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Abstract

Let > be a binary relation on a finite set X. This paper proves
that > is irreflexive and transitive if and only if there is a real valued
function u on X and a semimetric 2 on X such that, for all z,y € X,
x =y < ulx) > uy) + Qa,y).

1 Introduction

Let > be an asymmetric binary relation on a set X with symmetric com-
plement ~: for all z,y € X, z ~ y if =(z > y) and —(y > z). When > is
acyclic (i.e., the transitive closure of > is transitive), the simple relational
system (X, >) will be referred to as an acyclic set. When > is irreflexive
and transitive, (X, ) will be referred to as a poset (partially ordered set).

It is proved by Bridges (1983) that if X is countable, then (X, >) is an
acyclic set if and only if the following numerical representation holds: there
is a real valued function u on X such that, for all z,y € X,

x =y = u(x) > uy).

This “one-way” representation is undesirable because preferences are not
recovered from the numerical representation wu.

Several recent studies uncovered “two-way” representations for acyclic
sets (X, >), i.e., the numerical representations also reconstruct qualitative
relation >. Abbas and Vincke (1993) and Agoev and Aleskerov (1993) con-
sidered finite acyclic sets and obtained the following two-way representation:
there exist a real valued function v and a real valued bivariate function {2 > 0
on X x X such that, for all x,y € X,

x =y < ulx) > uly) + Qe y).
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Since €) can be interpreted as a threshold, this representation will be dubbed
here a bivariate threshold representation. Rodriguez-Palmero (1997) pro-
vided sufficient qualitative conditions for the representation when X is a
second countable topological space. A complete qualitative characterization
of the representation for arbitrary X was obtained by Diaye (1999). Naka-
mura (2000) developed several necessary and sufficient qualitative conditions
for the existence of the representation when X is the power set of a finite
set. Other type of two-way representations for acyclic sets may be possible.
For example, Subiza (1994) represents acyclicity by means of set-valued real
functions.

The aim of the paper is to prove a similar bivariate threshold represen-
tation for finite posets. We show that (X, >) is a poset if and only if (X, >)
has a bivariate threshold representation with €2 a semimetric on X, defined
below, which is called a semimetric threshold representation. Posets may be
more important than acyclic sets in many applications. However, there have
been proposed and characterized no two-way representation of posets except
Herrero and Subiza (1999), who represented arbitrary posets by means of
set-valued real functions.

2 The Main Theorem

A semimetric ©Q on a set X is a real valued function on X x X that satisfies
the following three properties, understood as applying to all x,y,z € X,
(1) Qz,z) >0,

(2) Q(z,9) = Uy, 2),

(3) Qz,y) + Uy, 2) > A, 2).

We note by (1) and (3) that Q(z,y) > 0 for all z,y € X. The property (3)
is called the triangle inequality.
Our main theorem is stated as follows.

Theorem 1 Suppose that X is finite. Then (X,>) is a poset if and only
if there exist a real valued function u on X and a semimetric 0 on X such
that, for all x,y € X,

T -y < uz) > uly) + Qz,y).
When a semimetric €2 is additively separable, i.e., for all z,y € X,
Qz,y) =w(@) +w(y)

for a nonnegative real valued function w on X, the semimetric threshold
representation characterizes special posets known as interval ordered sets.

' A metric is a semimetric that has the property that Q(x,y) = 0 if and only if z = y.



Nakamura (2001) provided a complete qualitative characterization of the
representation for arbitrary X.

To prove the theorem, we use the following version of the familiar lemma
for the existence of a solution to a finite system of linear inequalities (see
Fishburn, 1970). Given two N dimensional vectors of real numbers, a =
(a1,...,an) and b = (b1,...,byn), we denote the inner product by a-b =
ZZ]\L L a;bi. A real vector is called rational if each component is a rational
number, and is called integral if each of its components is an integer.

Lemma 1 Let a',...,a™ be N dimensional rational vectors and 1 < K <
M. Then either there is an N dimensional integral vector p such that

p-a® > 0 fork=1,... K,
p-a¥ > 0 fork=K+1,...,M,

or else there are nonnegative integers ag,...,apn, with ap > 0 for some
k < K, such that

M
Zakafzoforjzl,...,]\f.
k=1

Note that the last equations in the lemma are described in the vector form

by
M
Z apa® =0,
k=1

where 0 is an IV dimensional zero vector. Since this equation says that some
of a',...,a™ are linearly dependent, we shall call it the linearly dependent
(LD) equation.

Proof of Theorem 1 If (X, ) has a semimetric threshold representation,
then it easily follows that (X, >) is a poset. We shall assume henceforth that
X ={x1,...,2,} is a nonempty finite set and that (X, ) is a poset.

To specify our system of linear inequalities, suppose that (X, ) has a
semimetric threshold representation with a real valued function v on X and
a semimetric 2 on X satisfying

(la) wu(x) —u(y) — Q(z,y) > 0 for all z,y € X such that z > y.
(Ib)  wu(z) —u(y)+Qz,y) > 0 and u(y) —u(z)+Q(x,y) > 0 for all z,y €X
such that z ~ y.

For real valued functions, v on X and Q on X x X, we define an n dimensional
row vector p; and a %n(n + 1) dimensional row vector ps by

p1 = (u(zr),...,u(zy)),
p2 = (Ui, x1), Qx2,21), Uz2,22),. . .,
Qzp, 1), Uzp,22), .., X, xp)).



For all z,y € X, we define two column vectors, 6(x) with dimension n, and
7(z,y) with dimension %n(n +1) as follows: for k=1,...,n,{=1,...,n,
i=1,...,nand j=1,..., %n(n + 1), the i-th component of §(zj) and the
j-th component of 7(xy,ys) are given by

1 ifi=k,
Oi(zk) = { 0 otherwise,
1 if j=gk(k—1)+and k>,
Ti(zk, ye) = 1 ifj=30(—1)+kand k<,
0 otherwise.

We note that 6 and 7 are unit vectors, and 7(z,y) = 7(y, x) for all z,y € X.

Now we specify the system of linear inequalities for (1a) and (1b). Enu-
merate = as (z!,y'),..., (z%,y™), half of ~ as (2}, w'),..., (272, w!?) by
using one of (z,y) and (y,x) when z ~ y, and X x X x X as (a',b',c!),...,
(a¥s,bl3, cl3). Then letting p = (p1,p2) be a $n(n + 3) dimensional row
vector, our system of linear inequalities are stated as follows:

(a)

() — (y) -
P (2, y') >0 fori=1,...,Ly,
(b) _ '
0(z") — O(w")
p (2, wt) >0 and
O(w') — 0(") o
p- (2, w) >0 fori=1,..., Lo,
(c)
0 .
P | 7(a’, b)) + 70, ) — 7(at, &) ] 20 fori=1,..., Ls.

Inequalities (a) and (b) follow from (1a) and (1b), respectively. The triangle
inequality is reflected in (c). Nonnegativity of €2 follows from (b), (c), and
irreflexivity of . Symmetry of €2 is already reflected in definition of .

We are to establish that the system of linear inequalities (a), (b), and
(c) has a p solution. Therefore, a poset (X, ) has a semimetric threshold
representation. Suppose on the contrary that there is no p solution. Then
it follows from Lemma 1 that there are nonnegative integers oy for ¢ =
1,...,L1,,6¢1 for i = 1,...,L2, ﬁig for i = 1,...,L2, and% for i = 1,...,L3
such that a;; > 0 for some 1 < j < L1, and the following LD equation holds:

iai [ e@(;%ﬁ) ]+LZ " { e(i?zz‘_, Z%uw }*2 i [ 9% - j;;i) ]

i=1 i=1

+.§:% { 7(a',b') +r(b?, c) = 7(d,cl) } =0



Let m=> a;, =5 06i1+ > Bie, and k =>_7;. Then m >0, m =/{+k,
and 0 < ¢ < k, because 7s are unit vectors and, for all z,y,z,w € X,
T(z,y) # 7(z,w) if z > y and z ~ w.

List the elements of =, ~, and X x X x X with o; repeats for (2, y),
Bi1 repeats for (2%, w'), B repeats for (w', z*), and ~y; repeats for (a’, b’, ),
and enumerate them as

(:CT?yT):v(xjn:y:n) for -,
(Zf)wT)W'w(Zz,wZ) for ~,
(a7, b7,¢7),...,(a, b5, cp) for X x X x X.

Then the LD equation is described as follows:

St ]S et

=1

+Z[ (at, bY) +T(b>9 ¢ty — 7(a? C)}:o,

’L’Z 7,”1, 19

In what follows, we show that the LD equation contradicts transitivity
of >=. We have two cases to examine: £ =10; 0 < ¢ < k.

Case 1 (£=0) The first n rows of the LD equation is

m m
> 0(r) =Y 0(),
i=1 i=1
which gives that the sequence z7,...,z}, is a permutation of the sequence

Yl Y. Since x7 =y for i =1,...,m, it is easily seen that transitivity
of > is violated.

Case2 (0</¢<k) Withnolossof generality, we assume that 7(z}, w}) =

T(a},cf) fori=1,...,0. Let Iy = {1,...,¢}. List the elements from the set
{r(ai,b3),...,7(a},b;), 7(b],c]),...,7(b},c;)} that have no identical vector
in 7(z},95), ..., 7(x5,y5), and enumerate them as 7!,..., 7. If there is
an 1 <4 < ¢ such that

T(ay,by) = T(zj,y;) for some 1 < i <m,
(b, i) = T(juyjs) for some 1 < j” <m,

then a, > b} and b}, > ¢}, so by transitivity of >, a}, > ¢},. Since 7(a},,¢})) =
7(zir, w} ), we obtain a contradiction a}, ~ ¢},. Hence £ < €1 < 20.

By the LD equation, there is a sequence of ¢; vectors from the set
{r(aj 1 ¢ii1)s---»7(ag, ci)} that is identical to the sequence .l
Thus 2¢ < k. With no loss of generality, we assume that 7* = 7(aj_;, c/ ;)

fori=1,...,0;. Thuslet 1 ={{+1,..., 04+ {}.



Next we construct a set Iy = {{ + 01 + 1,...,0+ {1 + {3} of indices as
follows. List the elements from the set

{T(az+1= bz—l—l)? s 77'(@24-417 bZ+€1)7 T(bz—i-l? CZ-H)? tee 77'(624-4170;-&-61)}

that have no identical vector in 7(z7j,v7),...,7(z},,vs,), and enumerate
them as 70041, .. 76072 With no loss of generality, we assume that 7011 =
T(a) gy 145 ooy 44) for i = 1,... 6. Of course, we may have Iy = 0, ie.,
fy = 0. If this is the case, we stop. Otherwise, we continue the recursive
construction of Is,..., I, in a similar manner until I, becomes empty.
Since X is finite, m’ is also finite.

Now we have that, for i = 1,...,m/

L={l+b+ -+l a+1,...04+0+ -+ 4},

where lg = £, = 0. We observe that, for ¢ = 1,...,m' — 1, there is a
distinct j' € I;_y for every j € I; such that either 7(a},, %) = 7(aj,c}) or
T(b;f/,.C;f/) = 7(aj, ). . . .

Since I,,, = (), we obtain that, for all 7 € I,,,,_1, there are 1 < 7' < m
and 1 < j” < m such that

*

J"

T(a;k,b;-k) = T(IL’;/,y;/),
T(b;k, C:) = T(x;//, y;f//),

so that a] > b and b > c¢;. Thus, by transitivity of >, a; > ¢ for all
1 € I,,/_1, so that, for all i € I,,,,_o,

either 7(af,bf) = 7(a},c;) forsomei' € I;y_q,

or m(a;,b7) = 7(2},y;) forsome 1 < j < m,
and

either 7(bf,¢}) = 7(al,,c}y) forsomei” € I,;y_q,

or T(b7,¢;) = T(zju,yju) for some 1 <" <m.

Therefore, a; > ¢} for all ¢ € I,;_5. This process continues up to Iy back-
wardly, so that we can conclude that a} >~ ¢} for all i € Ip U1 U---Ip_q.
However, a; ~ ¢} for all i € Ip. This is a contradiction. This completes the
proof. O

3 Conclusion

This paper proved that a finite poset has a semimetric threshold representa-
tion. However, our proof of the representation theorem is not constructive.
It remains an open problem to give a constructive proof, which may also



answer a question whether arbitrary posets have semimetric threshold rep-
resentations.

References
Abbas, M. and Vincke, Ph. (1993) Preference structures and threshold mod-
els. Journal of Multi-Criteria Decision Making 2, 171-178.

Agoev, R. and Aleskerov, F. (1993) Interval choice: classic and general
cases. Mathematical Social Sciences 26, 249-272.

Bridges, D.S. (1983) Numerical representation of intransitive preferences
on a countable set. Journal of Economic Theory 30, 213-217.

Diaye, M-A. (1999) Variable intervals model. Mathematical Social Sci-
ences 38, 21-33.

Fishburn, P.C. (1970) Utility Theory for Decision Making Wiley, New York.

Herrero, C. and Subiza, B. (1999) Set-valued utilities for strict partial or-
ders. Journal of Mathematical Psychology 43, 433—440.

Nakamura, Y. (2000) Threshold models for comparative probability on fi-
nite sets. Journal of Mathematical Psychology 44, 353-382.

Nakamura, Y. (2001) Real interval representations. Journal of Mathemat-
ical Psychology (to appear).

Rodriguez-Palmero, C. (1997) A representation of acyclic preferences. Eco-
nomics Letters 54, 143-146.

Subiza, B. (1994) Numerical representations of acyclic preferences. Jour-
nal of Mathematical Psychology 38, 467—-476.



