is a step towards filling this gap in the literature.

The main problem faced in a viable econometric analysis of the effect of the
non-farm sector on agricultural productivity is the scarcity of a consistent set of data on
the former. As is evident from the discussion above, the direction of the causality is also
open to question and as yet not addressed specifically by any study. Moreover, the
aggregate data in levels of agricultural production and non-farm sector suffer from the

familiar problems of endogeneity, common trends, measurement errors etc. A common



way to deal with this kind of problem is to use some form of first differencing.
However, as the literature on the relation between public capital and productivity has
shown, differencing actually destroys the long-run relation and the estimates reflect the
short-run effects (See Aschauer, 1989; Garcia-Mila, et.al.,1996; Munnel, 1992; Holtz-
Eakin, 1994; Evans and Karras, 1994).

Our objectives in this paper are the following. Using a panel dataset for 14 major
states of India from 1973 to 1993, we address the question of causality between non-
farm sector development and total factor productivity in agriculture, using the methods
recently proposed by Arellano and Bond (1991) and Blundell and Bond (1998). This
uses the properties of dynamic models in a panel framework to estimate the causality
relation. Next, using the same methodology, we would estimate the effect of the non-
farm variable on agricultural productivity using a set of instruments in the dynamic
panel model. In extending the previous research on the productivity of public
infrastructure to the non-farm sector in the rural areas, we shall see that using a dynamic
panel model gives better and more consistent estimates of the impact than using a model
with levels or differences only.

In the following section, we outline the methodology that we adopt for the
dynamic panel analysis, explaining the choice of instruments and the tests performed.
The next section reports the causality test results, followed by an investigation of the
productivity impact of the non-farm sector on agriculture. We conclude the paper
summarizing the salient features of this kind of analysis and its importance from a

policy perspective.



Dynamic Panel Methodology:

The estimation of the impact of non-farm sector on total factor productivity
(henceforth TFP) in agriculture has to take into account the bias that would ensue in
case there is no causal relationship among the variables. Reverse causality would yield
inconsistent estimates of the parameters under the assumptions of ordinary least squares.
Most causality tests in sectoral impact studies (such as those of public infrastructure on
productivity) have used time-series data (Aschauer,1989; Holtz-Eakin, 1994). However,
it is very difficult to eliminate measurement errors and endogeneity problems with a
limited number of observations as most time series are.

Initial conditions and previous information also play a vital role both in causality
tests and in the model estimation. Lagged values of dependent variable are often used to
proxy for past information that is uncorrelated with the error term, so that they can be
used as instruments in the estimation process. Thus the dynamic generalized method of
moments (GMM) approach will be used in this paper for causality tests and estimation.
This method uses all the information contained in previous lags and levels of dependent

variables as instruments.

A Simple ARI Process:

To illustrate, let us start with the assumption that there are N cross-sectional
units observed over T periods. Leti index the cross-sectional observations and ¢ the time
periods. We also take into account an individual effect ¢; for the i"™ cross-sectional unit.

Vi =Yy 717, + 0y (1)
We will also assume that ¢; and §;, are independently and identically distributed across i

and have the error component structure:

E(¢:) = 0; E(6ir) = 0; E(Gugi) =0 fori= Luuwilands = 2,...... ,T (2



E(0u0s5) =0 fori=1,...,N and Vi=s (3)
In addition, we have the standard assumption concerning the initial conditions y,, :

E(y,00)=0 fori=1,....Nand t=2,...... ,T (4)

For estimation in first differences, in the absence of any further restrictions on
the process of generating the initial conditions, the autoregressive error components
model (1) — (4) implies the following j = 0.5 (T-1)(7-2) orthogonality conditions that
are linear in 4 :

E(y,_,Av,)=0 fort=3,...... ,Tands 2 (%)
where Av, =0y — G;11-

Thus, the instruments available for the system of difference equations is given as:

Equations Instruments Available
Ay, = oAy, +Au, Yu
Ay,, = aby, +Av, Y Yiz
Ay, = aAyi(T—-l) +Ay; Yirs Yigserearss s Yigr-2)

The available instruments satisfy the moment restriction in (5) and can be compactly

written as E(Z, ,'Z)-;r) =0, where Z, is the (T-2)xj matrix given by:



y, 0 0 .. 0 0 .. O

Z.28%= . . o . (6)

Yiir-2)

and v is the (T-2)xj veetor (A ip ) »

ARI Process Including Exogenous Regressor:

In models with explanatory variables, Z; may consist of submatrices with the
above block diagonal form along with one-column instruments. Suppose there exists a

predetermined regressor that is correlated with the individual effect ¢; exhibiting the

following property:

E(x,v,) =0 fors t

=S
0 otherwise
and  E(xm) O

then the corresponding Z;% matrix is given by

Y. % % 0 B ¥ 00 W 8 .. U # . @

0 0 0 ¥ Ve %% % X s T w 0 0 .. 0
Zr

1]

O 0 0 ¢ 0 9 8 19 .. P Yie-y Xa - Xy )
As stated in Arellano and Bond (1998), where the number of columns in ZF are very
large, using the whole history of the instruments in later cross-sections may lead to
overfitting bias in small sample empirical study. As we shall see later, we would fix a

maximum and minimum lag on the instrument set of the dependent variable and the



regressor in our analysis. We shall also undertake the Sargan test of overidentifying

assumptions to check whether our instrument set is valid or not.’

Combining Differences and Levels:

To get the full set of instruments combining the levels and differences, we note
that the error term in our panel data model consists of 6; and ¢; . Where there are
instruments available that are uncorrelated with the individual effects ¢; , we can use
these variables as instruments for the equation in levels (Arellano and Bond, 1998).

Under the assumption of mean-stationarity of the model in (1), since Ay, will be
uncorrelated with ¢; , Ay, canbe used as instruments in the levels equations. In this

case, the instrument matrix can be stated as:

zZ2 0 0
0 Ay, .. 0
Z‘-S s y; 2 (7)
0 0 .« Aoy

which is a block diagonal matrix combining the elements of both (6) and the
instruments for the level equations in their diagonal elements.

In the case that exogenous regressors are also present in the model, the optimal
instrument matrix can be set up combining the matrices for the regressors and the
lagged dependent variables.

One-step estimations using a known weighting matrix are efficient when the
error term 6 is known to be homoskedastic. In the case of heteroskedastic 6, two-step

estimators that use the variance matrix from the estimated error terms in the first step as

! For a full explanation of the estimation process using dynamic panel data, refer to Blundell and Bond

(1998) and Arellano and Bond (1998).



weights in the regression perform better. However, as stated in Arellano and Bond
(1998), for hypothesis testing purposes, it is better to use standard errors from the first
step while using the two-step weighting matrix. Since the errors in our case are likely to
be heteroskedastic, we would report the robust one-step estimates unless otherwise
stated.

In the following section, we explain the data used for the analysis in detail and

present the result of the causality test using the techniques described above.

Tests of Causality
Data

The dataset employed is a panel of fourteen states of India that are considered to
be the most economically important from 1973 to 1993. This dataset has been compiled
by the World Bank and the Intemational Food Policy Research Institute (IFPRI) in
collaboration with various agencies of the Government of India. el

Productivity growth in agriculture is measured as the TFP index which is the
ratio of total output to total input. The Torqvist-Theil index is used to construct the

TFP growth as follows:
InTFE = ) 0.5%(S,, +5,,.1) *In(¥;, /%) = D 05* W, + W, ) *In(X;, / X;,,)  (8)

where InTFP is the log of the total factor productivity index; S, and S;..; are output i’s

share in total production value at time ¢ and #-1, respectively; and Y;, and Y;.; are

? The states in alphabetical order are: Andhra Pradesh, Bihar, Gujrat, Haryana, Karnataka, Kerala,
Madhya Pradesh, Maharashtra, Orissa, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh and West Bengal.

3 A set of tables containing the data for the variables is available from S.Fan, P.Hazell and S. Thorat
(1999), ‘Linkages between Government Spending, Growth and Poverty in Rural India’, Research Report

# 110, International Food Policy Research Institute, Washington, D.C.



quantities of output i at time ¢ and #-1, respectively. Farm prices are used to calculate the
weights of each crop in the value of total production. W;, and W;,; are cost shares of
input i in total cost at time ¢ and -1, respectively; and X, and X;,.; are quantities of
input i at time ¢ and ¢-1, respectively. Thirty crops (rice, wheat, jowar, bajra, maize, ragi,
barley, gram, other pulses, groundnut, sesame, linseed, rapeseeds and mustard,
castorseed, safflower, nigerseed, coconut, soybeans, sunflower, potato, tapioca, sweet
potato, banana, cashewnut, coffee, jute, sugarcane, onion and fruits) and three major
livestock products (milk, chicken, and sheep and goat meat) are included in total
production. Farm prices are used to calculate the output shares.

Five inputs (labor, land, fertilizer, tractors and animals) are included. Labor
input is measured as total female and male labor (including both family and hired)
engaged in agricultural production. A conversion ratio of 0.7 has been used to convert
female labor to its male labor equivalent. Land is measured as net cropped area;
fertilizer input is measured as the total amount of nitrogen, phosphate and potassium
uses; tractor input is measured by the number of four-wheel tractors (including both
private- and government-owned); and animal input is measured as the number of draft
animals (total buffalos). Wages of agricultural labor are used as the price of labor; rental
rates of tractors and animals are used for their respective prices; and fertilizer price is
calculated as a weighted average of the prices of nitrogen, phosphate and potassium.
The land price is measured as the residual of total revenue net of measured costs for
labor, fertilizer, tractors and bullocks.

NAG is the total number of persons engaged in non-agricultural activities in the
rural areas. Employment is defined on the basis of usual status (more than 50 percent of
time) of workers in a particular employment category. The data is collected by the

National Sample Survey Organization (NSSO) every five years beginning in 1973.
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There are two kinds of surveys that the NSSO carries out under various heads. The
quinquennial data that we use are the ‘full-sample’ years that are more reliable as
compared to the intervening ‘thin-sample’ years. We convert the quinquennial data to
an annual series taking the population growth rates for the respective states as weights.
However, estimations using only the data for the available series have not shown
substantial differences in estimates in this and earlier studies.

The results of the causality test are presented in Table 1. We include six lags of
both the TFP and the NAG variables for estimation. Although in most of the analysis of
standard time-series models lag lengths of less than four are considered, ideally we
sﬁould test for causality using an arbitrarily long lag length. However, as noted by
Holtz-Eakin et.al (1998), the optimal lag-length should be less than one-third of the total
time period to avoid overidentification problems.

The NAG variable is significant in the third and fourth lag for the TFP equation
in Table 1. For the NAG equation, only the fifth lag of the TFP variable is significant.
We perform a Wald test under the null hypothesis of all coefficients of the explanatory
variables are jointly zero in each equation. We can see that in both cases, the hypothesis
is rejected at one percent level, indicating the existence of bi-directional causality in the
two variables. Moreover, we do not find any evidence of first-order serial correlation in
the error term in both cases. We can thus use the techniques described in the previous
section to efficiently estimate the productivity impact of nonfarm sector on agriculture

using an appropriate econometric model, as we shall do in the next section.

Productivity Impact of the Non-farm Sector:

The two-way causality tests have shown that there may exist endogeniety
problems associated with the determination of the TFP and the non-farm employment in

India. This may be due to regional variation in the development of the non-farm sector,

11



with some regions having higher levels of such employment than others. Using standard
ordinary least squares techniques will lead to serious errors in estimation. Although we
can get estimates that are robust for heteroskedasticity and reduce the spatial effect by
using regional dummies, it can still be subjected to the criticism of endogeneity. The
problem then is to find the appropriate instruments that are uncorrelated not only with
the error term but also with the regional effect. Therefore we use the dynamic panel
technique we have explained in Section IL

We would undertake the estimation under three different model specifications
with all the variables in their natural logarithms. The first model uses the current non-
farm variable as the regressor along with a constant, with regional dummies:

InTFF, =a,+ f,InNAG, +7, +v, (8)

where «, denotes the constant term that would capture the common shocks across

states in each year and NAG is the non-agricultural employment variable in the model.
As we have seen from Table 1, it might be the case that the TFP of the previous
year may have a substantial effect on the current value of the variable. In reality, this is
more likely to be the case since the cultivators base their decisions on historical levels
of the productivity while choosing their optimal production inputs. Thus we have to
consider an auto-regressive model as described in Section II in order to control for the
effect of the past productivity level.
InTFE, =a, + f, hWTFPl, + f3,In NAG, +1, + U, 9)
In this case as well, the ordinary least squares estimate would be upwardly biased in the
case of the TFP variable since the estimation would take into account only the first lag
of the variable, whereas the system estimator would include further lags. The

information contained in the additional instruments would better reflect the optimal

12



decision-making process of the cultivators and we would expect the coefficients to be
more efficient.

In the same vein, the non-farm sector employment would also depend on past
values and should be included in the estimation.

InTFP, =, + 5, InTFP1, + 3, In NAG, + 3, In NAG1, + 1, + v, (10)

We would expect the coefficient on the current value to be positive, because a higher
employment in the non-farm sector would imply better supply of non-farm goods to the
rural sector, that in turn would mean a higher level of productivity for the rural sector as
a whole. If the total effect S, + f, is positive, then we can infer that both the lagged and
the current values of the non-farm sector have a significant effect on productivity in the
rural areas.

In each of the above cases, we shall compare the levels, differences and the
dynamic panel formulation for estimation. The level and difference formulations use the
ordinary least squares corrected for heteroskedasticity and fixed effect dummies, which
are regional dummies for the former and time dummies for the latter. The system
method is estimated with a constant and the regional dummies to control for
heterogeneity across states.

Following Arellano and Bond (1998), we restrict the number of instrument that
we use for later equations in the model. We use a maximum of six lags for the lagged
dependent variable and the regressors to avoid overfitting bias. To test for the presence
of bias in the selection of the model due to the use of more instruments than are
required, we perform a Sargan test under the null hypothesis of the absence of excess
instruments. We also perform stationarity test for the error term under the null
hypothesis of presence of first order serial correlation. In case we find significant

negative values for the test statistic, we can say with a certain degree of confidence that
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the estimates are free from biases due to non-stationarity of the data series used. This
condition is very strict in the case of the system GMM estimator.

In some cases, the t-statistic may not truly reflect the joint significance of the
estimates under scrutiny. We perform the Wald test under the assumption that all the
coefficients of the estimates are jointly zero. Even in the case that a particular estimate
is not significant, it may so happen that the Wald test may reject the null for joint
significance. In such a case, it would still be advisable to include the regressors in the
model specification.

The estimation results are given in tables 2, 3 and 4. All the results shown are
the one-step estimates with robust test analyzed using the GAUSS program code,
DPD98 for Gauss, written by Arellano and Bond.

An analysis of the Tables 2 to 4 indicates that our using lagged values of
dependent (and exogenous) variables lead to better estimates for the data. Among the
three models considered, only the system GMM method gives consistent results for both
the serial correlation and the Sargan tests, as well as more dependable estimates of the
coefficients. We find that the coefficients for lagged InTFP and InNAG are positive and
significant in the level and the system specifications. In the difference model, the
coefficient for the lagged InTFP is negative and that for INNAG is positive but not
significant in any model specification. This is consistent with the finding of the
literature on productivity of public infrastructure in the U.S (Holtz-Eakin 1994, Evans
and Karras, 1994) and a more recent study on India by Zhang and Fan (2001). The
reason for this is that in the difference model, only the very short-run effects are
evident. As we have seen from the causality test results in Table 1, the productivity
effect of the NAG variable is expected over a longer period of time, that the level and

the system models try to capture.
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Concentrating our attention on Tables 3 and 4, we can infer that there is no
random variation in the coefficients for the lagged InTFP and the InNAG variables
across the three models (the estimates of the lagged InTFP variable is in fact nearly the
same). The estimated effect of the lagged InTFP variable is negative when estimated in
differences, but positive in the other two. The estimated effect is less in the system
specification for the lagged InTFP and more for the InNAG variable, primarily because
in the system specification, a considerable portion of the information contained in the
initial conditions and the later instruments is used in the estimation. The test for the
presence of serial correlation is rejected at the 10 percent level for the second
formulation and at less than 5 percent level for the system method of estimation. This is
important since we can then say with a certain degree of confidence that the two series
are mean-stationary and the causality test results as well as the estimates are free from
the bias of correlation among the error terms. This means that we can use the full set of
moments in the estimation as outlined in  Section IL
Comparing our results with that of Zhang and Fan (2001), we find that in the
regression equation (9), our estimate of the effect on TFP of the non-farm variable
(0.363) is substantially higher than the one obtained for road (0.012) for rural India.
This can be due to the possibility of a more direct linkage between the non-farm sector
and agricultural productivity than the effect of road infrastructure. However, they both
point to the need for increasing the focus on rural infrastructure and off-farm
employment opportunities in the rural areas.
Including a lagged value of the exogenous regressor in the regression (10)
increases the value of the coefficient of INNAG (Table 4). The coefficient of INNAG1 is
not significant as per the t-statistic. However, the Wald test of joint significance of the

two variables rejects the null hypothesis that they are jointly zero. Thus, the absolute
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effect of the NAG variable is nearly the same as the one obtained by only including the
NAG variable in the estimation equation (9). Thus, based on this formulation, we can
infer that the effect of the non-farm employment is unambiguously positive and

significant for the fourteen Indian states under consideration.

Conclusion

In this paper, we set out to analyze the impact of non-farm sector development
on agricultural productivity. Using a panel dataset for fourteen major states of India
from 1973 to 1993, we conduct a causality test to determine, firstly, whether the two
series of data for the variables are causally related or not, and secondly, to determine the
direction of the same. In doing so, we use a set of instruments that are uncorrelated with
the errors, using the dynamic panel approach of Arellano and Bond (1991) and Blundell
and Bond (1999). As expected, we find that non-farm employment and productivity
affect each other in the long run, allowing for individual effects across the states under
consideration.

To evaluate the magnitude of the productivity impact of the non-farm sector,
estimation procedure is carried out under three separate formulations. In the first
formulation only the exogenous variable, NAG, is included. The lagged dependent
variable (TFP) and NAG are used as regressors in the next one. The third formulation
uses lagged value of the exogenous variable along with the previous variables in the
estimation. Using the differenced, level or the system model, we compare the magnitude
of the impact under the above formulations. The first formulation and the differenced
model do not offer any insight because the effect of previous TFP levels and the long-
run relationship is clearly ignored in these cases. However, comparing the levels and the

system models, we can infer that the estimates are robust to the alternative formulations
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and that the impact of the non-farm employment on productivity in agriculture is
unambiguously positive and significant, and the magnitude of the effect is of a
surprisingly high order.

There are several lessons to be learnt from the analysis. Firstly, contrary to the
prevailing wisdom, the non-farm sector not only provides a market for the agricultural
sector goods, it has an important role to play in the improvement of productivity in
agriculture itself. It is important to recognize that much of the impact of non-farm sector
on agricultural productivity has taken place in areas where the level of agricultural
productivity is higher, as is evident from the significance of the lagged values of TFP in
| our analysis. However, the need for non-farm sector development is much greater in
areas of depressed productivity growth in agriculture (the so-called ‘less favoured
areas’) since off-farm work can smooth out income and consumption fluctuations and
encourage farmers to take risks and invest more in productive inputs in the long run.
Our causality test results bear testimony to this aspect of the farm-nonfarm linkage.

Since the non-farm employment in rural areas are primarily in small and
medium-scale enterprises, there is an important role of the government in encouraging
entrepreneurial activities and create a conducive environment for investment. This study
makes an important contribution in clarifying the existence of the linkage between
agriculture and non-agriculture sectors in rural areas from a methodélogical point of
view. From a technical perspective, it utilizes the panel data techniques that have been
shown to be more powerful than traditional time series methods and extends the debate
of rural infrastructure and productivity to the rural non-farm sector in developing

countries.
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Table 1: Causality Tests for TFP and NAG

Dependent Variable: TFP Dependent Variable: NAG
Variable Coefficient P-value Coefficient P-value
Const. -0.344 0511 0.081 0.448
TFP1 0.311 0.000 -0.028 0.232
TEP2 0.291 0.000 0.014 0.441
TEP3 0.124 0.003 0.028 0.124
TFP4 -0.042 0.649 0.014 0.175
TFP5 0.193 0.000 -0.037 0.002
TFP6 0.209 0.000 0.005 0.659
NAG1 0.799 0.251 1.449 0.000
NAG2 -0.629 0.499 -0.391 0.000
NAG3 -1.236 0.011 -0.013 0.780
NAG4 21581 0.042 -0.373 0.000
NAGS -1.439 0.263 0.168 0.211
NAG6 0.368 0.698 0.154 0.031
Wald Test NAG1-NAG6 0.000 TFP1-TFP6 0.002
Test for Serial -2.159 0.031 -2.391 0.017
Correlation




Table 2: Estimation of TFP, = + 8,NAG, +1, + v,

1) . (2) 3)
Difference (OLS) Level (OLS) System (GMM)
Const. -0.070 (0.053)**  1.757 (0.000)* 0.911 (0.372)
NAG 0.035 (0.805) 0.343 (0.000)* 0.478 (0.000)*
Serial Corr. Test -2.27 (0.026)** 1.933 (0.053) -2.236 (0.025)**
Sargan Test 13.18

Note: The figures in parenthesis indicate p-values
*denotes significance at 1% level, **denotes significance at 5% level.
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Table 3: Estimation of TFP, = a, + B,TFPl, + B,NAG, +7, +0,

I Q) G
| Difference (OLS)  Level (OLS) System (GMM)
Const. 0.028 (0.406) 0.684 (0.251)  0.348 (0.718)
TFP1 -0.538 (0.000y*  0.504 (0.000)* 0.321 (0.034)**
NAG 0.033 (0.805) 0.191 (0.000y*  0.363 (0.000)*
Serial Corr. Test | 0.251 (0.802) -1.923 (0.055)  -2.053 (0.040)**
Sargan Test 11.39

Note: The figures in parenthesis indicate p-values
*denotes significance at 1% level, **denotes significance at 5% level.
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Table 4: Estimation of T7FP, =, + 3,TFPl, + B,NAG, + ,NAG1, + 1, + v,

(1) (2) 3)

Difference (OLS) Level (OLS) System (GMM)
Const. 0.029 (0.387) 0.670 (0.503) 0.024 (0.782)
TFP1 -0.538 (0.000)* 0.505 (0.000)* 0.419 (0.001)*
NAG 0.066 (0.836) 0.241 (0.318) 0.674 (0.046)**
NAG1 -0.044 (0.889) -0.049 (0.877) -0.358 (0.293)
Wald Test Hy: 3, + By=0 0.043 (0.979) 6.718 (0.035)**  18.44 (0.000)*
Serial Corr. Test 0.274 (0.784) 1.931 (0.054) -2.087 (0.037)**
Sargan Test 11.61

Note: The figures in parenthesis indicate p-values
*denotes significance at 1% level, **denotes significance at 5% level.
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