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Abstract

We propose the following mathematical models for an optimal rescue problem concerning hostages. Suppose
persons are taken hostage at a given point in time. We have to make a decision to attempt either rescue or
no rescue. In this paper we mainly consider two different objectives: Minimization of the expected number of
hostages being killed and maximization of the probability of no hostage being killed. Several properties of an
optimal rescuing rule are revealed.
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1 Introductiono.es

Acts involving hostage taking occur for different reasons, e.g., social inequality, poverty, religious prob-

lems, racial problems, political problems, and so on. The problem has become an urgent issue to be

tackled worldwide. Typical examples in recent years include:

1 (wor0r0pA 17-year-old youth wielding a knife hijacked a bus on the Sanyo Expressway in Japan and killed
a 68-year-old hostage. After 15 hours, the police stormed the bus, the other hostages were rescued,
and the hijacker was arrested (May 4, 2000).

9 wororsyAn armed man took a Finance Ministry official hostage in the Tokyo Stock Exchange building
and demanded a meeting with the Finance Minister. He surrendered to the police after a tense, five
and half hour standoff (January 12, 1998).

3 (or.orsyFourteen guerrillas stormed the home of the Japanese Ambassador to Peru and took about three
hundred people hostage, including diplomats and government officials attending a party to celebrate
the Emperor of Japan's birthday. All but one of the hostages were rescued while all the rebels were
killed when special forces stormed the building (December 17, 1996).

4 (omr.0mA man with a knife broke into a house and took a 2-year-old boy hostage. The police finally
rushed into the house, set the uninjured boy free, and arrested the criminal (Decerber 1, 1995).

Although not all the information is available for accurate statistics, it could be said that different hostage
scenarios continue to occur all over the world. The most important decision for the person in charge of a
crisis settlement is the timing to enact rescue of the hostages, especially after all possible negotiations have
broken down. Wrestling with the problem, needless to say, involves many factors, political, economical,
sociological, psychological, and so on, and all must be taken into acount, together with the safety of
hostages, the demands of criminals, the repercussions of success or fajlure in a rescue attempt, and so on.
The purpose of this paper is to propose two types of mathematical models of an optimal hostage rescue
problem by using the concept of a sequential stochastic decision procésses and examine the properties
of optimal rescuing rules. Unfortunately, to assist in our problem we were unable to find any reference
material based on a mathematical approach. Accordingly, we can not list any references to be directly

cited except [1].
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2 Models

Consider the following sequential stochastic decision process with a finite planning horizon. Here, for
convenience, let points in time be numbered backward from the final point in time of the planning
horizon, time 0, as 0, 1, - -+, and so on. Let the time interval between two successive points, say times ¢
and £ — 1, be called the period t. Here, assume that time 0 is the deadline at which a rescue attempt is
considered as the only course of action for some reason, say, the hostage’s health condition, the degree of
criminal desperation, and so on.

Suppose i > 1 persons are taken as hostages at a given point in time ¢, and we have to make a decision
on attempting either rescue or no rescue. Let z denote a decision variable of a certain point in time
¢ where z = 0 if no rescue is attempted and z = 1 if a rescue is attempted, and X, denote the set of
possible decisions of time ¢, i.e., X; = {0,1} for £ > 1 and Xo = {1}.

Let p (0 < p < 1) be the probability of a hostage being killed if 2 = 1, and let s (0 < s < 1) be the
probability of criminal(s) surrendering up to the next point in time if & = 0, hence 1 — s is the probability
of criminal(s) not surrendering. Further, let gandr (0 <g<1, 0<r <1, and 0 < g+ r < 1) be the
probabilities of a hostage being, respectively, killed and set free up to the next point in time if z = 0 and
criminal(s) not surrendering; accordingly, 1 ~ g — 7 is the probability of the hostage being neither killed
nor set free. Here, thecaseof p=0,p=1,s=1,¢g=0,¢g=1,r=1l,andg+r =1 makes the problem
trivial; accordingly, these are all excluded in the definition of the model.

In this paper we mainly consider the following two different objective functions:

1. The expected number of hostages killed, which is to be minimized.

2. The probability of no hostage being killed, which is to be maximized.

For convenience, let us call the model with the former objective function the espectation model, and the
one with the later objective function the probability model.

Now, in the model defined above, the p, s, ¢ and r are all implicitly assumed to be deterministic.
In Section 7 we also consider a stochastic case where they are all random variables. However, we only
examine the case of 1 = 1 because the mathematical treatment for the general case of ¢ > 1 is expected
to be quite intractable. It goes without saying that the expectation model and probability model also

can be defined for the stochastic case.

3 Structure of Decisions
For simplicity, by A and W let us denote the decisions of, respectively, “attempting a rescue” and “waiting
up to the next point in time, i.e., not attempting a rescue”. If the decisions are optimal at 2 given point
in time t, let us employ the symbols 4, and W,, and if A; and W; are indifferent, let us use the symbol
4, ~ W;. Further, if the decisions are optimal for all times ¢ > 1, we use A¢>: and Wy»1. In our paper the
decision rule for both models can be depicted as in Figure 1.
Here, for convenience in later discussions, let us in advance make an examination of the optmal decision
rule for the simplest case of i = 1 and ¢t = 1, i.e., only the hostage remains at time 1.
1 Suppose a rescue a.tterhpt is made. Then, the ezpected number of hostages being killed is p x 1+ {1-
p) x 0= p and the probability of hostages being killed is also p by definition.
2 Suppose a rescue attempt is not made.

i Assume that the hostage taker(s) does not surender up to time 0 with probability 1—s. Then, if the
hostage is killed with probability g, the number of hostages being killed is 1 and the probability of
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Figure 1: Decision Tree

hostages being killed is also 1. If the hostage is released with probability , the number of hostages
being killed is 0 and the probability of hostages being killed is also 0, and if the hostage is neither

killed nor released with probability 1 — ¢ — r, with a rescue attempt to be necessarily made at
the next time 0, the expected number of hostages being killed is p and the probability of hostages
being killed is also p at time 0. Accordingly, the ezpected number of hostages being killed and the
probability of hostages being killed are both given by

z=qx1+1‘><0+(1—q-—r)p=q+(1——q—r)p,

where

due to the assumptions of p, g and r.

D<z<l

(3.1)

(3.2)

ii Assume that the hostage taker(s) surenders up to time 0 with probability s Then, the number of
hostages being killed is 0 and the probability of hostages being killed is 0.

Consequently, the ezpected number of hostages being killed and the probability of hostages being killed

are both given by (1 —s)z + s x 0=(1-s)z.

From the above we can eventually obtain the following lemma.

Lemma 3.1  Suppose o hostage is token ot time 1, i.e., i =1and ¢ = 1. Then, the optimal decision

rule at time 1 can be prescribed as follows.

1 Ifp < (1 — s)z, then A;.
2 Ifp={(1—s)z, then Ay ~ ¥1.
3 Ifp> (1 —s)z, then Wy.

Now, first stating a conclusion, which is strictly verified in the subsquent sections, it follows that the
above optimal decision rule at time 1 holds also for any time ¢. In other words, the optimal decision
rule is t-independent. The practical implication of this fact, which must be said to possess a remarkably

singular property, will be stated in Section 8.
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4 Preliminaries
Let f,(m|¢) be the probability of T hostages being killed among 4 hostages if a rescue attempt is made
(z = 1), given by

fotmli) = ()" -p ™, i21, 0smsi (1)

Further, let fi-(k, £}i) be the probability of & hostages being killed and £ hostages being set free among ¢
hostages if a rescue attempt is not made (z = 0) and criminal(s) does not surrender up to the next point

in time with probability 1 — s, given by
| '
for(k, €)= mqkrfu —g—r)Et i1, 0<k+E<i (4.2)

Then, we have

F

i i—k

qur(k: Eh’) =1g, (43)
k=0 £=0
i ik
(i —k— ) for(k.E)5) =i(l—q—7). (4.4)
k=0 £=0

See Appendix A for the Eqs. (4.3) and (4.4). The Lemma below will be used in the subsequent sections.

Lemma 4.1 Fori > 1 we have

lim (1 = p)f = lim (1-2)' =0, (4.5)
=300 =300
i—1
li > farlk,l8) = 0. (4.6)
£=0

Proof. See Appendix B and Appendix C. 1

For convenience in later discussions let us define
a=s+(1=s)r, B=(1-8)(1-g-71), A=l—-g-r (4.7)
where
0<a<l 0<f<l, 0<AL], 0<at+f<l (4.8)

due to the assumption of s, ¢ and r. We use the following two inequalities in Sections 6.3.2 and 6.3.3.

0<(r+g\)/(g+r) <1, t>0, ‘ (4.9)
0< (r+(z—pA")/(g+r) <1, t20. (4.10)
Eq. (4.9) is immediate. See Appendix D for Eq. (4.10).

5 Expectation Model

5.1 Optimal Equation
By A(:) let us denote the expected number of hostages being killed when i hostages are taken, provided
that a rescue attempt is made (z = 1) at any time ¢. Then, clearly

A(f) = Z mf,(mli) =ip, i>1. (5.1)
m=0

Now, let v,(i) be the minimum expected number of hostages being killed, starting from time ¢ > 0 with

i hostages, expressed as
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up(i) = A(i), i1, (5.2)
'Ut('i) = mm{A(z),Wt(z)}, i > 1, t> 1, (53)

where W, (i) is the minimum expected number of hostages being killed over the period from time ¢ to 0
(the deadline) if no rescue attempt is made (z = 0). Noting k + £ <1, we can express W.(0) as

Wo(i) = sx 0+ (1=9) 3. (k+va(i—k—8)for(k di)

Lo s
= 1= Y3 (k+vili—k—-O)fer(h, i), 21, t21 (5.4)
k=0 £=0
Here, noting Eqgs. (5.1), (4.8), (4.4) and (3.1), we can rewrite W) (1) as follows.
i ik
Wi(d) = (1—98) > > (k+ (i =k~ 0)p)for (k. £l7)
k=0 £=0
= (1—3)(iq+'é(1—q—r)p) =i(l—-s8)z, i21l (5.5)
Now, let
Vi(d) = We(i) — A(), i21, t21 (5.6)
Using Egs. (5.5) and (5.1), we have
Vi(i) = Wi(i) - A()) =i((1 - s)z —p), i1 (5.7)

Further, we can rewrite Eq. (5.3) as follows.
ve(i) = min{0, Vi ()} + A(3), i21, t=1 (5.8)

Accordingly, using Eqgs. (5.4), (5.8), (5.1), (4.3), (4.4), (3.1) and (5.7), we can rewrite Eq. (5.6) for ¢ > 2
as follows.

i i—k

V(i) = (1—s>§§(k+min{o,m_1(i—k—e)}+(z‘—k—e>p)f.,,,(k,e|z‘) —ip
_ (- fiimg-rp) +(1-0) EZ min{0, Vie (i = k = )} for (k. £4i) — i3
= i((1-s)z-p) +(1—3) 5 f a0, Vieai = & — ) o5, )
= W@ +Q1 ‘— 5) igmi:[:;-l(@' — k=) forlk, 2i), P21, t22 (5.9)
=i

5.2 Optimal Decision Rule

From Eq. (5.6) the optimal decision rule can be stated as follows:

(a) If Vi(§) > 0, attempting a rescue is optimal, i.e., A;.

(b) If V;(i) = 0, attempting a rescue and waiting up to the next time are indifferent, i.e., As ~ We.
(c} If Vi() < 0, waiting up to the next time is optimal, i.e., Ws.

5.3 Analysis
Lemma 5.1

(a) Vi(3) is nonincreasing int for i 2> 1.
(b) IfVi(i) <0 fori>1 and t > 1, then vy(i) is nonincreasing in t for i > 1.
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Proof.

(a) Since min{0, Vi1 (i —k — £)} < 0 for £ > 2, we have V(1) < V1 (2) for ¢ > 1 from Eq. (5.9) with £ = 2.
Hence, the assertion can be immediately proven by induction starting with this.

(b) Immediate from Eq. (5.8) and (a).

Lemma 5.2 IfVi(i) > (=)0 fori > 1, then Vi(i}) = V1(§) > (=)0 fori > 1 and t > 1.

Proof. The assertion is evident for ¢ = 1. Suppose Vi1 (i) = V1(§) > (=)0 for ¢ > 1. Then, since
min{0, Vi_1 (i — k — €)} = 0 for ¢ > k + ¢, we immediately get Vi(i) = Vi(i) > (=)0 for i > 1 from
Eq.(5.9). This completes the induction. 1

Lemma 5.3 Fori>1andt>1 we have

(2) If p < (1—8)z, then Vi(i) > 0, hence As>1.

(0) If p=(1-8)z, then V(i) = 0, hence Ayp1 ~ Wep1.
(¢) Ifp > (1—8)z, then Vi(3) <0, hence W»1.

Proof.

(2) Let p < (1 — s)z. Then, from Eq.(5.7) we have V1(i) > 0 for ¢ > 1, hence from Lemma 5.2 we have
Vi(i) = V4 (4) > 0 for ¢ > 1 and ¢ > 1, thus A;>; due to (2) in Section 5.2.

(b) Let p = (1 — s)z. Then, from Eq. (5.7) we have Vi(8) = 0 for i > 1, hence from Lemma 5.2 we have
Vi(i) = Vi() = O for i > 1 and ¢ > 1, thus Ar»1 ~ Wi»1 due to (b) in Section 5.2.

(c) Let p > (1 — s)z. Then, from (a) of Lemma 5.1 and Eq. (5.7) we have V(i) < V1(i) < O fori>1and
t > 1, thus Wy»; due to (c) in Section 5.2. 1

Temma 5.4 Fori>1andt> 1 we have

(a) If As>1, then vy(i) = ip.

(b) If him1 ~ Wi, then v:(2) = ip.

(€) If Wen1, then ve(i) is nonincreasing in t and

w(@) =i(p+ (L - )z —p)(1-H71-89), (5.10)

which is linear in 1.
{(d) v:(e) converges to

o) =i(p+ (1 - 8)z—p)(1 - B)7") ' (5.11)
as t = oo, which converges to oo asi— oo,

Proof.

(a) Let As>1, i.e., Vi(i) > 0for ¢ > 1 and ¢ > 1 due to (a) in Section 5.2. Then, from Eq. (5.8) we have
(i) = A(f) =ipfori>land t > L

(b) Almost the same as the proof of (a).

(c) Let Wep1, L., Vi(i) <Ofori>1and?>1dueto (c} in Section 5.2. Then, from (b) of Lemma 5.1
we have () is nonincreasing ¢ for ¢ > 1, and from Eq. (5.8) we have v,(i) = Vi(i) + A(Z) = Wy(i) for
i>1and ¢t > 1. Now, from this and Eq. (5.5) we have v; (i) = W1(i) = i(1 — s)z, which is identical with
Eq. (5.10) for ¢t = 1. Hence, the assertion is true for ¢ = 1. Suppose

vs(i) = i(p+ (1- )z =p)(1-A(1-471)), i2L (5.12)
Then, using Eqgs. (5.4) and (5.12), we get
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i i=k
w(i) = W) = (L =) 3 (k+vema(i =k = ) for (k. £l1)
k=0 =0
i ik
=(1—ﬂ}j}j@+«r-k—@p+@—k—exu-su—pxl—m-%l-ﬁ*w)nxhﬂﬂ
k=0 £=0
= i(p+ ((1-8)z~-p)1-8)""(1-4")) (See Appendix E). (5.13)

This completes the induction. Further, from this we get v¢(i) is linear in ¢ for ¢ > 1.
(d) The assertion holds from Egs. (5.10) and (4.8). 1

6 Probability Model

6.1 Optimal Equation
By A(i) let us denote the probability of no hostage being killed if a rescue attempt is made (z = 1) at
any time ¢. Then

AG) = f(0l)) =(1-p)}, 21 (6.1)
Now, let v,(i) be the maximum probability of no hostage being killed, starting from time ¢t > 0 with ¢

hostages, expressed as
v (i) = A, 21 (6.2)
v(i) = max{A(), W:(1)}, i21, t21, (6.3)

where W, (i) is the maximun probability of no hostage being killed over the period from time ¢ to 0 (the
deadline) if no rescue attempt is made (& = 0). Noting & + £ < i, we can express We(i) as
W,(i) = s x 1+ (1— ) (f.,,(o,ﬂ«:) x14+ 3 forl0lduensli-0), 121, t21,  (64)
£<i—1
the right hand side of which implies the following: At any given point in time ¢,
1 Suppose the hostage taker(s) surrenders with probability s. Then, the hostages are released; in other
words, no hostage is killed; accordingly, the probability of no hostage being killed is equal to 1.
2 Suppose the hostage taker(s) does not surrender with probability 1 — s. Then, the probability of no
hostage being killed is f,-(0, £]%) if £ hostages are released.

i If all the hostages, i.e., i hostages are released (£ = i), the probability of no hostage being killed is
equal to 1.

ii If i — 1 or less hostages are released (£ < i — 1), the number of remaining hostages becomes i — £ at
time ¢ — 1, implying that the probability of no hostage being killed over the period from time ¢ — 1
to 0 is equal to v;_; (i — £) by definition.

Further, Eq. (6.4) can be easily rewritten as follows.
i1

Wo(§) = s+ (1 —s)(r‘+2fq,(o,eli)vt_1(z' —E)), i>1, t>1, (6.5)
where = o
WG = s+ (1= s)(r + ; Fur 0,210 (1 - Y (6.6)
= s+ (1-5)(1—2)" (See Appendix F), i>1. (8.7
Now, define

Vi()) = Wo(i) — AG), i>1, t21 (6.8)
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where —1 < V,(¢) < 1 for i and t. Using Eqs. (6.7) and (6.1), we can rewrite 11(4) and V4 (1) as follows,
respectively,

W) ==s+(1-81-2-1-p) 21, (6.9)

Wl =p—-(1-s)z (6.10)
Let us rewrite Eq, (6.3) as follows.

ve(8) = max{0, V;(3)} + A(}), i>1, i2L (6.11)
Accordingly, using Egs. (6.5), (6.11), (6.1) and (6.9), we can rewrite Eq. (6.8) for t > 2 as follows.

i—1

W) = s+ (1= 8) (i + 3 For(0,8) (max(O, Vi G~ B} + (L= §7) ) = (1= )
£=0

i—1 i—-1
= s+ (1-)(r + 3 fur @ N —p) ") = (1=p)' + (1 =) 3 fur (0, i} max{0, Vis (i = )}
£=0 =0
i—-1
=s+(1-s){1-2)~=(1~-pi+(1-5) E For(0, £}y max{0,V;_1 (i — )} (See Appendix F)
i—1 =0
= Vi) + (1= 8) Y for (0, ) max{0, Vi1 (i - O}, 121, 122 (6.12)
£=0 .

6.2 Optimal Decision Rule
From Eq. (6.8) the optimal decision rule can be stated as follows:

(a) If V;(i) <O, attempting a rescue is optimal, i.e., A¢.
(b) If V;(i) = 0, attempting a rescue and waiting up to the next time are indifferent, i.e., A; ~ W;.
(c) If Vi(i) > 0, waiting up to the next time is optimal, i.e., W;.

6.3 Analysis

6.3.1 Properties of V;(z)
Lemma 6.1 For any given 12 > §; > 1 we have

(a) If p > z, the following two inequalities can not coincide.

Viliy) > Vild + 1), . (6.13)
Vilia) < Vi(iz +1). (6.14)
(b) Ifp < z, the following two inequalities can not coincide.
Vi(i) < Vil +1), (6.15)
Viliz) > Vilia +1). (6.16)
Proof. For convenience let, for ¢ > 1,
g(8) = i(i + 1) - Va(9)- ' (6.17)

Then, from Eq. (6.9) we have
i) = s+(1-8)(1 —2)* = (A -p)* —s - (1 -s)(1 =2)'+ (1 - p)'
= (1-8)(1-2)/1-2z-1)-(1-p(1-p-1)
= p(1—p)' — (1 - 8)a(1 ~ 2)". (6.18)



6.3 Analysis 9

(a) From Eq.(6.17) we have Vi(i + 1) = VA (i) + g(i). If Eqs. (6.13) and (6.14) are both satisfled, then
Viih) > Vi(in) + g(ia),  Vi(ia) < Vi(iz) + g(ia),
from which g(4;) < 0 and g{i2) > 0; equivalently,
p(L-p) < (1-s)2(l =2, pl-p)* > (1-9)2(1 - 2)"

Consquently, we obtain

(1- s)z(1

-
=)< ()"

Since i, > 4; > 1 by assumption, it must be that (1—2}/(1 - p) < 1,ie., p < z, which is a contradiction
to the assumption, i.e., p > z. Accoordingly, the assertion holds.

;)iz <p<{l —s)z(l_z)il.

Thus, we get

(b) Almost the same as the proof of (a). B
From Lemma 6.1 we immediately get the following corollary.

Corollary 6.1 For any given iz > 41 > 1 we have

(a) If p > z, the following two inequalities can not coincide.

Vii1) > 02 Vi + 1), (6.19)

Vi(ia) €0 < Vilia +1). (6.20)
(b) Ifp < z, the following two inequalities can not coincide.

Vi(i) <0 < Vil + 1), (6.21)

Vi(iz) 2 0> Vi(iz + 1). (6.22)

Lemma 6.2 For any given i’ > 1, if (i) < (=)0 for 1 < ¢ < i, then Vi(i) = Vi(i) < (=)0 for
1<i<d andi> 1.
Proof. The assertion is evident for ¢ = 1. Suppose V;—1(i) = () <(=)0for 1 <i < i'. Then, since
max{0, V;—1(t —£)} =0 for 1 <i—~£ <, we get V(i) = Vi (i) < (=)0 from Eq. (6.12) for 1 €¢ < i’ and
t > 1. This completes the induction. ®
Lemma 6.3
(a) Vi(?) is nondecreasing in t fori > 1.
(b) If Vi(s) > 0 fori > 1 and t > 1, then v (i) is nondecreasing int fori> L.
Proof.
(a) Since max{0, V;—1 (i — £)} > 0 for ¢ > 2, we have Va(i) 2 Vi(4) for i > 1 from Eq. (6.12) with ¢ = 2.
The assertion can be immediately proven by induction starting with this.
(b) Immediate from Eq. (6.11) and (a). ¥
Lemma 6.4 lim;_eo V(i) =38 fort > 1.
Proof. Let

i=1

By(i) = Y for0, ) max{0, Ve (i - 0}, i21, t22.

£=0
Then, Eq. (6.12) can be rewritten as V;(f) = V1(4) + (1 - 8)By(é) for i 2 1 and ¢t > 2. Now, since clearly
| max{0, Vi1 (i — )} < 1 for i —£ > 1 and ¢ > 2, we obtain
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i—1 i—1
0< 1B £ 3 for(0,808)| max{0, Viea (i = O} < 3 £or (0, 18)-
=0 £=0

Since ZE;E For(0,£]3) converges to 0 as i — oo from Eq. (4.6), it follows that lim;eo [Be(#)[ = 0, hence
im0 B: (%) = 0 for ¢ > 2. From Eqs. (6.9) and (4.5) we immediately obtain lim;_;c0 V1 (i) = 5. Accord-

ingly, it follows that lim;—oo Vi (4) = lim;—y o VA (3) + (1 — s)lim; yoo Bi(i) =sfort > 1. 1

6.3.2 Caseofs=0
In hostage events perpetrated by a person who is determined to go through with it no matter what,
and not surrender on any terms, he knows that, if arrested, he will be condemned to death or life

imprisonment. This can be regarded as the case of s =0.

Lemma 6.5 Lets=0. Fori>1andt>1 we have

(a) If p < (1—8)z, i.e, p <z, then Vi(i) < 0, hence Apx1.

(b) If p=(1—s)z, i.e, p=z, then Vi(i) = 0, hence Agp1 ~ Wez1.
(c) Ifp> (1—s)z, i.e, p> 2, then Vi{i) > 0, hence Wes1.

Proof. Let s =0. Then Eq. (6.9) becomes
i—1
Vi) = 1-2)f —(l-p) = -2 (-2 -p)" (6-23)
h=0

(a) If p < (1 — 8)z, L.e, p < 2, from Eq. (6.23) we have V; (i) < 0 for ¢ > 1, hence Vi(i) < 0 fori > 1 and
t > 1 due to Lemma 6.2, thus A;>; due to (a) in Section 6.2.

(b) If p= (1 - 8)z, ie., p = 2, from Eq. (6.23) we have Vi(f) = 0 for i > 1, hence V(i) =0fori > 1 and
¢ > 1 due to Lemma 6.2, thus A>1 ~ Wiz1 due to {b) in Section 6.2.

(c) If p > z, from Eq. (6.23) we have Vi(i) > 0 for i > 1, hence V;(i) > Ofori > 1land ¢t > 1 from (a) of
Lemma, 6.3, thus W;>; due to {c) in Section 6.2. B

Lemma 6.6 Lets=0. Fori> 1 andt > 1 we have
(a) If Ap1, then v(i) = (1 - p)*.

(b) If At ~ Wen1, then vy(1) = (1 - p)t.

(c) If Wep1, then v, (i) is nondecreasing ¢ and

N el Cand LAY
(i) = ( P ) (6.24)
which is strictly decreasing in i.
(d) (i) converges to
o(@) = (r/(@+m)’ (6.25)

as t — o0, which converges to 0 as i — oo.

Proof.

(a) Let As>1, i.e., Vi(i) <0 fori>1and¢2>1dueto (a) in Section 6.2. Then, from Eq. (6.11) we have
w(@) =A@ =(1—p)fori>landt>1

(b) Almost the same as the proof of (a).

(c) Let Wiy, L., V(i) >0fori>1landt 2> 1 due to (c) in Section 6.2. Then, from (b} of Lemma 6.3
we have (1) is nondecreasing in ¢ for i > 1, and from Eq. (6.11) we get ve(8) = Vi(2) + A(3) = W, (i) for
i>1and t > 1. Now, from this and Eq. (6.7) with s = 0 we have v (8) = Wi(d) = (1 —2) for i 2 1,
which is identical with Eq. (6.24) for ¢ = 1. Hence, the assertion is true for t = 1. Suppose the assertion
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is true for ¢ — 1, i.e., vy () = {r + (z— pYA=1) /(g + r))i for i > 1. Then, using Eq. (6.5) with s = 0, we
have
i—1 .. t—1 t—1 t
N T () — i £\ pyime T H(E—P)AT Vit _ A7‘+(Z—P)A i_rt{z-pAy
w(i) = Wili) = r +§(£)r xt(CHEZ DR e (g NI By = (PR
From this and Eq. (4.10) it immediately follows that v,(3) is strictly decreasing in { for ¢ > 1.

(d) The assertion holds from Eqs. (6.24) and (4.7). &

6.3.3 Caseofs>0

By i, let us define a ¢ satisfying
Vii—1) <0< W(@E), 122, t21, (6.26)
if it exists.

Lemma 6.7 Lets>0. Fort>1 we have

(a) Suppose p > (1 — s)z, then Vi(i) > 0 for i > 1, hence Wizy fori 2 1.

(b) Suppose p = (1 — 8)z, then, Vi(1) = 0 and Vi(3) > 0 for i > 2, hence Ai>1 ~ Wiz fori=1 and Wi>1
foriZ>2.

(c) Supposep < (1—15)z. Then,
1 If Vi(i) < 0 and Vi(i + 1) = O for a certain i > 1, then Wi+ 2) > 0.
2 There exists a unique iy > 2, which is independent of t, hence let ©* = i, > 2, thus V(i) < 0 for

1<i< i, Vo(i*) 2 0 and Vi(@) > 0 fori >id*; accordingly, Ay>1 for 1 < i <i* and Wiz fori > i*.

Proof. Assume s> 0.

- (a) Let p > (1 — s)z. We have ¥4(1) > 0 from Eq.(6.10). If p < z, then 1 —p > 1 — 2. Now, from
Eqgs. (6.17) and (6.18) we have

Vili 4+ 1) = V1(8) = g(@) > (1 —s)2(1 - 2 —(1-8)z(1-2)'=0

for i > 1, hence it follows that V() is strictly increasing in ¢, thus Vi(i) > V(1) > 0 for i > 1. If
p > z. Suppose Eq.(6.19) is satisfied. Then, Eq. (6.20) is not satisfied from (a) of Corollary 6.1. This
implies that once V(i) becomes less than or equal to O for a certain i > 1, it follows that Vi(i) < 0
for ¢ > i, hence the limit of V(i) as ¢ — co becomes less than or equal to 0, which is a contradiction
due to Lemma 6.4, thus Eq. (6.19) does not occur; in other words, it follows that V3(i) > O for i > 1.
Accordingly, whether p < z or p > z, we have Vi(i) > 0 for i > 1. From (a) of Lemma 6.3 we get
Vi(i) > Vi(§) > 0for s > 1 and t > 1, hence Wep1 for i > 1 due to (c) in Section 6.2.
(b) Let p = (1 — s)z. We have V1(1) = 0 from Eq. (6.10), hence V;(1) = 0 for ¢ > 1 due to Lemma 6.2
with # = 1, thus Ag>1 ~ Wy for ¢ = 1 due to (b) in Section 6.2. Now, since z > 0 and s > 0, clearly
z> (1—s)z=p, hence 1 —p > 1 — z. Then, from Eqgs. (6.17) and (6.18) we get

Vi(i+1) = i(8) = g0} =p(1 = p)' = p(1 = 2 = p((1 = p) = (1 = 2)) >0
for i > 1, hence it follows that Vi() is strictly increasing in 1, thus Vi(s) > Vi(1) = O for i > 2.
Accordingly, from (a) of Lemma. 6.3 we get V;(i) 2 Vi(i) > Ofor i > 2 and t > 1, thus Wiy for £ > 2 due
to (c) in Section 6.2.
(c) Let p < (1 — s)z. We have V1(1) < 0 from Eq. (6.10). Now since z > (1 —s)z duetoz >0 and s > 0,
we get p < 2.
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(c1) Let V(i) < 0 and V(i + 1) = 0 for a certain i > 1. Then, from Eq. (6.17) we get g(¢) = —W1(9) > 0
and V1 (i + 2) = g(i +1). Accordingly, from g(i) > 0 and Eq. (6.18) we have p(1 — )i > (1 —8)z(l - 2)t
Hence, using V1 (i + 2) = g(i + 1) and Eq. (6.18), we obtain
Vil +2) = p(l - ) — (1 - s)z(l - 2)* > (1— 8)2(1— 2)' (1 = p) = (1 = 8)a(1 - )™
= (1-8)z(l-2)(1-p—1+2)=(1—-8z{1-2)(z~p)>0.

(c2) Since V1(1) < 0, we have V;(1) < 0 for ¢ > 1 due to Lemma 6.2 with ¢’ == 1, and since V(i) > 0 for
a sufficiently large i due to Lemma 6.4, it follows that there exists at least one i, > 2 for ¢ > 1. Now, for
t =1, let Eq.(6.21) be satisfied. Then Eq. (6.22) does not occur due to (b) of Lemma 6.1. Noting this
and (c1), it must be that #; is unique, hence let i* = i;, implying that V3(i) < Ofor1 < i< i* Vi(#*) 20
and V4 (i) > 0 for i > i* due to Eq. (6.26). Further, from Vi(d) < 0 for 1 < i < i* we have Vi{i) < 0 for
1<i<i* and ¢ > 1 due to Lemma 6.2 with ¢ = 4* — 1, and V;(i*) 2 Vi{i*) > 0 and V;(2) 2 Vi(3) > 0
for i > i* and t > 1 from (a) of Lemma 6.3. Accordingly, by the definition of 4; it follows that i; = i~,
unique for ¢ > 1 and independent of t. Hence As;»; for 1 £ ¢ < #* due to (a) in Section 6.2 and W3 for
i > i* due to (c) in Section 6.2. 1

Now, let us define

_ log(sp/(1—s)(z — p))
oell=z) (6.27)

if it exists.

Lemma 6.8 Lets >0 andp < (1—9)z.

(a) Thei* in (c2) of Lemma 6.7 is given by a i such thet
(1-p)(s+(1-91-2")<1-p<s+(1—-8)(1-2)" (6.28)

(b) There exists I >0, and i* > I +1.

Proof,

(a) Since the i* is t-independent from (c2) of Lemma 6.7, it is given by a % such that V1 (i —1) < 0 < Vi (3}
by the definition Eq. (6.26), which can be rearranged into Eq. (6.28) by using Eq. (6.9).

(b) Since p < (1 ~ s)z, we have z > p due to s > 0 and z > 0, hence I exixts from Eq. (6.27). Noting
(1-3s)(z—p)—sp=(1—s)z—p>0, we get log(sp/(1 — 8)(z — p)) < 0, hence I > 0. Further, from
Eq. (6.28) we have (1 —p)(s + (1 =s)(1—2)" ) <s+ (1 —s)1 - z)¥", which can be easily rearranged
into¢*>7+4+1. 1

Lemma 6.9 Lets>0. Fori>1andt > 1 we have
(a) If Aim1, then v (i) = (1~ p).

(b) If Aep1 ~ Wip1, then (i) = (1 - p).

(c) If¥Wes1, then vi(i) s nondecreasing ¢ and

i) _32(1— (’"*q’\ rrery +(1—s)t(’”rf;’-—+‘—f))-‘i)i, (6.29)

which is strictly decreasing in i.
(d) v;(7) converges to

-1

(i} =slg+71)” E ( ) kgi—k (1 -(1- s))\i“") (6.30)

k=0

as t — oo, which converges to s as i — 00.
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Proof.
(a) Let Acp1, ie., Va(3) <Ofori>1landf>1dueto {a) in Section 6.2. Then, from Eq. (6.11) we have
v(i)=A{)=(l—p)fori>landt > 1.
(b) Almost the same as the proof of (a).
(c) Let Wi>1, ie., Ve(i) > 0 for i >1and 2> 1dueto (c) in Section 6.2. Then, from (b) of Lemma 6.3
we have v;(?) is nondecreasing in t for ¢ > 1, and from Eq. (6.11) we get v,(i) = V3(3) + A(2) = Wy (i) for
i>1and ¢ > 1. Now, from this and Eq.(6.7) we get v (f) = W1(}) = s+ (1 - s)(1 - z)? for i > 1, which
is identical with Eq. (6.29) for ¢ = 1. Hence, the assertion is true for ¢ = 1. Suppose the assertion is true
fort—1,1ie.,

oo 1_32(1-5) (’""'q;\ ) +(1-s)t-1(%ﬁ‘)’\t—l)’, i>1. (6.31)

=0

Then, using Egs. {6.5) and (6.31), for i>1landt>1 we get

w(i) = W(i) = s+ (1= )(r* +qur(o iyoe-1( - 0))

s+-a)(ri+ S 10,895 St oy (TR - gt (LHE D))

£=0 =0

1l

s }:(1 5y (’" s q’\f) +(1- s)t(%ﬁ’)"t)i (See Appendix G). (6.32)

Form Eqs. (4.9) and (4.10) it follows that v:(i) is strictly decreasing in ¢ for ¢ > 1.
(d) Noting

i(l _ s)r (1" + Q)\"')i _ (q +‘1")_i §(1 _ s)r i: (;;) Tk(q)\r)t'—k

=0 q+7 =0 k=0

i -1 -
_ i A. t—L i—k —i k. i—k ((1 - 3))\; )
= (g+7) ,.go() Z N = (g+7) Z() e
we have Eq. (6.30) from Eq. (6.29). Further, we can rewrite Eq. (6.30) as follows.

v{i) = s+ s(1—8)(g+7)"" zl: G) r*(gAy* (1 -(1- s)/\""-") - (See Appendix H). (6.33)

k=0

Now, since (1 — (1 — s)/\’:“"‘)—1 < 571, we have

0< (q+r)"1z ( ) (gr)'—* ( —(1- s))\i"‘) - < s‘l(r—-q%;—)i,

which converges to 0 as i = co. Accordingly, v(i) converges to s as i — 00 from Eq.(6.33). B

7 Case where p, s, ¢ and r are Random Variables

7.1 Assumptions

In many real cases, perpetrator operate with confused motives, which causes the probabilities p, s, ¢ and
r to change randomly from one minute to the next. This consideration leads us to the case in which
p, 5, ¢ and r are random variables with a distribution function. For convenice, let £ = (p, s,¢,r) and
¢ ={(p',s,q,r'). By F(€) let us denote the distribution function of €. Define p = E(p), the expectation
of p. Unfortunately, a general analysis for case of ¢ > 1 is very intractable, so that in our paper we devote

ourselves solely to the simplest case of i = 1.
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7.2 Optimal Equation of the Expectation Model

Let @ (£) be the minimum expectation of the hostage being killed, starting from time ¢ with . Then,

G(€) = px1+{l-p) x0=p, (7.1)
G(€) = min{px 1+ (1—-p) x 0,s x 0+ (1 —s)(gx1+rx0+(1—¢ —r)fyat_l(g’)dﬁ‘(g’))}
= min{p, (L= 9 (a4 (L~ g=7) [ Ba@FE)), £21 (72
Let
B = ff (E)dF(E), ¢320. (7.3)
Then,
iy = ./emin{P, (1-s)g+ (1 - g—r)Pe—1)}dF(§), 221, Fo=p. (7.4)

Further, from Eq. (4.7) we can rewrite Eq. (7.4) as follows.
5 = [ min{p, 1 - a— B(l - 7)}dF(E), 21, =g (7.5)
£

7.3 Optimal Equation of the Probability Model
Let u:(£) be the maximum probability of the hostage not being killed, starting from time ¢ with £. Then,

u(€) =1-p, (7.6)
w(€) =max{l-p,s+(1-8)(r+(1—g—7) '/;r w1 (€NdF(EN)}, =1 (7.7)
Let
w= [ u@dre), t20 (7.8)
£

Then,

Ve = /max{l —ps+(1-8)(r+ (1 —g—rn-1)}dF(E), t21, w=1-p (7.9)
£

Now, noting Eq. (4.7), we can rewrite Eq. (7.9) as follows.
we= [maxl-potfr)dP@, t21 w=l-p (7.10)
13

7.4 Equivalence of Both Models
From Eq. (7.5) we get
1— 5 = fmax{l pat Bl— B )}AF(E), t21, l—Fo=1-p (7.11)
¢

Now, let v, = 1 — 7, implying the maximum expectation of hostages not being killed for one hostage.

Then, we can rewrite Eq. (7.11) as follows.
w = [max(i—pat pua}dF@, t21 m=1-m (7.12)
£
which is identical with Eq.(7.10). Therefore, it follows that the optimal equation of both models can

be said to be substantially equivalent. Accordingly, we only consider the probability model in the later
analysis.
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7.5 Analysis
Lemma 7.1 v, is nondecreasing in t and converges to a finite v as t — o0, which is provided by o

unique solution of
v= fmax{l —p,a+ PridF(€) (7.13)
£

where 0 < v < 1.
Proof. The monotonicity of v in t can be proved by induction starting from the fact that 11 2>
fE (1 — p)dF{¢) = 1 — p = . Accordingly, it converges to a finite v as t — oo since ¥, is bounded in
t. Let H(p—1) = fE max{l — p,a + Bvi—1 }dF(€), hence v, = H(v-1) from Eq. (7.10). Then, noting a

general formula |max;a; — max;b;| < max;|a; — bil, we obtain
[HOes) = H) € i = vical | BEFCO
where 0 < IE BdF(€) < 1 due to Eq.(4.8). Thus, H(»-1) is a contration mapping, implying that
Eq. (7.13) holds and has a unique solution. Since 0 < p < 1 by the assumption, we have 0 < p < 1,
hence v > 0; accordingly, ¥ > ¥y > 0. Suppose ¥ = 1. Then, from Eq. (7.13) we get 1 = fE max{l —
p,a + B}dF(£), hence 0 = fE max{—p, & + # — 1}dF(£) < 0 due to 0 < p < 1 and Eq. (4.8), which is a
contradiction. Hence, it must be that v < 1. 1
For convenience, let
2, =g+ (l—q-1)p (7.14)
Ue(€) = (@+ Brer) —(1—p), t21 (7.15)
Then, using Eq. (4.7), we have
Ui(€) =a+pl-p)-l+p=p~(1-5)z. (7.16)
From Lemma 7.1 and Eqs. (7.15) and Eq. (4.7} we have the following corollary.
Corollary 7.1 Ui(£) is nondecreasing in t and converges to
U(ﬁ)=a+ﬁu—1+p=p-—(1—s)(1—r—(l—q-r)y) (7.17)

as t — oo for all €.

Now, from Eq. (7.15) the optimal decision rule can be stated as follows:

(a) If Up(£) < 0, attempting a rescue is optimal, i.e., A:.
(b) If U,{£) = 0, attempting a rescue and waiting up to the next time are indifferent, i.e., Ay ~ W;.
(¢} If U;(€) > 0, waiting up to the next time is optimal, i.e., Ws.

Define
£(¢) =min{t | U,(€) 2 0}, (7.18)
t”(€) = min{t | U3(£) > 0}, (7.19)

if they exist.

Lemma 7.2 The assertions below hold for all £.

(a) Suppose p> (1 —8)z,. Then Ui(§) >0 for t > 1, hence, We>1-

(b) Suppose p= (1 — 8)z,. '

1 If #"(€) does not exist, then Uy(€) = 0 for t > 1, hence Wex1 ~ i1
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9 If '(€) exists, then Up(€) = 0 for t < t"(£) and U (€) > 0 for t > t'(&) with t''(§) > 1, hence,
Wecrr () ~ Ascerig) and Wezer(e)-
(¢) Suppose p < (1 —5)zy.
1 Fp<(—s)(l—r=(1—g—r)v), then U(§) <0 fort 21, hence, A1
2 Ifp=(1-8)(1-r—(Q—g—r)v), then
i If t/(£) does not exist, then Uy(€) < 0 for ¢t 2 1, hence Aex1.
ii If t'(€) exists, then U(€) <0 fort < #(€) and Up(€) = 0 for t > t'(£) with £'(§) > 1, hence,
Arcr(gy ond Azee) ~ Weze(g)-
3lfp>1-s)(1l-r=-(1—-g~— rv), there exist t'(£) and t"(€) such that t"(€) = t'(€) > 1, hence
UAE) < 0 fort < £(€), Us() = 0 for £(€) < £ < t(€) and U(€) > 0 for t > £/(€), thus hicue),
Auy<icen(e) ~ Weercecene) and Wezer(e)-

Proof.
(2) Suppose p > (L — s)z,. Then Ui(§) > 0 due to Eq. (7.16), hence Uy () > 0 for ¢t > 1 due to
Corollary 7.1, thus W;>3.
(b) Suppose p = (1 — 5)z,. Then U;(§) = 0 due to Eq.(7.16).
(b1) If £ (£) does not exist, then Uy(¢) =0fort >1 due to Corollary 7.1, hence Wes1 ~ Aiz1.
(b2) If £"(¢) exists, then ¢"(£) > 1 due to Eq. (7.19), hence U,(§) = 0 for t < "(£) and Uy(£) > 0 for
t > t"(¢) due to Corollary 7.1, thus Wycum ) ~ At<er(¢) and Wy>gr(g)-
(c) Suppose p < (1 — 8)z,. Then Ui(€§) < 0 due to Eq. (7.16).
(c1) I p< (1—3)(1—r—(1—g—7)»). Then U(£) <0 due to Eq. (7.17), hence U,(€) < 0 for ¢ > 1 due
to Corollary 7.1, thus Ag>i.
(€2) Ep=(1-s)(1—r—(1—g—r)v). Then U(£) =0 due to Eq. (7.17).
(c2i) I #(¢) does not exist, then Up(€) <Ofort >1 due to Corollary 7.1, hence As>1.
(c2ii) If #/(€) exists, then ¢'(€) > 1 due to Eq. (7.18), hence U;(€) < 0 for ¢t < /(€) and Uy(§) = 0 for
¢ > t'(£) due to Corollary 7.1, thus Arcy(e) and Aupe(e) ~ Wize(g)-
(c3) fp>(1—3s)(1—r—(1—g—r)v). Then U(£) > 0 due to Eq. (7.17). Since Uy(£) < 0, there exist
#(£) and t"(€) such that t"(£) > ¢'(§) > 1 for any €, hence U, (&) < 0 for ¢ < ¢(€), U(§) = 0 for () <
t < "(€) and U, (€) > 0 for t > ¢"(¢) due to Corollary 7.1, thus A<y (e), Ber(e)<e<e(@) ™ Wer ey <t<tr(e) and
Weoengey: B

Now, since 0 < (1 — §)z, < 1, which is independent of p, clearly each of the three conditions in
(), (b) and (c) of Lemma 7.2, i.e, p > (1 - $)zy, p = (1 —8)z, and p < (1 — 8)zy, is possible.
Further, in (c), by numerial examples we can show that the conditions of (c1) and (c3) are possible. Let
Y=(1-8)(1-r—(1-g—r)v. Then, ifp=202 and 0.5 with probabilities 0.6 and 0.4, respectively,
s =02, ¢=05and r = 0.1, we get v ~ 0.800 and Y = 0.464 by numerial calculation. Accordingly,
p=02<Y and p=0.5>Y, impling that any of both conditions is possible.

8 Summary of Conclusions
A. From Lemmas 5.3, 6.5 and 6.7 we can eventually summarize the optimal decision rules for both models
as in Table &8.1.

It should be noted in Table 8.1 that
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Table 8.1: Summary of Optimal Decision Rules

Expectation Model Probability Model
Lemma 5.3 Lemma 6.5 Lemma 6.7 Lemma 6.7
s>0,i21 s=0 i=1 s>»0,i>2
p<(1—s)z A A1 Ay : ; :: : G:i
p=(1-38)z hep1 ~ Wizt Ags1 ~ Wex1 Ae>1 ~ Wizt Wen1
p>(1-s)z Wi LIPS Wiz Wezi

1 A4»>1 means that it is optimal to attempt a rescue at the time the hostage event occurs and is
detected, and W;»; means that it is optimal to wait up to the deadline and attempt a rescue at that
time.

2 Let p < (1 —8)z. Then A¢»1 except the probability model with s > 0 and i > 2. In this case, there
exists a t-independent £ > 2 at which A;» if § < ¢ and Weyy if ¢ > 2%,

3 Let p = (1 — 8)z. Then Ay>1 ~ W;>1 except the probability model with s > 0 and i > 2.

4 Let p > (1 — s)z. Then always Wy»1 for both models.

5 If empolying W;>1 when As>1 ~ w¢>1, it follows that if p < (1 — 8)z, then W1 for both models.

6 In the probability model with p < (1—s)z, s >0and i > 2, the decision is made as in the following
scenario; If the number of hostages i < i* are taken at the time when the hostage event occurs,
immediately attempt a rescue, and if ¢ > i*, wait up to the time when the number of hostages
decreases by i* (i.e., ¢ < ¢*) either due to the fact that they are killed or released with time, and
attermnpt a rescue. Here, the ¢* is given by a i satisfying Eq. (6.28).

B. In general, an optimal decision rule of a sequential decision process depends on time &. However,
althought quite rare, it can be that it becomes independent of time t; in other words, the optimal
decision rule is the same as that of time 1. This must be said to be quite a singular property. As
seen in Table 8.1, one of the most major conclusions of this paper is that the property holds for two
models in the paper except for the case in Section 7. This implies that it is optimal to behave always
as if only a single period of planning horizon remains, i.e., as if the next point in time is a deadline.
Usually, this property is called a myopic property.

C. The properties of v,(2).

1 If A;>1, then v:(i) = ip in the expectation model and v:(¢) = (1 — p) in the probability model.

2 If W1, then in the expectation model, (i) can be explicitly expressed by Eq. (5.10), which is
linear in %, nonincreasing in ¢, and converges to a finite v() as t — oo, given by Eq. (5.11), further,
the v(i) converges to co as i — co; and in the probability model, it can be explicitly expressed by
Eq. (6.24) for s = 0 and Eq. (6.29) for s > 0, both of which is strictly decreasing in 4, nondecreasing
in ¢, and converges to a finite v(f) as t — oo, given by Eq. (6.25) for s = 0 and Eq. (6.30) for s > 0,
further, the v(i) converge to 0 for s =0 and s for s > 0 as ¢ —+ o0.

D. If £ = (p,s,q,r) is a random variables having a distrubution function F(&), there may exist any case
of #'(€) > 1, t"(£) > 1 and t"(§) > >t {€) > 1 for any ¢. However, if £ is deterministic, there does not
exist such ' (£) and t”(£).
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9

Suggested Future Studies

In our paper we have proposed a basic mathematical model for an optimal rescuing problem involving
hostages. To take different real hostage situations into account, we feel a need to modify the model from

the following viewpoints:

A.

In Section 7, we obtained the conclusion that if p < (1—s)z, andp > (1 —s)(1—r—{1—g—r)v), there
exist ¢ (£) and #'(€) such that t”(€) > ¢'(£) > 1. However, in the case, the question may be raised as to
which of the following three points occurs: (1) always t”(£) > /(§) > 1, (2) always () =t'(&) > 1,
and (3) both of #'(£) > ¢'(£) > 1 and ¢"(£) = #(£) > 1 are possible. In addition, the existence of t"(£)
if p= (1~ 8)z,, and t'(£} if p < (1 —5)z, and p = (1—s)(1 —r— (1 —¢— r)v) must be examined.
Unfortunately, it is quite difficult to mathematically answer these questions. They must remain for
future study.

For the case in Section 7 where i = 1 is assumed, a clear conclusions could be relatively easily derived.
However, as a future study, the mathematicl treatment leading to the conclusions should be developed
into a general case of i > 1.

In real hostage events, some courses of action can be considered: Whether or not to submit to the
demands to be airlifted to another country, to provide a means of escape, to pay the ransom, to release
comrades in prison, and so on. Choosing such a course of action will influence the probabilities p, s,
g and r to a greater or lesser degree. A problem arises as to when to act and what course of action

to enact.

. In the present paper, all the hostages are implicitly assumed to be homogenous. As seen in many

hostages crises, however, special considerations are given for females, the aged, the sick, children, and
so on. Models in which such nonhomogenous classes of hostages are taken into consideration should
also be looked into.

In many real cases, the deadline is not always definite. In other words, it should be regarded as a
random variable. A model with this assumption should be examined in the future.

In order for our models to be more realistically effective, the probabilities p, s, ¢ and r must be
measured and known in advance for each hostage crisis. Although such a measurement would be a
very difficult task, it should be tackled through the united efforts of researchers in different fields, say,
psychologists, sociologists, political scientists, engineers, and so on.

Appendices
— Proofs of Equations—

A. Egs. (4.3) and (4.4)

i i—k i i—k
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k=1 £=0
i—1i—1-k
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Poizk i-1i-1-k
SOS i k= O ferlhi i) =D Y (= k=) for(k, i)
k=0 £=0 k=0 £=0
i=1i—1-4 ) ] ’L(i.—]_)' s
=§ tz_; (”"““E)k!ex(i-k—e)(«;—k-e—wq 1=g-7)
_1(1_ ._7. ilzl:k ?,—1) Lrﬂ(l_ _T)i—l_k_g
2y 20 FG-1- k-1 g
=i{l—g-7). 1

B. Eq.(4.5)

For convenience, let p = 1 —p. Then 0 < p < 1 due to the assumptions of p. Now, consider § > 0
such that p = 1/(1 + §), then for any sufficient ¢ > 1 we have (1+68)f =145+ .-+ & >ib. Hence
(1—p)i = p' =1/(1+6)} < 1/i6. Accordingly, (1 — p)’ converge to 0 as i — co. In quite a similar way

we can show limjee(l — 2} =0. 1

C. Eq.(4.6)

Using the Stirling asymptotic formula i! ~ /2 §*+?%e~%, we obtain
il
TN P S 3
ifor (s 8) = i T

qkre \/ﬁ%z-l-l) 5
k!ﬂ!(l -q— ,.)k-[-e /_'271.(,,; -k — &)i—k- £40.5 g=(i—k—£)

_ girte—(h+t) ( i )0.5 ( i )i_k_eik-i-e—l-l (1—q- .
KWL —g—r)stENi—k £ i—k-¢
For convenience, let p=1—¢g—7. Then 0 < p < 1 due to the assumptions of g and r. Now, consider

5 > 0 such that p = 1/(1 + &), then for any sufficient ¢ > 1 we have

)6k+8+2+.__+5£

)z-—k —2

(1-g-r)

(L+6) = 1+’“6+"'+(k+£+2

> 1 kHe+2 _ il pYRes.
k+e+2 = GiirG—F—t—1

from which we get
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rhti41 !
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which converge to 0 as ¢ = oco. Further, we have

in () = dm () =

;l—lrrgo(z - ;: - E)Pk-t - tl_l)rgo(l *i - : ;:f E)i-k_t = .
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Accordingly, it follows that ife.(k,£|i) converge to 0 asi — oo, implying that for any infinitesimal
e > 0 there exists a certain I(e) such that if,.(k,fi) < €, ie., for(k,€li) < efifori> 1 (¢). Hence,
ST far(ky£lD) < Zé;; g/i = ¢ for i > I(g). Thus, it follows that Ei;(l) far (K, €]2) converges to O as
i—+o0. 1

D. Egq.(4.10)

From Eq. (3.1) we have z—p = g—p{g+7). Now, since r+ (z—p)A —(g+7) = r+{g—p(g+T)) M —g—7 =
—g(1 = X) —plg +7)Xt < 0 for t > 0, then (r+ (2 - ) /(g +r) < 1for t > 0. Further, since
r+(z—p)=r+q-plg+r)=1(g+r)(1- p) > 0, we have the assertion holds for ¢ = 0. Suppose
r+(z—p)A=1> 0. Then, r+{z—p)A* =r+A(z - —p M e d—rA=r(1 =N+ A(r+ (2 - X 1) >0
by induction. Accordingly, 0 < (r+ (z - p)X)/(g+r)<lfort>0. N

E. Eq.(5.13)
Using Eqs. (4.3), (4.4), (3.1) and (4.7), we have

i i—k
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F. Eq.(6.7)

Noting Eq. (3.1), we have

i—1 i-1 /.
i+ qu,.(o,ﬂﬁ)(l —p)it=rit Z (D (1 —g—r)yt1-p)t
£=0 =0

= i (Drz((l—q —T)(l-P))i-e = (T-!— (1—g-r)(1 —p))i = (1—2)%
£=0

G. Egq.(6.32)

Noting A =1—g—r and z — p = g — p(g + ) due to Egs. (4.7) and (3.1), we have
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H. Eqg.(6.33)

From Eq. (6.30) we have
i

o) = s—s+s{g+r)” C;) gk (1 (1 - s)aik) -

k=0
e _ —-i (i i-k{y AN
=s s(l (q+r)‘ 2 (k) ¢ (1 (1-s)X ) )
=5— —i —~ (i . t—-'u —i AN 1 A
s s((t1+r) ;(k —(g+7) a(k)r g (1 (1-s)}X ) )
=g— —i (i rk 1—k 1 1 = sY2E—R =1
s—s(g+r) ;(k) (1 (1 (1-38)A ) )
= s+5(1-s)g+ r)_ii (::)r’“(q/\)i‘k (1 -(1- s)/\""‘)_l. ;
k=0
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