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Abstract. The problem of minimizing the flow value attained by maximal flows
plays an important and interesting role to investigate how inefficiently a network
can be utilized. It is a typical multiextremal optimization problem, which can
have local optima different from global optima. We formulate this problem as an
global optimization problem with a special structure and propose a method to
combine different techniques in local search and global optimization. Within the
proposed algorithm, tha advantageous structure of network flow is fully exploited
so that the algorithm should be suitable for handling the problem of moderate
sizes.

1. Introduction

Consider a directed network N(V,E, s, t, c), where V is the set of m+2 nodes, E
is the set of n arcs, s is the single source node, t is the single sink node, and c is the
vector of arc capacities. A vector x of dimension n is said to be a feasible flow if it
satisfies the system of conservation equations and capacity constraints:

Ax = 0; 0 ≤ x ≤ c,(1.1)

where A is the well-known node-arc incidence matrix restricted to the node set
V \ {s, t}, whose size is then m× n. We denote by X the set of feasible flows, i.e.,

X = {x | x ∈ R
n;Ax = 0; 0 ≤ x ≤ c }.(1.2)

A vector x ∈ X is called a maximal flow if there does not exist x′ ∈ X such that
x′ ≥ x and x′ 	= x. We denote the set of all maximal flows by XM . Further, let
∆+(s) and ∆−(s) denote the sets of arcs leaving and entering the source node s,
respectively. Then the total amount of flow, called the flow value, of x is given by∑

h∈∆+(s)

xh −
∑

h∈∆−(s)

xh.(1.3)

The problem to be considered in this article is the minimization of the flow value
over the set of all maximal flows, i.e.,
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P

∣∣∣∣
min dx
s.t. x ∈ XM ,

where d is an n-dimensional row vector defined as

dh =




1 if h ∈ ∆+(s)
−1 if h ∈ ∆−(s)
0 otherwise.

(1.4)

Problem P was considered in [27], [28] and is closely related to the uncontrollable
flow raised by Iri [18, 19]. It arises from the following situation. Considering the
maximum flow problem, we usually take it for granted that each arc flow is control-
lable, i.e., we can freely increase and decrease it as long as the conservation equations
and capacity constraints are kept satisfied. However, in the situation where we are
not able or allowed to reduce the given arc flow, we may fail to reach amaximum flow
and get stuck in an undesired maximal flow. With such restricted controllability, we
may end up with different maximal flows depending on the initial flow as well as the
way of augmentation. Therefore the minimum of the flow values that are attained
by maximal flows will play a prominent role in evaluating how inefficiently the net-
work can be utilized. Note that the problem encompasses the minimum maximal
matching problem, which is known to be NP -hard, e.g., [14].

Since the set XM is in general nonconvex, Problem P is one of the typical multi-
extremal optimization problems. See e.g., Horst, Pardalos and Thoai [15] and Horst
and Tuy [17]. Actually, the set XM can be considered as the set of all efficient solu-
tions of the multiple objective programming problem (vector optimization problem)

MO

∣∣∣∣
vector max x
s.t. x ∈ X,

so that Problem P is a special case of the class of optimization problems over an
efficient set. Solution methods for optimization problems over an efficient set can be
found e.g., in Lethi, Pham and Muu [2], Benson [4, 5], Benson and Lee [7], Benson
and Sayin [8], Dauer and Fosnaugh [11], Horst and Thoai [16], Muu [20], Sayin [25],
Thoai [32, 33], Thach, Konno and Yokota [30], White [35], Yamada, Tanino and
Inuiguchi [36], Phong and Tuyen [23] and Yamamoto [37]. A common feature of
these methods is, however, that they can be only successfully applied to problems
where the underlying multiple objective programming problem has a small number
of objective functions.

In the present article, we first formulate the underlying problem equivalently as a
linear program with an additional nonconvex constraint, and then propose a method
to combine local and global optimization techniques for solving the resulting prob-
lem in a way that the advantageous network problem structure will be successfully
applied.

The equivalent formulation of Problem P with its advantageous network flow
structure is discussed in the next section. Suitable linear program relaxations of
this equivalent problem is established in Section 3. Section 4 presents different
local and global optimization techniques which are used for the establishment of the
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combination algorithm in Section 5. The convergence of the combination algorithm
depends on the branching procedure within a branch and bound scheme for checking
global optimality. The case of finite convergence is discussed in Section 4 while
establishing the branch and bound method using integral rectangular division for
the branching procedure. For the use of simplicial branch and bound procedure,
some kind of approximate optimal solutions is introduced in Section 5 so that the
combination algorithm yields an approximate optimal solution after finitely many
iterations. The final section contains some conclusions.

2. Equivalent Problem Formulations

In this paper we denote by R
k and Rk the set of k-dimensional column vectors

and the set of k-dimensional row vectors, respectively. As mentioned in the previous
section, the set XM of maximal flows is exactly the efficient set of MO. From
well-known results in multiple objective programming, e.g., Benson [6], Sawaragi,
Nakayama and Tanino [26], Steuer [29] and White [34], there is a compact subset,
say Λ, of Rn++ = {λ | λ ∈ Rn;λ > 0 } such that a point x belongs to XM if and
only if it maximizes λx over X for some λ ∈ Λ, i.e.,

XM = {x | x ∈ X;λx ≥ φ(λ) for some λ ∈ Λ },(2.1)

where

φ(λ) = max {λy | y ∈ X }.(2.2)

In what follows we denote by e the row vector of ones and by Zn the set of n-
dimensional integral row vectors. The following theorem shows that a finite set of
integral points of Rn++ suffices as Λ.

Theorem 2.1. Λ1 = {λ | λ ∈ Zn; e ≤ λ ≤ ne } suffices as Λ in (2.1).

To prove the above theorem we need the following lemmas.
Let x̄ ∈ R

n be a given maximal flow. Further let F be the index set defined by
F = {h | h ∈ E; x̄h = ch } and F = E \ F . Note that F 	= ∅. We refer to a directed
path from node i to node j as an i− j path.
Lemma 2.2. Let G be the graph of node set V and arc set F .
(i) G is acyclic and does not contain an s− t path or a t− s path.
(ii) For each node i ∈ V \ {s, t} at least one of the following two cases occurs:
case 1: G has neither an s− i path nor a t− i path.
case 2: G has neither an i− s path nor an i− t path.

Proof. The assertion (i) is clear from the fact that x̄ is a maximal flow. Let i be
an arbitrary node and suppose that case 1 of (i) does not occur, i.e., there is either
an s − i path or a t− i path. If there is an s − i path, we have by (i) that there is
neither an i− s path nor an i− t path, and if there is a t− i path, we see that there
is neither an i− s path nor an i− t path. These correspond to case 2.

Next let a� denote the row of the incidence matrix A of the network corresponding
to node � ∈ V \ {s, t}. Suppose we are given a nonempty subset U of V \ {s, t} and
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let

∆+E(U) = {h | h = (i, j) ∈ E; i ∈ U ; j ∈ V \ U }(2.3)

∆−
E(U) = {h | h = (i, j) ∈ E; j ∈ U ; i ∈ V \ U }.(2.4)

Then it will be readily seen from the definition of the incidence matrix that∑
�∈U

a� =
∑

k∈∆+
E(U)

ek +
∑

k∈∆−
E(U)

(−ek).(2.5)

Lemma 2.3. For each h ∈ F it holds that

eh = αh

∑
�∈Vh

a� +
∑
k∈F

βhkek −
∑

k∈E\{h}
γhkek(2.6)

for some αh ∈ {−1, 1}, Vh ⊆ V \ {s, t}, βhk ∈ {0, 1} and γhk ∈ {0, 1}.
Proof. Let h = (i, j) and consider the following two cases.
case 1: node i satisfies the condition of case 1 of Lemma 2.2.
Let

V +h = { � | � ∈ V ; there is an �− i path of G }.(2.7)

Then we see from Lemma 2.2 that s, t, j 	∈ V +h and that no arcs of F come into V +h
from its complement V +h = V \V +h . Therefore the cut (V +h , V +h ) consists of the three
sets of arcs: ∆+

F
(V +h ), ∆+F (V

+
h ) and ∆−

F (V
+
h ). By (2.5) we obtain

∑

�∈V +
h

a� =
∑

k∈∆+

F
(V +

h )

ek +
∑

k∈∆+
F (V

+
h )

ek +
∑

k∈∆−
F (V

+
h )

(−ek),(2.8)

which is rewritten as, since h ∈ ∆+
F
(V +h ),

∑

�∈V +
h

a� = eh +
∑

k∈∆+

F
(V +

h )\{h}
ek +

∑

k∈∆+
F (V

+
h )

ek +
∑

k∈∆−
F (V

+
h )

(−ek),(2.9)

Thus we obtain

eh =
∑

�∈V +
h

a� +
∑

k∈∆−
F (V

+
h )

ek − (
∑

k∈∆+
F (V

+
h )

ek +
∑

k∈∆+

F
(V +

h )\{h}
ek).(2.10)

case 2: node i satisfies the condition of case 2 of Lemma 2.2.
Since node i satisfies the conditon of case 2 and arc h = (i, j) is in F , node j also
satisfies that condition. Let V −

h = { � | � ∈ V ; there is a j − � path of G }. Then we
see s, t, i 	∈ V −

h and that no arcs of F go from V −
h into V −

h = V \ V −
h , and the cut

(V −
h , V −

h ) consists of ∆−
F
(V −

h ), ∆−
F (V

−
h ) and ∆+F (V

−
h ). Therefore

∑

�∈V −
h

a� =
∑

k∈∆−
F
(V −

h )

(−ek) +
∑

k∈∆−
F (V

−
h )

(−ek) +
∑

k∈∆+
F (V

−
h )

ek(2.11)

= −eh +
∑

k∈∆−
F
(V −

h )\{h}
(−ek) +

∑

k∈∆−
F (V

−
h )

(−ek) +
∑

k∈∆+
F (V

−
h )

ek.(2.12)
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Hence

eh = (−
∑

�∈V −
h

a�) +
∑

k∈∆+
F (V

−
h )

ek − (
∑

k∈∆−
F (V

−
h )

ek +
∑

k∈∆−
F
(V −

h )\{h}
ek).(2.13)

This completes the proof.

Proof of Theorem 2.1.
By Lemma 2.3 we see for each h ∈ F

eh +
∑

k∈E\{h}
γhkek = αh

∑
�∈Vh

a� +
∑
k∈F

βhkek(2.14)

for some αh ∈ {−1, 1}, Vh ⊆ V \ {s, t}, βhk ∈ {0, 1} and γhk ∈ {0, 1}. Adding these
equations over h ∈ F and the identities eh = eh for h ∈ F , we obtain∑

k∈E

λkek =
∑

�∈V \{s,t}
δ�a� +

∑
k∈F

ζkek,(2.15)

where λk = 1 +
∑

h∈E\{k} γhk for k ∈ E, ζk =
∑

h∈F βhk + 1 for k ∈ F , and δ� is
appropriately defined for � ∈ V \ {s, t}. Note that

1 ≤ λk ≤ 1 + (n− 1) = n(2.16)

for k ∈ E and ζk ≥ 0 for k ∈ F . Let λ =
∑

k∈E λkek. Clearly, λ ∈ Λ1. Then for any
feasible flow x it holds that

λx̄ =
∑
k∈E

λkekx̄ =
∑

�∈V \{s,t}
δ�a�x̄+

∑
k∈F

ζkekx̄(2.17)

=
∑
k∈F

ζkx̄k =
∑
k∈F

ζkck(2.18)

≥
∑
k∈F

ζkxk =
∑

�∈V \{s,t}
δ�a�x+

∑
k∈F

ζkekx = λx,(2.19)

meaning that the maximal flow x̄ maximizes λx over the set of feasible flows. �
By the porperty that φ(αλ) = αφ(λ) for α > 0, any compact subset of Rn++

whose conical hull contains the conical hull of Λ1 works as Λ. Therefore we could
replace Λ by the simplex

Λ2 = {λ | λ ∈ Rn;λ ≥ e;
∑n

i=1 λi =M }(2.20)

if M is sufficiently large.

Corollary 2.4. n2 suffices for M defining Λ2 of (2.20).

Proof. Let x̄ be a maximal flow. By Theorem 2.1 it maximizes λx over the fea-
sible flows for some λ ∈ Rn such that 1 ≤ λh ≤ n for each h ∈ E. Let λ̄ =
(n2/

∑
h∈E λh)λ. Then since n2 ≥∑

h∈E λh, λ̄ lies in Λ2 defined for M = n2 and x̄
maximizes λ̄x over the feasible flows.

Theorem 2.1 implies that Problem P can be solved in theory by the follow-
ing method. For each integral vector λ ∈ Λ1 identify the optimal face F (λ) of
max {λx | x ∈ X }, and solve min { dx | x ∈ F (λ) } for a solution x(λ). Note that
any point of F (λ) is a maximal flow, and it is readily seen that x(λ∗) such that
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dx(λ∗) = min { dx(λ) | λ ∈ Λ1 } is a solution of P . However, the integral points to
be considered amount to nn, so that this method is not practical.

Remark 2.5. The optimal face F (λ) is an outer semicontinuous mapping when con-
sidered as a point to set mapping, i.e., for a sequcence {λν} converging to λ any
cluster point of the sequence {xν} with xν ∈ F (λν) is contained in F (λ). See
Exercise 1.19 of Rockafellar and Wets [24]. Then dx(λ) is a lower semicontinuous
function in λ, i.e., liminfνdx(λν) ≥ dx(λ) for any sequence {λν} converging to λ.
Therefore for a given ε > 0 each λ has a neighborhood such that dx(λ′) ≥ dx(λ)− ε
holds for any λ′ in the neighborhood. This means that it is very likely that λ’s with
large objective function values dx(λ) make a cluster. Thus the divide and conquer
principle or the branch and bound method should work efficiently.

The above arguments yield two different representations of the setXM of maximal
flows:

XM = {x | x ∈ X;λx ≥ φ(λ) for some λ ∈ Λ1 }(2.21)

= {x | x ∈ X;λx ≥ φ(λ) for some λ ∈ Λ2 },(2.22)

each of which will in the following sections provide a scheme for solving the problem.
Now Problem P is written equivalently as

P

∣∣∣∣∣∣
min dx
s.t. λx− φ(λ) ≥ 0

λ ∈ Λ,

where Λ is either Λ1 or Λ2 with M = n2.

Lemma 2.6. Assume that each arc capacity ch is a nonnegative integer. Let XV

denote the set of vertices of the polytope X, and let x ∈ XV ∩XM . Then, whenever
{x | x ∈ XM ; dx < dx } 	= ∅, there exists x ∈ XM ∩XV such that dx ≤ dx− 1.

Proof. Note first that d is an integral vector. Then this lemma is a direct consequence
of the two well-known facts that each vertex of X is an integral vector and that
Problem P has an optimal solution in the vertex set of X.

3. Linear Program Relaxation

In this section we explain a linear program relaxation of Problem P . For the
sake of further argument, we consider the following problem with λ restricted to a
polytope, say S, contained in Λ:

P (S)

∣∣∣∣∣∣∣∣∣∣

min dx
s.t. Ax = 0

0 ≤ x ≤ c
λx− φ(λ) ≥ 0
λ ∈ S.

Let

Φ(S) = min {φ(λ) | λ ∈ S },(3.1)
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where the function φ(λ) is defined in (2.2). Our method for constructing linear pro-
gram relaxations of the nonlinear, nonconvex programming problem P (S) is based
on the following result.

Lemma 3.1. Let {λ1, · · · , λq} be the vertex set of S. Then Problem P (S) is relaxed
to the following linear program in variables x� ∈ R

n for � = 1, · · · , q:

P (S)

∣∣∣∣∣∣∣∣∣∣

min
∑q

�=1 dx
�

s.t. Ax� = 0 for � = 1, . . . , q
x� ≥ 0 for � = 1, . . . , q∑q

�=1 x
� ≤ c∑q

�=1 λ�x
� −Φ(S) ≥ 0,

i.e., the optimal value µ(S) of Problem P (S) yields a lower bound of the optimal
value of Problem P (S).

Proof. We show that for any feasible solution (x, λ) of Problem P (S) there exists a
feasible solution (x1, · · · , xq) of Problem P (S) satisfying

dx =
q∑

�=1

dx�.(3.2)

Since λ ∈ S,

λ =
q∑

�=1

β�λ�(3.3)

for some nonnegative numbers β� (� = 1, . . . , q) such that
∑q

�=1 β� = 1. Define

x� = β�x for � = 1, · · · , q.(3.4)

Then clearly
∑q

�=1 x
� = x and (x1, . . . , xq) satisfies the first three constraints of

P (S). For the last constraint we have
q∑

�=1

λ�x
� =

q∑
�=1

λ�β�x = λx ≥ φ(λ) ≥ Φ(S),(3.5)

where the last two inequalities follow from the assumption that (x, λ) is feasible to
P (S) and from the definition of Φ(S) in (3.1).

Remark 3.2. If Problem P (S) is infeasible, so is Problem P (S). In this case we set
µ(S) = +∞.

Remark 3.3. The value Φ(S) is determined in two different ways, both of which
come from the bilinearlity of λx. The first way is

Φ(S) = min
λ∈S

max
x∈X

λx

= min { r | λ ∈ S; r ≥ λx for all x ∈ X }
= min { r | λ ∈ S; r ≥ λx� for all x� ∈ XV }.
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Note that we need not know all vertices ofX in advance if we use the so-called column
generation technique in soving this problem. Applying the well-known minimax
theorem yields the second way:

Φ(S) = min
λ∈S

max
x∈X

λx

= max
x∈X

min
λ∈S

λx

= max { r | x ∈ X; r ≤ λx for all λ ∈ S }
= max { r | x ∈ X; r ≤ λ�x for � = 1, . . . , q }.

In either way Φ(S) is obtained by solving a linear programming.

Remark 3.4. Because of the constraint
∑q

�=1 λ�x
� − Φ(S) ≥ 0, the advantageous

network structure of Problem P (S) may be violated. To overcome this possible
difficulty, we propose to use here the Lagrangian relaxation of this problem.

Consider the Lagrangian relaxation problem with a multiplier π ≥ 0
∣∣∣∣∣∣∣∣

min
∑q

�=1 dx
� + π(Φ(S)−∑q

�=1 λ�x
�)

s.t. Ax� = 0 for � = 1, . . . , q
x� ≥ 0 for � = 1, . . . , q∑q

�=1 x
� ≤ c.

For each j = 1, 2, . . . , n let

λmax
j = max { (λ�)j | � = 1, . . . , q }

and let d′(π) ∈ Rn be the vector whose jth component d′j(π) is defined by

d′j(π) = dj − πλmax
j .

Then clearly for a fesible solution (x1, . . . , xq)

q∑
�=1

d′(π)x� ≤
q∑

�=1

(d− πλ�)x�,

so that the above Lagrangian relaxation can be relaxed further by the problem
∣∣∣∣∣∣∣∣

min
∑q

�=1 d
′(π)x� + πΦ(S)

s.t. Ax� = 0 for � = 1, . . . , q
x� ≥ 0 for � = 1, . . . , q∑q

�=1 x
� ≤ c,

which is actually equivalent to the following minimum cost network flow problem in
n variables:

P (S)

∣∣∣∣∣∣
min d′(π)x+ πΦ(S)
s.t. Ax = 0

0 ≤ x ≤ c.
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An efficient choice for the multiplier π can be taken using the well-known parametric
linear programming technique. See for example Ahuja, Magnanti and Orlin [1],
Belling-Seib, Mevet and Muller [3] and Bryson [10].

The dual problem of P (S), denoted by D(S), is written as

D(S)

∣∣∣∣∣∣
max −vc+ zΦ(S)
s.t. u�A− v + zλ� ≤ d for � = 1, . . . , q

(v, z) ≥ 0,

where uk ∈ Rm, v ∈ Rn, z ∈ R.

Lemma 3.5. A nonnegative vector (v, z) satisfies the constraints of D(S) together
with some u1, . . . , uq ∈ Rm if and only if for any λ ∈ S there is uλ ∈ Rm such that
uλA− v + zλ ≤ d.

Proof. The “if” part is readily seen by setting u� = uλ�
for � = 1, . . . , q. To show

the “only if” part, let λ be a given vector of S. Then λ =
∑q

�=1 β�λ� for some
nonnegative β�’s with

∑q
�=1 β� = 1. Let uλ =

∑q
�=1 β�u�. Then

uλA− v + zλ = (
q∑

�=1

β�u�)A− v + z(
q∑

�=1

β�λ�)

=
q∑

�=1

β�(u�A− v + zλ�) ≤ d.

The lower bound µ(S) has the following properties, which will be utilized within
the branch and bound procedure.

Lemma 3.6. Suppose ∅ 	= S2 ⊆ S1 ⊆ Λ. Then

−∞ < µ(S1) ≤ µ(S2).(3.6)

Proof. Suppose (v, z) is a feasible solution of D(S1) together with (u1, . . . , uq). Then
by Lemma 3.5, we see that (v,w, z) is a feasible solution of D(S2) with some
(u′1, . . . , u′q). Since the objective function value of D(S) is determined solely by
(v, z), we see the monotonicity µ(S1) ≤ µ(S2). The fact that −∞ < µ(S1) is a
direct consequence of the boundedness of the feasible region of P (S1).

We now show that the relaxation problem P (S) can be substantially simplified
when S is a hyper rectangle.

Lemma 3.7. If λ ≤ λ′, then φ(λ) ≤ φ(λ′).

Proof. Let x̄ be a point of X which maximizes λx over X. Since x̄ ≥ 0 we have
(λ− λ′)x̄ ≤ 0, and hence

φ(λ) = λx̄ ≤ λ′x̄ ≤ φ(λ′).(3.7)
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Lemma 3.8. Let {λ1, . . . , λq} be the vertex set of S ⊆ Λ and suppose λ1 ≥ λ� ≥ λq

for all � = 1, . . . , q. Then Problem P (S) is equivalent to the problem

P
′(S)

∣∣∣∣∣∣∣∣

min dx
s.t. Ax = 0

0 ≤ x ≤ c
λ1x− φ(λq) ≥ 0

in n variables.

Proof. Note that λq ≤ λ� for all � = 1, . . . , q implies that λq ≤ λ for all λ ∈ S. Then
by Lemma 3.7 we have Φ(S) = φ(λq).

Let (x1, . . . , xq) be a feasible solution of P (S) and let x =
∑q

�=1 x
�. Then clearly

Ax = 0 and 0 ≤ x ≤ c. Furthermore, since x� ≥ 0 we obtain

λ1x = λ1

q∑
�=1

x� =
q∑

�=1

λ1x
� ≥

q∑
�=1

λ�x
� ≥ Φ(S)

dx =
q∑

�=1

dx�.

This means that µ(S) ≥ µ′(S), where µ′(S) is the optimal objective function value of
P

′(S). Let x be a feasible solution of P ′(S) and let x1 = x, x2 = · · · = xq = 0. Then
(x1, . . . , xq) clearly satisfies the constraints of P (S), meaning µ(S) ≤ µ′(S).

From Lemma 3.8 if we take Λ1 as Λ and consider a hyper rectangle S = {λ |
λq ≤ λ ≤ λ1 } contained in Λ1, then, although S has as many as 2n vertices, the
relaxation problem P

′(S) has only n variables as Problem P (S) does. This might
be an advantage of using Λ1.

4. Local Search and Checking up Global Optimality

4.1. Local Search. The algorithms for the optimization over the efficient set pro-
posed by Philip [22], Ecker and Song [12], Fülöp [13] and Bolintineanu [9] are mainly
based on the technique of moving from an efficient vertex to an efficient neighbor
with a smaller objective function value via an efficient edge. In this section, following
their argment we will explain a local search technique calledAdjacent Vertex Search
Procedure.

We say that a maximal flow is extreme if it is a vertex of the set of feasible
flows X. It is known, e.g. Naccache [21], Sawaragi, Nakayama and Tanino [26] and
White [34], the set of maximal flows XM is connected, and all extreme maximal flows
are conneced by paths of edges consisting of maximal flows. Thus, starting from an
extreme maximal flow, we could reach an optimal solution of Problem P by a series
of pivot operations in theory. However, we cannot decrease the objective function
value monotonically along the path that we trace, i.e., we might be eventually caught
by a non-optimal extreme maximal flow none of whose neighboring extreme maximal
flows have a smaller objective function value. When this occurs, it is a local minimum
solution. See for example Bolintineanu [9].
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The Adjacent Vertex Search (AVS ) Procedure goes as follows. We denote by
[x, x′] the edge of X connecting x and x′ for x, x′ ∈ XV and

NM (x) = {x′ | x′ ∈ XV ∩XM ; [x, x′] ⊆ XM }.

Adjacent Vertex Search (AVS) Procedure

〈〈Initialization〉〉
Find x0 ∈ XV ∩XM . IfNM (x0) = ∅, then x0 is an optimum solution of P . Otherwise,
set k ← 0 and go to Step k.

〈〈Step k〉〉
〈k1〉 If {x | x ∈ NM (xk); dx < dxk } 	= ∅, choose xk+1 from this set, let k ← k + 1

and go to Step k.
〈k2〉 Otherwise, set v ← xk and stop.
Note that the initial extreme maximal flow x0 is easily found by choosing an

arbitrary positive vector λ and maximizing λx overX. The AVS Procedure generates
a sequence of distinct extreme maximal flows x0, x1, . . . , xk with decreasing objective
funtion values, which implies owing to the integrality property that dxk ≤ dx0 − k.
4.2. Checking up Global Optimality. We present in this subsection two Branch
and Bound (BB) Procedures for handling the following problem:

CGO(α)

∣∣∣∣∣∣
For a given integer α, find an extreme maximal flow

v ∈ XM ∩XV such that dv ≤ α,
or show that there does not exist such a point.

As shown in Section 2, for the description of the set XM , we can use one of two
sets Λ1 and Λ2. The set Λ1 defined in Theorem 2.1 consists of all integral vectors
contained in the rectangle {λ : e ≤ λ ≤ ne}, while the set Λ2 is an (n− 1)–simplex
defined in (2.20). Before presenting two branch and bound procedures for handling
Problem CGO(α) according to Λ1 and Λ2, respectively, we propose here two kinds
of polyhedral partitions called integral rectangular division and simplicial division.
Integral Rectangular Division
Let S ⊂ Λ1 be a rectangle with integral bound vectors, which contains more than
one integral vector and is defined by

S = {x | x ∈ R
n; aj ≤ xj ≤ bj, (j = 1, · · · , n) } = {x | x ∈ R

n; a ≤ x ≤ b },
where aj, bj are integers satisfying aj ≤ bj (j = 1, · · · , n). Further, let S1, · · · , Sq

be rectangles with integral bound vectors having the following properties
q⋃

i=1

Si ⊂ S,

Si ∩ Sj = ∅ for i 	= j,
q⋃

i=1

(Si ∩ Zn) = S ∩ Zn.
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Then we say that {S1, · · · , Sq} is an integral rectangular division of the rectangle S.
As a special case of this division, we consider the following integral rectangular

bisection.
Let u ∈ S such that u 	= b, and let � ∈ {1, · · · , n} such that u� < b�, (note that

such an index � exists, whenever S contains more than one integral vector). For
each real number t, denoting by �t� the largest integer which is less than or equal
to t, we define two rectangles

S1 = {x | x ∈ S;x� ≤ �u�� }
S2 = {x | x ∈ S;x� ≥ �u��+ 1 }.

Then, it is easy to verify that {S1, S2} is an integral rectangular division of S. We
say that S is divided into {S1, S2} by an integral rectangular bisection using the
point u.
Simplicial Division
Let S be an (n − 1)–simplex with vertex set SV = {λ1, . . . , λn}. Choose a point
λ̄ ∈ S \ SV which is uniquely represented as

λ̄ =
n∑

i=1

βiλi, βi ≥ 0 (i = 1, . . . , n),
n∑

i=1

βi = 1,

and for each i such that βi > 0 form the simplex Si obtained from S by replacing
the vertex λi by λ̄, i.e., Si = co{λ1, . . . , λi−1, λ̄, λi+1, . . . , λn}, where coA denotes
the convex hull of a set A. This division is called a radial simplicial division.

When λ̄ is the midpoint of a longest edge of S, then we obtain two subsimplices.
This special case is called a simplicial bisection.

As discussed in the preceding section, our BB Procedures are based on the linear
relaxation P (S) of the subproblem P (S) with λ restricted to a subset S ⊆ Λ, where
Λ is either Λ1 or Λ2. The branching process subdivides Λ into finitely many subsets
yielding a class of subproblems to be solved. In the algorithm to be proposed we
repeatedly apply the AVS Procedure, which provides a local minimum incumbent
solution vν , and then one of the BB Procedures to check up the global optimality
of vν . The chosen BB procedure starts with the number α = dvν − 1 and the class
R of subsets S of Λ such that µ(S) ≤ α.
Branch and Bound Procedure (BB1) (according to Λ1)

〈〈Initialization〉〉
Set k ← 0 and R0 ←R.
〈〈Step k〉〉
〈k1〉 Set µk ← min {µ(S) | S ∈ Rk } and choose Sk ∈ Rk such that µ(Sk) = µk.

Divide Sk into Sk1, . . . , Skp by an integral rectangular division and set Rk ←
Rk \ {Sk} ∪ {Sk1, . . . , Skp},

〈k2〉 For j = 1, . . . , p do:
(a) If |Skj ∩ Zn| = 1, then do:

(i) Set Rk ←Rk \ {Skj}.
(ii) Choose λ ∈ Skj∩Zn and solve max {λx | x ∈ X }, yielding the optimal

face F (λ).
(iii) Solve min { dx | x ∈ F (λ) }, yielding a vertex solution x(λ).
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(iv) If dx(λ) ≤ α, then set w ← x(λ) and go to 〈k4〉. Otherwise, go to
Endfor.

(b) If |Skj ∩ Zn| > 1, then do:
(i) Solve P ′(Skj), yielding the optimal value µ(Skj) and an optimal solu-

tion y if feasible (µ(Skj) = +∞ when infeasible).
(ii) If µ(Skj) > α, then set Rk ←Rk \ {Skj} and go to Endfor.
(iii) Identify the minimal face F of X containing y, solve min { dx | x ∈ F }

for a vertex solution w and go to 〈k4〉.
Endfor

〈k3〉 If Rk 	= ∅, then set Rk+1 ← Rk, k ← k + 1 and go to 〈〈Step k〉〉. Otherwise,
set R ← ∅ and quit.

〈k4〉 Set R← {S | S ∈ Rk;µ(S) ≤ dw − 1 } and quit.

Theorem 4.1. Procedure BB1 terminates after finitely many iterations, either yield-
ing an extreme maximal flow with an objective function value being less than or equal
to α, or indicating that such a maximal flow does not exist. In other words, Proce-
dure BB1 solves Problem CGO(α) finitely.

Proof. Each subsequence of rectangles, {Sq}, generated throughout Procedure (BB1)
such that Sq+1 ⊂ Sq ∀q, must be finite, since every Sq contains at least one element
from Zn.

If the procedure terminates at Step 〈k4〉, then the point w is an extreme maximal
flow satisfying dw ≤ α.

If the procedure terminates at Step 〈k3〉, i.e., R = ∅, then it follows that each
subset S of Λ1 yields a lower bound µ(S) > α, which implies that there does not
exist an extreme maximal flow v ∈ XM ∩XV such that dv ≤ α.

Branch and Bound Procedure (BB2) (according to Λ2)

〈〈Initialization〉〉
Set k ← 0 and R0 ←R.
〈〈Step k〉〉
〈k1〉 (a) Set µk ← min {µ(S) | S ∈ Rk } and choose Sk ∈ Rk such that µ(Sk) = µk.

(b) Divide Sk into Sk1, . . . , Skp by a simplicial division and set
Rk ← Rk \ {Sk} ∪ {Sk1, . . . , Skp},

〈k2〉 For j = 1, . . . , p do:
(a) Solve P (Skj), yielding the optimal value µ(Skj) and an optimal solution

(x1kj , . . . , x
n
kj) if feasible (µ(Skj) = +∞ when infeasible).

(b) If µ(Skj) > α, then set Rk ←Rk \ {Skj}.
(c) Let xkj ←

∑n
�=1 x

�
kj .

(d) If xkj ∈ XM , then set y ← xkj and go to 〈k4〉.
Endfor

〈k3〉 (a) If Rk 	= ∅, then set Rk+1 ← Rk, k ← k + 1 and go to 〈k1〉.
(b) Otherwise, set R← ∅ and quit.

〈k4〉 (a) Identify the minimal face F of X containing y and solve

min { dx | x ∈ F }
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for a vertex solution w.
(b) Set

R← {S | S ∈ Rk;µ(S) ≤ dw − 1 },
and quit.

If the Procedure BB2 terminates after finitely many iterations, then it either
yields an extreme maximal flow with an objective function value being less than or
equal to α, or indicates that such a maximal flow does not exist when R = ∅.

In the case that the procedure is infinite, it generates at least an infinite nested
subsequence {Sκ} of subsimplices such that Sκ+1 ⊂ Sκ for all κ. Below we show that
the procedure will generate an infinite sequence of flows converging to a minimum
maximal flow, i.e., an optimal solution of Problem P .

We recall the exhaustiveness of the division process introduced for the establish-
ment of convergence properties of branch and bound algorithms in global optimiza-
tion (see, e.g., Thoai and Tuy [31]). An infinite nested sequence of subsets {Sκ}κ
is said to be exhaustive if

⋂∞
κ=1 Sκ is a singleton. A simplicial division process is

called exhaustive if each nested infinite subsequence of subsets generated by it is
exhaustive. It is well known that the simplicial bisection process is exhaustive.

Theorem 4.2. Assume that the division process is exhaustive and Procedure BB2
is infinite. For each k let xk =

∑n
�=1 x

�
k, where (x1k, . . . , x

n
k ) is an optimal solution

to P (Sk). Then the sequence {xk} has an accumulation point, and each of them is
an optimal solution of Problem P .

Proof. Since xk ∈ X for each k and X is a compact set, the sequence {xk} has an
accumulation point in X. Let x∗ be an arbitrary accumulation point of {xk}, and
let {xκ} be a subsequence converging to x∗. Fom Lemma 3.5 and the property that
{µκ} is nondecreasing and bounded from above by α, it follows that there exists
a limit µ∗ of {µκ}. By using subsequences if necessary, assume that µκ → µ∗ as
κ→∞, and {Sκ} is the corresponding subsequence of simplices such that Sκ+1 ⊂ Sκ

for all κ. Since the simplicial division is exhaustive, it follows that
∞⋂

κ=1

Sκ = {λ∗},(4.1)

and hence, denoting by λ�
κ (� = 1, . . . , n) the vertices of Sκ we have λ�

κ → λ∗ ∈ Λ2 as
κ→∞ for i = 1, · · · , n. Thus, we have x∗ ∈ X, λ∗ ∈ Λ2, and λ∗x∗−φ(λ∗) ≥ 0, which
implies that (x∗, λ∗) is a feasible solution of Problem P (Λ2), i.e. Problem P , and
therefore, an optimal solution of this problem with the optimal value dx∗ = µ∗.

5. Global Optimization Algorithm and Approximate Optimal Solution

Combining Procedure AVS with Procedure BB1 or BB2 in Section 4, we propose
the following algorithm for globally solving Problem P .

Global Optimization Algorithm (GOA)

〈〈Initialization〉〉
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Compute an extreme maximal flow w0 ∈ XV ∩XM . If NM (w0) = ∅, then w0 is an
optimal solution of P . Otherwise, set ν ← 1, R ← {Λ} and go to Iteration ν.

〈〈Iteration ν〉〉
〈ν1〉 Apply AVS to Problem P starting from wν−1 and let vν be the extreme max-

imal flow obtained. Set αν ← dvν − 1 and go to Step ν2.
〈ν2〉 Set R← {S | S ∈ R;µ(S) ≤ αν } and apply BB.

(a) If an extreme maximal flow wν with dwν ≤ αν is found, set ν ← ν+1 and
go to Iteration ν.

(b) If BB terminates with an empty R, then stop (the point vν is an optimal
solution of P ).

When BB2 is used in the algoithm GOA, it can be infinite. For the case that
Procedure BB2 is infinite, we introduce the following concept of approximate optimal
solutions of Problem P .

Definition 5.1. Given a real numbers γ > 0, a flow x is called a γ–optimal solution
of Problem P if it satisfies the following conditions:
(i) There exists λ ∈ Λ such that λx− φ(λ) ≥ −γ, and
(ii) dx is a lower bound of the optimal value of Problem P .

Using this concept, we modify Procedure BB2 slightly to obtain the finiteness of
the global optimiztion algorithm. Recall that λ1k, . . . , λ

n
k are the vertices of Sk and

(x1k, · · · , xn
k ) is an optimal solution of Problem P (Sk). The modification consists of

the following additional stopping criterion between (a) and (b) at step 〈k1〉.

If
n∑

�=1

λ�
kx

�
k − Φ(Sk) ≥ −δ, then stop.(5.1)

We will show in Theorem 5.2 below that xk =
∑n

�=1 x
�
k is an approximate optimal

solution of Problem P in the sense of Definition 5.1.

Theorem 5.2. Assume that within Procedure BB2 the simplicial division is exhaus-
tive, and the additional stopping criterion (5.1) is used at Step 〈k1〉. Then
(i) The global optimization algorithm always terminates after finitely many itera-

tions; and
(ii) If Procedure BB2 terminates by the additional stopping criterion (5.1), then

xk =
∑n

�=1 x
�
k is a (δ + nε)–optimal solution of Problem P , where

ε = max { (λ�
k − λ�′

k )x
�
k | �, �′ = 1, . . . , n }.(5.2)

Proof. We show that Procedure BB2 is finite. Then the finiteness of GOA follows
immediately.

Suppose Procedure BB2 could be infinite. Then from Theorem 4.2, it would
generate an infinite sequence {xκ} converging to an optimal solution of Problem P .
This implies that there exists an index κ̄ such that

n∑
�=1

λ�
κ̄x

�
κ̄ − Φ(Sκ̄) ≥ −δ,
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Thus, Procedure BB2 must stop at iteration κ̄.
Assume now Procedure BB2 terminates at step 〈k1〉 of Iteration k by stopping

criterion (5.1). From (5.2) it follows that for each � = 1, . . . , n and for any λ ∈ Sk

we have

λ�
kx

�
k − λx�

k ≤ ε,
which implies

λ

n∑
�=1

x�
k ≥

n∑
�=1

λ�
kx

�
k − nε.

Let now λ ∈ Sk such that φ(λ) = Φ(Sk). Then

λxk − φ(λ) = λ

n∑
�=1

x�
k − φ(λ) ≥

n∑
�=1

λ�
kx

�
k − Φ(Sk)− nε,

which implies by (5.1) that

λxk − φ(λ) ≥ −(δ + nε).

Note that dxk = µ(Sk) is a lower bound of the optimal value of P by the choice of
Sk. Then by Definition 5.1 xk is a (δ + nε)–optimal solution of Problem P .

6. Conclusions

In this article we propose an algorithm to combine different techniques in local
search anad global optimization for solving the minimum maximal flow problem.
The characteristic property of this algorithm is that the advantageous network flow
structure is fully exploited. A detailed implementation and comparison of different
procudures will be presented in a subsequent paper.
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eds., System Modelling and Optimization, (Chapman & Hall, London, 1996) pp.24-36.

[20] L.D. Muu, “A convex-concave programming method for optimizing over the efficient set,” Acta
Mathematica Vietnamica 25 1, 67–85.

[21] P.H. Naccache, “Connectedness of the set of nondominated outcomes in multicriteria optimiza-
tion,” Journal of Optimization Theory and Applications 25 (1978) 459–467.

[22] J. Philip, “Algorithms for the vector maximization problem,” Mathematical Programming 2
(1972) 207–229.

[23] T.Q. Phong and J.Q. Tuyen, “Bisection search algorithm for optimizing over the efficient set,”
to appear in Vietman Journal of Mathematics.

[24] R.T. Rockafellar and R.J-B. Wets, Variational Analysis. (Springer-Verlag, Berlin, 1998).
[25] S. Sayin, “Optimizing over the efficient set using a top-down search of faces,” Operations

Research 48 (2000) 65–72.
[26] Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization (Academic

Press, Orland, 1985).
[27] J.M. Shi and Y. Yamamoto, “A global optimization method for minimum maximal flow prob-

lem,” Acta Mathematica Vietnamica 22 (1997) 271-287.
[28] M. Shigeno, I. Takahashi and Y. Yamamoto, “Minimum Maximal Flow Problem – An Opti-

mization over the Efficient Set –,” Discussion Paper No.912, Institute of Policy and Planning
Sciences, University of Tsukuba (March 2001).

[29] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application (Wiley,
New York, 1985).

[30] P.T. Thach, H. Konno and D. Yokota, “Dual approach to nminimization on the set of pareto-
optimal solutions,” Journal of Optimization Theory and Applications 88 (1996) 689–707.

[31] N.V. Thoai and H. Tuy “Convergent Algorithms for Minimizing a Concave Function”, Math-
ematics of Operations Research 5 (1980) 556–566.

[32] N.V. Thoai, “A class of optimization problems over the efficient set of a multiple criteria
nonlinear programming problem,” European Journal of Operational Research 122 (2000) 58–
68.

[33] N.V. Thoai, “Conical algorithm in global optimization for optimizing over efficient sets,” Jour-
nal of Global Optimization 18 (2000) 321–336.

[34] D.J. White, Optimality and Efficiency, (John Wiley & Sons, Chichester, 1982).
[35] D.J. White, “The maximization of a function over the efficient set via a penalty function

approach,” European Journal of Operational Research 94 (1996) 143–153.



18 J.GOTOH, N.V.THOAI AND Y.YAMAMOTO

[36] S. Yamada, T. Tanino and M. Inuiguchi, “An inner approximation method for optimization
over the weakly efficient set,” Journal of Global Optimization 16 (2000) 197–217.

[37] Y. Yamamoto, “Optimization over the efficient set: Overview,” to appear in Journal of Global
Optimization .

Institute of Policy and Planning Sciences, Univeristy of Tsukuba, Tsukuba, Ibaraki

305-8573, Japan

E-mail address: jgoto@sk.tsukuba.ac.jp, thoai@sk.tsukuba.ac.jp, thoai@uni-trier.de,

yamamoto@sk.tsukuba.ac.jp


