No. 936

Map Projection Errors in the Weber Problem

by
Yoshiaki Ohsawa and Takeshi Koshizuka

June 2001






Map Projection Errors in the Weber Problem

Yoshiaki OHSAWA
Takeshi KOSHIZUKA

Institute of Policy and Planning Sciences
University of Tsukuba
Tsukuba 305-8573, JAPAN
phone: +81-298-53-5224
fax: +81-298-55-3849
e-mail: osawa@sk.tsukuba.ac.jp.

June 29, 2001

Abstract

True demand data lie on the surface of the earth. However, most of their location
are given not by spherical but planar data which are obtained from a map projection.
Some distortions occur as a result of using these planar location data. The objective of
this paper is to analyze how cylindrical projections cause the distortion in the Weber
problem where all the demand points are distributed on the Northern Hemisphere. First,
we demonstrate that planar solutions are always located on the south of the spherical
solution if we choose Mercator projection, or equirectangular or equal-area projections
with standard parallels near the demand data. Second, we verify that this geographical
tendency is inclined to hold as the demand points are distributed symmetrical or widely
or toward the north, although we choose other standard parallels.
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1. INTRODUCTION
As economical, political, industrial and transportation systems become progressively more
global, locational analysis on the surface of a sphere becomes more important. In answer to
this issue, Dreznier and Wesolowsky (1978), Litwhiler and Aly(1979,1980), Love et al.(1988),
Xue(1994), Hansen et al.(1995) have formulated spherical Weber problems. In their formu-
lations, demand points and the facility to be located are on the surface of a sphere, and that
transportation costs are measured based on great circle distances.

Although true demand data are distributed on the surface of the earth, most of their
locations are expressed by planar coordinates produced by some type of map projection. In
the extreme case, such planar data are only available for actual facility planning. Since there
are no map that can accurately represent the distances between all pair of points on a sphere,
‘the spherical Weber problem is essentially different from any planar Weber problem. As a
result, an error is incurred if planar demand data are used, as pointed out in Litwhiler and
Aly(1979). Accordingly, the validity of the conclusions drawn employing the planar data are
questionable. Thus, the examination of such an error is important in locational analysis.
In this paper, the error is called a map projection error. Litwhiler and Aly (1979) showed
that using planar data generated by an equirectangular projection instead of spherical data
results in serious projection errors based on some small-size computational experiments. In
contrast to their numerical work, the goal of this paper is to characterize the projection
errors theoretically. Surprisingly, there has previously been no formal analysis to clarify the
characteristics of such projection error theoretically, as far as we are aware.

We concentrate on the case where all the demand points are located on the Northern
Hemisphere. This is because many countries are situated in either the Northern or Southern
Hemisphere only, We also specifically deal with three cylindrical projections, namely, Merca-
tor, equirectangular and eylindrical equal-aree projections. Examples of these projections are
presented in Figures 1, 2 and 3, respectively. The Tissot’s indicatrices, which measure how
angular and area distortions occur in the map projections, are also displayed. These projec-
tions and the indicaftrices are explained in McDonell(1991), Snyder(1993), Bugayevskiy and
Snyder(1995). There are two reasons for concentrating on these map projections. First, they
are so well-known that they can be found in most standard textbooks of cartography, and
their transformation formulae are very simple to construct and interpret. Hence, a number of

different cylindrical projections are proposed based on them. Their use from a historical point
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of view is stated in detail in Snyder(1993). Second, they have different special properties such
as conformality, equidistance and egual-area, which affect map selection for certain purposes.
The principal advantage of Mercator projection is conformality, so it has been applied to
navigator charts for 400 years. As shown in Figure 1, all Tissot’s indicatrices are given by
circles, indicating that there is no local angular distortion at every points. Equirectangular
projection, which is sometimes called the cylindrical equidistant projection, has the benefit
of scale precision on all the meridians and on the two parallels. It has been used in general
atlases and small area maps such as city and country maps. Since equal-area projection
preserves area size, it has been used to show statistical density data. As presented in Figure
3, all Tissot’s indicatrices are shown by circles or ellipses of the same area, leading to no area
distortion at every points.

This paper is organized as follows. Section 2 describes the formulations and the solution
methods for spherical and planar Weber problems. Also, the computational examples for
three moderately large regions on the Northern Hemisphere, namely, the European Union,
the United States and Japan are discussed and interpreted. Section 3 provides the theoretical
results for explaining the computational results. Section 4 contains our conclusions. All the
proofs are collected in the Mathematical Appendix for convenience.

In this paper we set up a system of traditional latitude-longitude coordinate in order to
specify the locations of points on the surface of a sphere, and a system of Cartesian coordinate
to express the ones in a plane. For clarity, we represent the Cartesian coordinate as (-, ) and

the latitude-longitude one as {:,-}.

2. WEBER PROBLEMS AND PROJECTION ERRORS

2.1. Spherical Weber problem
Let p1 = {¢1,M1}, -, Pn = {¢n, A} be the distinct demand points on the surface of the
Northern Hemisphere whose radius is normalized to equal one. We define the demand set S
by § = {p1,P2,"**,Pn}, and the index set I by I = {1,...,n}. Let w; be the weight of i-th
demand point. Then the spherical Weber problem is formulated as follows:

min SW (p) = sz‘5(PhP), (1)

i€l

where p = {¢, A} is the location of the facility on the surface of a sphere to be set up, and

5(p, pi) is the great circle distance between p and p;.
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We may assume that local spherical solution for the set S is located on the prime meridian
without loss of generality. So we denote it by p* = {¢*,0}. There are now two cases on the
location of p*, floating case: p* ¢ S; and absorbed case: p* € S: see Boltyanski et al.(1999).
In the floating case, the spherical solution does not coincide with any demand point and in
general it cannot be expressed analytically.

Throughout the rest of the paper, we take the following assumptions: (al) they are
covered by a spherical disk with a radius of 7/4; and (a2) the demand set can not create the
absorbed cases. The spherical Weber problem may have local as well as global minimizers
due to the nature of the non-convexity of the objective function SW(p) in (1). Drezner and
Wesolowsky (1978) showed that if all the demand points are covered by a spherical disk with
a radius of 7 /4, then a local minimizer is also global. Therefore, assumptions (al) and (a2)
mean that we can concentrate on the global solution in floating case. Similar results for
local minimum and/or for the absorbed cases can be obtained but the presentation is rather

complicated.

2.2. Plenar Weber problem
Let f(p) = (fz{p), fy(p)) be the planar image of p on the surface of a sphere under a map
projection f. The planar Weber problem generated by the map projection can be expressed

as follows:

mlnPWp S)= sz (f(p:), £(p)), (2)
i€l

where d(f(p;),f(p)} is the Euclidean distance between the planar images f(p;) and f(p).
Note that its optimal location cannot be always expressed analytically, as in the spherical
Weber problem.

As shown in Love et al.(1988) and Boltyanski et al.(1999), the partial derivative of PW (p)

evaluated at the spherical solution is expressed by

dPW(p: S) _ v, Julpi) ~ fy(p%)
By =" = Ew‘d(f(m),f(p"‘))'

(3)

Since dffp;){—-; g: is the rooted unit vector from f(p*) in the direction of f(p;), the derivative
can be expressed as the weighted sum of the y-th coordinate of such vectors, i.e, y-th direction
force component. This partial derivative gives the slope of the tangent to the objective
function PW(p) at the spherical solution p* along the prime meridian toward the North

pole. Hence, aﬂ‘%ﬂlp;_p, > 0 means that tghe south becomes the direction of decrease in



the planar objective function at the spherical solution, i.e., the spherical solution is worse
than some points of its southern neighborhood in terms of that planar Weber problem. Thus,
in order to show that most planar solutions are located on the south of the spherical one, we
shall prove a—‘p—%ﬂ:ﬂ]l;:p. > 0.

On orthographic projections the surface of a sphere is projected with parallel rays on a
perpendicular plane, so it has been employed for maps of celestial bodies: see McDonell(1991}),
Snyder(1993), Bugayevskiy and Snyder(1995). An example of this projection is given in
Figure 4. Its advantage is that all great circle arcs passing through the center are shown as
straight lines. Its another advantage is that the bearing from the center to all the points on
the surface are preserved. Based on these advantages, Litwhiler and Aly(1980) demonstrated
that the planar solution on the orthographic projection centered on the spherical solution
becomes the spherical solution. Under the orthographic projection centered on p* = {¢*,0},

P = {9, A} on a sphere is transformed into
g(p) = (g:(P), gy(P)) = (cos Psin A, sin ¢* cos @[1 — cos A] + sin(é — ¢%)). (4)
The result by Litwhiler and Aly(1980) together with inequality (3} leads to 3~y w; %%%%%}%

0 in floating cases. Therefore, @%Bﬂ]pzp. > 0if

fy(Pi) - fy(p*) gy(pz') _ gy(p*) '
Lo, 1) dlglehe®)’ ©

which will be useful in our succeeding analysis.

We examine map projection errors generated by Mercator, equirectangular and equal-area
projections. As shown in Bugayevskiy and Snyder(1995), Mercator projection transforms
p = {¢,\} on the spherical surface into (A, In[tan(n/4 + ¢/2)]). The last two projections
produce a variety of maps by varying the location of standard parallels. Standard lines afe
defined as lines which do not change length when projected from a generating sphere to a
map. The image of p under the equirectangular projections is (A cos 8, $), where 8th parallel
(0 < 8 < 7/2) is standard. Its image under the equal-area projection with standard parallel
at 6 is (A cos @, sin ¢/ cos §). Note that Behrmann projection and Peters projection are special
cases of the cylindrical equal-area projection, as pointed out in Snyder(1993). In Figures 2
and 3, the standard parallels are placed at 30° and the center lines are fixed at 135°FE.

As shown in Figures 1, 2 and 3, these three projections are composed of an evenly spaced
network of horizontal parallels and vertical meridians, and their only differences is in the

spacing between parallels. Although the orth‘fgra,phica,l projection appears to preserve the



bearing from the center to all outer points, they cannot preserve such bearing. Therefore, we
can imagine that these projections will entail map projection error.

There are two notes that will be of use in our succeeding analysis. First, the three
projections show any great circle on the Northern Hemisphere as a concave downward cuive,
like the great circle arcs between Tokyo and Hawaii in Figures 1, 2 and 3. Second, both on
the equirectangular and equal-area projections, the Tissot's indicatrices are given by circles
if and only if they are located on the standard parallels. This can be confirmed in Figures 2

and 3. The proof of these two notes are given in Appendix A.1.

2.3. Numerical Examples

We shall examine numerically how the planar solutions differ from the spherical one by using
the following three data sets: (d1) national data in the European Union (EU); (d2) state
data in the United States (US); and (d3) prefectural data in Japan. In the first data set,
we use the locations of the capitals of 15 nations as the demand points and their national
populations as their weights. Similarly, in the second (third) data, we use the capitals of 51
states (47 prefectures) as the demand points and the population of their states (prefectures)
as their weights. Note that these three data sets fulfill assumption (al) made in Section 2.1.

For each data set, first we find out the spherical solutions by using standard iterative
solution procedure: see Drezner and Wesolowsky (1978), Love et al.(1988). Fortunately,
no absorbed cases occur, indicating that these data sets meet assumption (a2). Second, we
compute planar solutions on the three types of map projections by means of common iterative
solution method: see Love et al.(1988). Under equirectangular and equal-area projections,
the standard parallels range from 0° to 80° at 10° intervals. Third, we calculate the great
circle distances in km between the spherical and planar solutions as location errors.

All the computational results are provided in Tables 1, 2 and 3, where @ indicates the
latitudes of the standard parallels. Bold figures in the coordinate of latitude represent that
planar solutions are located on the south of the corresponding spherical solution. These
tables reveal that many planar solutions are located on the south of the spherical solution,
although choice of maps and standard lines affects more or less these planar solutions. More
precisely two observations can been defined.

{c1) the geographical tendency necessariiy holds if we choose Mercator projection, or equirect-

angular or equal-area projections with standard paralle_ls near the demand data; and
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(c2) the geographical tendency more frequently holds for the EU’s and US’s data sets than
Japan’ one.

The EU’s and US’s data sets differ geographically from that of Japan'’s in three respects:
(gl) the EU’s and US’s data distributed more symmetrically than Japan’s data set;

(g2) the US’s data set has the widest distribution among the three data sets; and

{g3) the EU’s data set is located most northerly among the three data sets.

The second observation will be explained theoretically based on the three abovementioned

geographical points.

3. THEORETICAL RESULTS

3.1. Interpretation of the first observation

Figure § presents the locations of the fifteen capitals in the EU on Mercator projection map.
Figure 6 expresses the locations on the orthographic projection centered on its spherical
solution. In these figures, the locations are indicated by e and o, respectively. They are also
connected with the spherical solution, denoted by ®, by great circle arcs. Figure 7 shows
the two types of locations for these capitals obtained by merging Figures 5 and 6 in such
a way that the locations of the spherical solution on Figure 5 and Figure § coincide. We
see from Figure 7 that each great circle arc on the orghographic projection always lies above
the corresponding great circle arc on the Mercator projection. Thus, we would expect that

inequality (5} to hold.

Property 1 Under Mercator projection, or under equirectangular or equol-oren projections

with the standard parallel fived at ¢*th parallels, 227R2) > 0,

lp=p

See Appendix A.2 for derivation of this property. On equirectangular or equal-area projec-
tions, the distortions of scale and shape characteristics are pretty small in a narrow region
near the standard parallels because these projections preserve the distances on that parallel.
Therefore, it is natural for decision-makers iﬁ actual facility planning to choose maps with a
standard parallel near the demand set as much as possible from a practical point of view.
Property 1 can be intuitively interpreted as follows. There is no angular deformation at
the spherical solution on these projections, as seen in Section 2.2. In addition, any great circle
on the Northern Hemisphere is represented by a concave downward curve, as pointed out in

the said section. Combining these two results gives that they underestimate all bearings since
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the orthographic projection preserves bearing.

On the other hand, if the standard parallel is set more south (resp. north) than the
spherical solution, then the length of the parallel where the spherical solution lies will I?e too
long (resp. too short), as compared to that of meridians. This implies that the image of
great circle arcs starting from the spherical solution in the south (resp. north) direction can
be above in its neighborhood than that on the orthographic projection centered on it. This

can be confirmed in the shapes of Tissot’s indicatrices in Figures 2 and 3.

3.2. Interpretation of the second observation from the first geographical point of view
We call the demand set S symmetric if the demand set S consists of an even number of
equal-weighted demand points with n = 2k(k > 1) and there exists a spherical point pg in
such a way that the great circle arc between p; and pyy; passes pg for every (1 < i < k).
An example of a symmetric demand data is four demand points with the same weight on the
vertices of a quadrilateral. Another examples are the sets wherein each member is located at
all the vertices of spherical regular n-gons for even n. It is evident from the definition of the
symmetric set that pp is a spherical solution.

Since the line connecting the planar images f(p;) and f(pg.:) 18 concave upward, it
crosses the prime meridian at a southern parallel than f(p*)} for every i(1 < ¢ < k). Hence,

we can expect that inequality %ﬂﬂlp=p. > 0 holds.

Property 2 If S is symmetric, then inequality %ﬁllpzp* > 0 holds under equirectan-

gular or equal-area projections with any standard parallel.

Thus, Property 2 may give a justification for the second observation theoretically.

3.5. Interpretation of the second observation from the second geographical point of view
If a projection shows a great circle arc on the Northern Hemisphere as a concave curve, then
it further underestimates actual bearing as the point is farther from a starting point along the

arc. Therefore, we would expect that inequality a—P%ﬂ « >  holds, when the demand

lo=p
points are widely distributed.

For the demand set S, consider another set § = {P1,P2: -, Pn} on the spherical surface
that is generated by extending p; outwards from the spherical solution p* along the great
circle through p* and p;. Let a(p*, p;) be the bearing from p* to p;. Mathematically, for a

fixed dilatation rate A(> 1), $ is uniquely dej}ermined such that §(p*, p;) = Ad{p*, pi) and



a(p*, pi) = a(p*, pi) for all i € I. Since the set § is similar to the original demand set S, p*

is also a spherical solution for the demand set s.

Property 3 As the dilatation rate A increases, so does ﬂ‘%ﬁl[p:p. under equirectangular
or equal-area projections, regardless of standard parallels, provided that all the p;’s ezist on

the Northern Hemisphere.

‘The proof is provided in Appendix A.3. This property cannot necessarily ensure E}%—é@ |p=p, >

0. However, we can expect this inequality to hold as the demand points are more widely dis-
tributed over a large region of the surface. Thus, Property 3 may give an explanation for the

second observation.

3.4. Interpretation of the second observation from the third geographical point of view

Although the image of the great circle arc starting from a point in the south direction under
any cylindrical projection always goes down, the image under the orthographic projection
centered on the point may go up. This can be seen in Figure 4, where the planar image
of the great circle arcs from Tokyo to Hawaii goes up. In addition, as the demand points
are situated toward the North Pole, this contrast becomes more remarkable, indicating that

inequalities QP—(méypiél . > 0 may hold through inequality (5).

lo=p

For the demand set S, consider another set § = {p1, Pg, - -, Dn} on the surface of a sphere
that is generated by rotating p;’s northward around the axis through two spherical points
{—=/2,0} and {m/2,0}. Mathematically, for a given rotation angle ®(> 0}, $ is uniquely
determined such that p* = {¢* + ®,0}, a(p*,P:) = a(p*, p;) and 8{p*, p:) = é(p*,p;) for
all i € I. Thus, p* is rotated along the prime meridian through @, while both its distance
and bearing to p;’s are kept fixed. Since the set 5 is geometrically congruent to the original
data set S, p* is a spherical solution for the demand set S. Divide the set S into St
and §~, where 8 = {p;|fy(D:) > ¢* + &} and 5~ = {p|fy(Pi) < ¢* + &}. Note that

BPW(p:8) _ 8PW(p:8t) | oPW(p:5~) OPW(p:St) - BPW (piS-
dy - ay + By : By |p=p. < ( and ——a(y——l > 0.

lp=1=*

Property 4 As the rotation angle © increases, both under equirectangular or equal-area pro-

IPW (p:S

. + :
jections, 1) the number of the members within St decreases and 2) %y——lh):p. increases,

regardless of standard parallels, provided that all the p;’s exist on the Northern Hemisphere.

The proof is given in Appendix A.4. This property does not necessarily ensure a—‘pzvggﬁl |p=p, >

0 because 22 WBS:SH

|paspe may decrease with g’ However, since we can expect the inequality



to hold as the demand set is located toward more north, Property 4 can give a reason for the

second observation.

3.5. Other cylindrical map projections
The projection errors on other cylindrical projections will be examined. Under Gall’s stereo-
graphic projection, the image of p = (¢, A) is given by (), 2tan(¢/2)). Its planar coordinate
under Miller cylindrical projection is given by (A, (5/4)} In[tan(x/4 + 2¢/5)]). These trans-
formation equations, which can be found in Bugayeuskiy and Snyder(1995), resemble the
Mercator projection. Any great circle in the Northern Hemisphere under these projections
appears as a concave downward curve, as demonstrated in Appendix A.l. Therefore, Prop-
erties 2 and 3 hold for these two cylindrical projections. As shown in Snyder(1993), central
cylindrical projection transforms p into (A, tan¢). Distortion becomes increasingly extreme
near the polar regions, so it has been rarely used for pratical purposes, and it can not show all
great circles as concave downward curves. Therefore, we see that Properties 2 and 3 cannot
be applied to all ¢ylindrical projections.

Property 4 can be applied to cylindrical projections where the spacing between parallels
is more compressed with their latitudes.

In conclusion, we see that our findings are applicable to many other cylindrical projections.

4, CONCLUSIONS

This paper has analyzed how cylindrical conformal, equidistant, and equal-area map projec-
tion introduce errors in planar Weber problems. It makes at least two principal contributions.
Firstly, it showed that most planar solutions are located on the south of the spherical solution.
This geographical tendency was inclined to hold as the demand points were distributed widely
or symmetrically or toward the north. Secondly, it demonstrated that this geographical ten-
dency is always present if we choose Mercator projection, or equirectangular or equal-area
projections with standard parallels placed at the latitude of the spherical Weber solution.

We have assumed in this paper that all demand points are located on the Northern
Hemisphere. It is clear, however, that based on symmetry the same story holds if demand

points are located on the Southern Hemisphere.
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MATHEMATICAL APPENDIX
A.1. Proof of two notes in Sections 2.2
In order to prove the first note, it suffices to show that %%%; < 0 for any point p = {q&,_}.\} on
the great circle arc between p* and p;. Assume that A; > 0 and obtain A; < 0 by symmetry.
Let To be the tangent of the counterclockwise angle from the positive z-axis to the vector
from the planar locations g(p*) to g(pi) under the orthographic projection centered on p*.

Its transformation {4) implies

_ 9y(pi) — gy(p*) _ sing*cos il — cos Ai] + sin{¢; — qf)*)‘

= gz(pi) — 92(P*) sin X; cos ¢

Since the orthographical projection centered on p* preserves bearing from p* to p, we get
g g g

sin ¢* cos ¢[1 — cos A] + sin(¢ — ¢*)
sin Acos¢

=To.
Hence, ¢ can be explicitly expressed with respect to A as follows:

¢ = arctan[h(\)], (6)

— * v ¥ 2 . . 1 . _
where h(\) = tan ¢*+/1 + (Tp/ sin ¢*) sin (}\ + arcsin ———W) Straightforward ma.
nipulation, while noting A(X)" = h()), yields

&6 Y & _ﬂf\_)_(1+z(h('\)')2). )

AT THANZ AT 1+ h(N)? 1+ h(\)2

Differentiating f,(p) with respect to fz(p), while noting d—f—i%y = 0 for the projections

to be considered in this paper, and using (6) and (7), yields

dfy(p) _ dfy(p)dé dA

dfz(p) d¢ drdfz(p)’

dfye) _ | Lflp) dfy(p)\ (de)? dfy(p)| ( _dA
TP = [( S )(ﬁ) ~tand =4y ](dfx(ll))'

In order to show that the sign of this second derivative is always negative for all permissible
values of ¢, it suffices to prove that 1) 9%31 > 0and; 2) A = %}gf—) — 2tan ¢9~":}éﬁ <0
because d—ﬁ—"(—a > 0 for the projections.

If we use the equirectangular projection, then 9%%@ =secf > 0 and %&Eﬂ = (, indi-
cating that A > 0. When we adopt the equal-area prdjection, then %31 =cos¢/cosf >0
and %’;&m = —sin¢/cos@® < 0, indicating that A > 0. For the Mercator projection,

dfy(p) - sec¢ > 0 and gifyjzgl = tan ¢sec ¢, leading to A = —tangsecp < 0. In the case
d¢ dé
11



of the Gall projection, M = sec?(¢/2) > 0 and —jg;gl’l tan(¢/2) sec?(¢/2), show-
ing A = sec?(¢/2)(tan(¢/2) — 2tan¢) < 0. When we use the Miller projection, then
gﬁ—l = sec(4¢/5) > 0 and %&ﬂ = (4/5)tan(4¢/5) sec(4¢/5), indicating that A =
sec?(4¢/5) ((4/5) sin{4¢/5) — 2tan ¢ cos(d¢/5)) < —sec?(d¢/5)sin¢ < 0.

Next, let us prove the second note. Under Mercator or under the equirectangular projec-
tions with the standard parallel fixed at ¢*th parallels, d—%ﬂ = gec¢* and m‘:'\g =1. On
the other hand, under equal-area projection with the standard parallel fixed at ¢*th parallels,
4ulp) — 1 and 7555 = sec ¢*. Accordingly, while using the first in {7), we obtain

do
dfy(p) d¢ dA )‘A:O =sec¢*( 1 To ) —To,

df,(p)P=*" " "~ dé drdf.(p 1 + tan? ¢* cos ¢*

as required. O

A.2. Proof of Property 1

Denote T'(p;) as

T(pz) — fy(pt) - fy(P*%.

fz(pi) — fo(P*

Since the image of a great circle arc is concave downward, we get T'(p;) < 3};(? = Tp. This

implies %%}%%% < %ﬁ, so we obtain inequalities (5), as required. O

A.3. Proof of Property 3
For any point p = {¢,A} on the great circle through p* and p; with A; > 0, Q{%_Bl >0
because of cylindrical projections. On the other hand, from the definition of T'(p), it is easy

to check that

dT(P) _ 1 dfy( ) "
50 - ) LR (#0158 ~ (o) =A@

For z()\) = fu(p )—-V{—% (fy(p) — fy(p*)), one can easily verify that z(0) = 0, and 5’-%(/{\) =

fx(p)j—?%?% < 0 because of the proof of Appendix A.1. Hence, we get 2(A) < 0 for VA > 0,

50 d—(—lT Pl « 0. Combining these two results yields dT{p) = ;1;;((’;)) d{fép L < 0, so we obtain

—'T—T—yf”((flgp) %',,‘()p ) decreases with A, as required. O

A.4. Proof of Property 4

Denote C; and C; as €7 = cos¢*cos¢; cosléi + sing*sing; and Co = sinA;cos¢;. For



p: = (¢, ), once @ is given, combining §(p, p*) = d(p:, p*) together with a(p, p*) = a(p;, p*}

yields the following simultaneous system of equations with respect to ¢ and A:
cos(¢* + @) cos pcos A + sin(¢* + D) sing = (|, sin A cos ¢ = (. - (8)
Eliminating A in this system yields

¢* + ® = arcsin(sin ¢//1 — CZ) + arccos(C1 /(1 ~ C2)).

cos g _ 1 . .
Teos §CF = k- Applying the inverse-

Differentiating ® with respect to ¢ yields ﬁ—‘;} =

function rule of differential calculus leads to

d¢
33 = 08 A (9)

On the other hand, rewriting the second equation in (8) yields A = arcsin(C2/ cos ¢). Differ-

entiating this with respect to ¢ yields % = tan A tan ¢. This together with (9) yields

dA  did¢ .
E_d—qﬁﬁ—mn)\tan¢>0. (10)

For p; with \; > 0, let T(p;) be T(p) = LBI=Hlbl)  Differentiating T(p) with respect
f=(p)-f=(p J P
to ® yields

dzggs) - jfm(ﬁ*) [(dfy(f))d; fy(ﬁ*)) _ () (dfz(f))d; fx(ﬁ*)) ] '

Using (9) yields

dfy(p) — fy(p*) _ dfy(p)dé dfy(p)déd,
BT a— gqﬁ as ggﬁ 3o =0 = cos A

df,(p dfy (P
fgép) _ fgép)l¢=¢'+‘p <0,

where the last inequality holds since dz—j;gﬂ < 0 for the equirectangular and equal-area
projections, and fy(P:) > fy(p*),i.e.,¢ > ¢* + @. Similarly, using (10) gives

dfz(p) — f=(P*) _ dfe(H) dr  df:(p) dA . df-{p)
3% I TURE T PR AR fS‘nAta“‘b i

> 0,

where the last inequality holds since d—%ﬂ > 0 for cylindrical projections. Since fz(p) >
F+(p*) for cylindrical projections, and T'(p) > 0 for ¢ > ¢* + &, we obtain %1 < 0. This

. : 5+ . . .
indicates that |St| decreases and aiv%;’il increases with @, as required. [
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Figure 1: World map on Mercator projection
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Figure 2: World map on equirectangular projection with standard parallels at 30°
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Figure 3: World map on equal-area projection with standard parallels at 30°
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Figure 4: Hemisphere map on orthographic projection centered on Tokyo.
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Figure 5: European map on Mercator projection
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Figure 6: European map on an orthographic projection centered on its spherical solution
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Figure 7: Comparison of planar locations of capitals

Table 1: Weber solutions and location errors using Furopean data

latitude-longitude coordinate

location error

spherical solution 49788 N 4" 87T E -
planar solution | Mercator 49°25 N 4°36 B 25.0
: equirectangular =0 [49° 17 N 47477 E 40.7

10 | 49° 17N 4°46 "B 40.5

20 |49°17T'N 4°45°E 40.0

30 49° 18N 4°43°E 38.8

40 49° 18 'N 4°40°E 36.8

50 49°20'N 4°36'E 33.8

60 49°23 N 4°31°E 20.5

70 49°28 N 4°31°E 20.6

80 49° 42 "N 4°49°'E 16.3

equal-area 0=0{49"11 N 4° 54 "E 54.4

10 49°11°N 4°54 " E 04.8

20 149°10° N 4°53°E 55.6

r 30 49° 10N 4°51E 55.2

40 49°11°'N 4°45°E 50.8

50 49°16°'N 4°35°E 41.9

60 49°23°'N 4°28°E 30.2

70 | 49°38 N 4° 47" E 12.1

80 50°43 °N 4°4°E 120.7
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Table 2: Weber solutions and location errors using American data

latitude-longitude coordinate

location error

spherical solution 38757 N 87" 83" W -
planar solution | Mercator 38716 N 87 33" W 77.1
equirectangular =0 | 3802 N 87 28" W 103.7

10 38°02°'N 87°28° W 102.5

20 38°04°N 87 °29 "W 98.8

30 38°08 N 87°31 W 92.4

40 38°13'N 87°33°W 82.8

50 38°20°N 87°35 W 69.2

60 38°30 ' N 87°39 W 50.6

70 38°45'N 87°48 "W 314

80 39°03°N 88°21 "W 69.7

equal-area =0 [ 37°47 N 87722 W 132.0

10 37°48°'N 87°23 "W 120.4

20 37T°52'N 87°25 W 121.8

30 37°59'N 87°29°W 108.4

40 38°10°'N 87°33 W 88.2

50 38°25'N 87°37T°W 60.0

60 38°45'N 87°49 "W 32.3

70 39°04 N 88°31 W 84.0

80 39°07 "N 92°29 "W 425.0

Table 3: Weber solutions and location errors using Japanese data

latitude-longitude coordinate

location error

spherical solution 35728 N 137° 19 E -
planar solution | Mercator 35°26 N 137 20 E 3.2
equirectangular 6=0 ] 35°29 "N 137 25"E 9.7

10 35°29 ' N 137°25E 9.1

20 35°28°N 137°24°E 7.5

30 35°27T'N 137°23'E 5.3

40 35°25°'N 137°21°E 4.7

50 35°23°N 137°19E 7.7

60 35°22'N 137°19°E 11.3

70 |35°20°N 137°22°E 14.8

80 35°21 N 137°37°E 30.1

equal-area 8=0|35"33 "N 137 31'E 20.6

10 35°32°N 137°31°E 19.1

20 35°31°N 137°28 ' E 14.9

30 35°28°N 137°25 ' E 8.9

40 35°25°'N 137°21"E 6.3

50 35°22°N 137°20°E 11.1

60 35°20 N 137°24 " E 16.5

70 35°21°N 137° 4B 39.7

80 |35°25 N 137°37'E 117.6
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