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1. Introduction

It is a central theme of game theory to investigate how people behave in interactive
situations. A solution concept describes decision (behavior) criteria of people and
the resulting outcomes from these criteria. Such an investigation is called a solution
theory, and various theories have been considered in the literature of game theory.
Each solution theory may involve two types of interpersonal considerations: (a) in-
terpersonal introspections in the mind of a player; and (b) interpersonal interactions
at physical levels. Exchanges of messages in an extensive game are examples for (b).
In this paper, we restrict our attention to (a). That is, we consider structures of
interpersonal introspections required for decision making in game situations.

A typical characteristic of extant solution theories is the pursuit of “rationality”
in resulting outcomes. This imposes payoff maximization for a decision maker and
symmetrically for the other players even in the mind of the decision maker. We
take the different view that decision criteria are more arbitrary than ones typically
considered in game theory. Such an arbitrariness is due the fact that other players’
minds are largely hypothetical. Under this view, we investigate structures of inter-
personal introspections required for individual decision making, putting emphasis on
the shallowness of interpersonal introspections.

The different view we adopt liberates us from the pursuit of “rationality” in
decision making and its resulting outcomes. Rather than talking about “rationality”
in outcomes, we would like to retain the term “rationality” to describe an attribute
of the reasoning ability of a player. We call this the logical rationality of a player.

Extant solution theories typically involve some or many transcendental factors.
This is caused by the fact that a simple decision criterion often fails to recommend a
decision. The avoidance of such a failure leads to the pursuit of “rationality”. Here,
we treat rather simple and naive decision criteria. First, we exclude mixed strategies
from our consideration, and a fortiori, we do not consider solution concepts related
to the literature of “perfection”. Even for epistemic requirements, we also avoid
assumptions containing transcendentalities such as common knowledge. Thus, we
find only a few simple and naive decision criteria in the literature of game theory,
but can find a lot from our real life. In this paper, we investigate the structure of such
simple and naive criterion from the viewpoint of the logical rationality of players.

Since decision making may involve predictions about what other players would
choose, decision criteria are more accurately described as prediction-decision criteria.
Different prediction-decision criteria may require different interpersonal introspec-
tions. For example, the dominant strateqy criterion requires a player to think only
about his own payoff function, and requires no interpersonal introspections. The
same is true for the mazimin decision criterion. Another example is that a player
assumes, in his prediction, the dominant strategy criterion for the other player and
chooses a best strategy (response) to the predicted strategy. Here, truly interpersonal
introspections are involved.

To facilitate considerations of interpersonal introspections for decision making,
we adopt the epistemic logics of shallow depths developed in Kaneko-Suzuki [7], [8]
and [9]. This logical system is denoted by GLgr. The subscripts £ and F of GLgp
are called, respectively,



(1): descriptive epistemic structure;
(2): inferential epistemic structure.

Both impose bounds on epistemic depths, where epistemic depths are the nested
structure of beliefs of players having the form: player i; believes that iy believes

im believes something. The former, F, is the bounds of epistemic depths for
a statement, and the latter, F, those of interpersonal introspections to infer the
statement. It may be the case that a player has beliefs on other players but may
make a decision without using his beliefs on other players. In this case, the notion of
(1) is complicated, but that of (2) is simple. Thus, we need to distinguish between
(1) and (2). A minimal inferential epistemic structure for a given statement is a key
for this distinction.

To differentiate the above two notions more clearly, consider another example:
pure default decision criterion. Suppose that player 7 gives up thinking about the
game and adopts his first strategy as his default decision. Then he needs no logical
reasoning for the choice of the first (default) strategy. On the other hand, player i
still needs to be conscious of what his default decision is. This consciousness requires
E to be larger than F. In this case, the minimal inferential epistemic structure F' is
null, but E contains at least depth 1. This will be discussed in Section 7.

We analyze the structure of prediction-decision making, while simultaneously
developing a logical theory suitable for our analysis. Therefore, we call our theoretical
development the logico-game analysis to differentiate our development from others.

Since the logico-game analysis in this paper will have a long development of
both game theoretic problems and epistemic logic GLgp, it would be helpful to
state that the climax of the development is the consideration of inner parallelisms of -
prediction-decision making in Section 8. Inner parallelisms mean that a parallel form
of prediction-decision making is found in each player’s prediction making. This is
explicitly argued and shown, using certain meta-theorems obtained for GLgp. This
result relies upon our basic assumptions that the same logical rationality is given
to each player, the investigator (observer) and players imagined in the mind of each
player.

Let us explain our undertaking from a different point of view. In Kaneko [4],
epistemic logic KD4™ with the belief operators By, ...,B,, of players 1, ..., n is discussed
as taking the central position. In KD4", formulae having nested occurrences of
By, ...,.Bn in any depths are allowed, and the Necessitation Rule may be applied
arbitrarily many times in proofs. On the other hand, human interpersonal epistemic
introspections often stop at very shallow levels. The purpose of introducing GLgr
is to take this limitation of human reasoning seriously. This is directly related to
the above game theoretical motivation in that we avoid transcendentalities and treat
prediction-decision criteria having only shallow interpersonal introspections.

The logical system GLEp is obtained by imposing two types of restrictions on
KD", rather than KD4", by means of descriptive E and inferential F. Nested occur-
rences of belief operators in formulae and proofs are restricted by £ and F', respec-
tively. We emphasize that F' is a subset of E and may be smaller than E. Thus,
only shallower interpersonal introspections are required for the logical rationality for
decision making than for the description of the epistemic situation.



We close this introduction with two remarks. The first is on our choice of a presen-
tation style of GLgr. In Kaneko [4], the Hilbert-style formal system and Kripke-style
semantics for KD4"™ are primarily discussed. We may adopt these types for GLgp,
but for our considerations of game theoretical problems as well as some logical prob-
lems, either is inconvenient in the sense that we need to prepare a lot of lemmas,
Instead, we present GLgr in the Gentzen-style sequent calculus, which enables us
to go directly to our problems. The Kripke-style semantics for GLgF is found in
Kaneko-Suzuki [9]. :

The second remark is on the exclusion of Axiom 4 (Positive Introspection Axiom)
from GLgr. One reason for this exclusion is that our focus is the consideration
of interpersonal introspections but not intrapersonal ones. Another reason is that
the exclusion makes our meta-theoretical treatments much easier. Nevertheless, the
results given in this paper essentially remain to hold, which will be discussed in the
Appendix (Section 11). '

The paper is organized -as follows: In Section 2, we prepare basic game theoretic
notions and various prediction-decision criteria in the nonformalized language, In
Section 3, we give the definitions of formulae and epistemic structures. In Section 4,
we give GLgp and state the cut-elimination theorem for it, and we iliustrate some
provable statements on prediction-decision making. One important result, called
the Decomposition Theorem, is given there. This states that the prediction-decision
statements for n players are decomposed into n independent statements of individual
prediction-decision making. This does not depend upon structures of prediction-
decision criteria.

In Section 5, we give the general definition of a prediction-decision criterion,
and see that various examples are special cases of this general definition. Section
6 presents various meta-theorems to be used for evaluations of prediction-decision
making in a game. In Section 7, we consider minimal inferential epistemic struc-
tures for prediction-decision making with various criteria. Section 8 is the climax
of the paper, in which we discuss inner parallelisms in prediction-decision making.
In Section 9 suggests a further development such as compound prediction-decision
criteria. Section 10 gives concluding remarks. Section 11 gives an appendix on the
treatment of the Axiom 4 (Positive Introspection). We append the list of symbols
for the reader’s use.

2. Some Game Theoretic Notions

In this section, we review basic game theoretical notions, and also give various
prediction-decision criteria. Some are standard in game theoretical literature, and
others are found in our everyday life. Such a variety of prediction-decision criteria
are important to understand the scope of our logico-game analysis.

2.1. Basic Notions and Simple Examples

Consider an n-person finite noncooperative game g = (915 .-, 9n) in strategic form.
The set of players is denoted by IV := {1, ...,n}. Each player i € N has ¢; pure strate-
gies (£; > 2). We assume throughout the paper that the players do not play mixed




strategies. The set of player i’s (pure) strategies is denoted by S; := {si, ..., s, } for
1 € N. His payoff function is a real-valued function g; on S := S x -+ x S,. An ele-
ment s = (s1,...,8,) € S is called a strategy profile. For s = (s1,...,8,) € S, let s_; =
(81y.eey 8i—1,Sit1, -+, 8n). This is an element of S_; := 51 X -+ X S;_1 X Sjp1 X -+ X Sp.
We write often s = (sy,...,5n) € § as s;; s_;.

A strategy s; € S; is a best strategy (response) to s—_; iff gi(si;s—:) = gi(ti; 5—:)
for all t; € 5;. We say that s; is a dominant strategy iff s; is a best strategy to s_;
for any s_; € S_;. A dominant strategy satisfies payoff maximization whatever the
other players choose. We also consider the concept of an undominated strategy to
discuss prediction-making. We say that t; dominates s; iff g;(t;;8-:) > gi(s:i;9-4)
for all s_; € S_; and ¢;(¢;; s—i) > gi(s;; 5—;) for some s_; € S_;. A strategy s; is an
undominated strategy iff no t; € S; dominates s;. Note that an undominated strategy
may not satisfy payoff maximization.

In the game g' = (g},g3) of Table 2.1 (Prisoner’s Dilemma), the second strategy
si2 for each player 7 is a dominant strategy and is undominated. The game g% =
(g?,93) of Table 2.2 is obtained from game g' only by changing payoff 6 in the north-
east corner to 2. In game g2, player 1 has the same dominant strategy as in g!, while
neither strategy for player 2 is a dominant strategy but either is undominated.

521 S22 521 S22
si1 (5,5) (1,6) s11 (5,5) (1,2)
s12 (6,1) (3,3) s12 (6,1) (3,3)*
Table 2.1: g' = (gi,03) Table 2.2: g2 = (¢?,92)

For a comparison purpose, we mention Nash equilibrium. A strategy profile
s = (81,...,5n) is called a Nash equilibrium iff s; is a best strategy to s_; for all
i € N. In either of games g! and g2, (s12,S22) is a unique Nash equilibrium. A Nash
equilibrium in each matrix is marked with asterisk *.

In the following, we will use the following prediction-decision criteria to exemplify
our theory.

DC1 (Dominant strategy): Player ¢ would choose a dominant strategy.

In game g!, this criterion gives a decision to either player. In game g2, however,
DC1 gives a decision only to player 1 but not to player 2, since player 2 has no
dominant strategies. Note that this criterion includes no predictions, i.e., a player
does not think about the other’s choice. We may think that the lack of predictions
causes the incapability of DC1 to recommend a decision for player 2.

We consider another decision criterion including prediction-making.

DC2 (Best strategy to a dominant strategy): Player 7 first predicts what the
other player j would choose following DC1, and then 7 would choose a best strategy
to the predicted strategy for j.

In game g?, player 2 first predicts that 1 would choose s;5 following DC1, and
then 2 would choose sz as the best strategy to the predicted decision s15. These cri-
teria, DC1 and DC2, are related to the procedure of iterated elimination of dominated
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strategies (cf., Moulin [10] and Myerson [11]). These are more or less a standard ex-
ample of a prediction-decision criterion in the literature of game theory. However, we
can consider some other prediction-decision criteria which have never been discussed
in the literature of game theory. We would like to show that our logical approach
enables us to take such other prediction-decision criteria in the scope of our research.
In particular, we discuss the subtlety of inferential epistemic interactions required
for decision making with such prediction-decision criteria.

Criterion DC2 makes no recommendations in some other games. For example,
the games g3 and g? (Matching Pennies) of Tables 2.3 and 2.4 allow neither player to
have a dominant strategy. Neither DC1 nor DC2 makes a recommendation. However,
some other criteria make recommendations for such games. Here we mention a few
more decision criteria.

Sg1 Sa9 So3 S21 522
511 (5:5) (112) (4!3) 511 (1:_1) ('_1:1)
siz2 (6,1) (3,3 (0,2 si2 (—1,1)  (1,-1)
Table 2.3: g3 = (g3, ¢3) Table 2.4: g = (¢4, g8)

As mentioned in Section 1, we treat “rationality” as an attribute of reasoning
abilities rather than outcomes or behavior. In the present context, this mean that
‘we do not pursue “rationality” of prediction-decision criteria. The following extreme
example may clarify our attitude.

DCO (Pure default decision): Player ¢ chooses the prespecified default strategy,
e.g., 5;1.

In game g%, player 1 can choose his first strategy s;; as a default decision with
no further considerations. The word “default” has the connotation that after some
other possibilities are considered and none of them recommends 2 decision, a default
decision is applied. We call this type the last-resort default decision criterion, which
will be discussed in Section 9. Here, we treat a pure default decision just as a
prespecified one,

Criterion DCO may sound too trivial if it is applied simply to player #’s decision
making. However, it would not be so if this is adopted for player j’s prediction on ¢’s
decision making. That is, the prediction on the other player’s choice is made without
considerations on the other’s subjective elements. We modify criterion DC2 into the
following. '

DC20 (Dogmatic prediction decision): Player % first predicts that player j would
choose strategy s; following DCO, and then ¢ would choose a best strategy to the
predicted strategy s;. :

This criterion is free from the symmetric assumption that a decision maker assumes
payoff maximization for himself as well as for the other player. In this sense, DC20
differs considerably from DC2. '

We will see in Section 7 that criterion DC20 involves some subtlety in epistemic
interactions, while DCO has only trivial interactions.




Finally, we mention the very first decision making criterion considered by von
Neumann [12] and [13] in the literature of game theory. We state it for player 1.

vN (Maximin decision): Player 1 chooses his s; to maximize ming, g1 (81, 52)-

That is, player 1 evaluates each s; by the worst possible payoff, ming, g1(s1, s2), and
maximizes this value. This criterion is usually considered only for a two-person zero-
sum game. It is sometimes confused with a Nash equilibrium, since the resulting
pair given by this criterion for two players is equivalent to a saddle point, i.e., Nash
equilibrium, if it ever exists. However, vN is an individual decision criterion, and does
not involve predictions about the other player's decision making. From the viewpoint
of epistemic depth, this criterion has the same status as that of the dominant strategy
criterion DC1. On the other hand, if we look at the saddle point in the game, and
if we require the infinite regress argument such as in Kaneko [4], it would require
common knowledge, i.e., the infinite depth.2

2.2. Location Game LG with Three-Stores of Different Sizes

To exemplify our theory, we need a slightly more complex example. Consider the
following 3-person game h = (hq,he, hg). In the following, we call this 3-person game
location game LG. In LG, player 1 has two strategies s11, s12, and each ¢ (i = 2, 3) has
three strategies s;1,s;2,s;3. We assume that h; depends upon all the three players’
choices, hs depends upon his and 3’s choice, and h3 is determined solely by his own
choice. Specifically, the payoff function hq(s1, s2, s3) is given as

2 if 81 = s11 and s9 = 891
1 if 81 = 811,82 = S22 and 83-‘/—'831
hi(s1, s2,83) = ¢
-1 if 81 = 811, 82 75 S91 and 83 = 831
L 0 otherwise

and hao(ss,s3), ha(ss) are given as

S31 832 S33

s31 O ) 5 s31 10

S99 10 1 10 S32 20

sa3 0 0 0 . s33 0
ha(s2, s3) hs(s3)

Since this example is constructed to show some slightly complex interpersonal in-
trospections, the following story in terms of industrial organizations looks somewhat
twisted, but gives some idea on the scope of possible applications of our theory.

2Aumann-Maschler [1] discussed carefully the conceptual differences between the maximin deci-
sion criterion from the saddle point property (Nash equilibrium) from a different point of view from
ours.



Three players 1,2,3 are companies, and there are three locations a, b, c for these
companies, which correspond to the three strategies s;1, s;2, s;3 of player ¢ = 2, 3. The
demand at location b is large, that at a is medium, and that at c is small. Player 3
is a large company treating many products, 2 a more specialized medium company,
and 1 a small company specialized to one product. Player 1 has already a facility at
location a, and then his choice is to open, s;1, or not to open a store, s12 at location
a. Players 2 and 3 would choose one location to open a store. Player 1’s product is
complemental to the those treated by player 2. Therefore, player 1 wants player 2
to open a store at location a. If player 2 chooses a, then 1 would have profit 2. If 2
opens at location b, then 1 would get profit 1 unless the big store 3 comes to location
a. It is the worst case for 1 that 1 opens the store and only the big store 3 comes to
a. Player 2 is affected by player 3’s choice. However, 3 is large enough to ignore the
other two players.?

Since player 1 is affected by the other two players, player 1’s decision making
may involve new aspects not found in the prediction-decision criteria described in
Section 2.1. Therefore, we consider only player 1’s decision meaking in the location

game LG.
The following one is an extension of DC2 to the 3-player case.

HDC (Hierarchal decision criterion): Player 1 predicts that 2 would predict
what 3 would choose following DC1, and that 2 would choose the best strategy to
it. Then player 1 would choose a best strategy to his prediction on 2’s decision.

Specifically, player 1 predicts that 2 predicts that 3 would choose sg2 as the
dominant strategy, and then 1 would predict that 2 would choose sp; as the best
strategy to s32. Then player 1 would choose 511 as the best strategy to the prediction
sg1. Thus, player 1 can make a decision by this criterion. In this case, player 1 needs
to think about 2’s decision making as well as 2’ prediction about 3’s decision making.
However, 1 does not directly predict 3’s decision making, and his prediction is made
only through 2's mind.

In the present location game, player 1 can make a decision under the prediction
that the other players choose undominated strategies.

NPC (Negative prediction criterion): Player 1 predicts that 2 and 3 would
choose undominated strategies, and 1 would choose a best strategy to his predictions.

Specifically in the above game, player 1 would predict that players 2 and 3 would
choose, respectively, sy; or sgp and s3; as undominated strategies. Then he would
choose s11 s a best strategy to either of (s, 839) and (s22,833). In this case, player
1 thinks about 2's decision making only in a negative sense, i.e., what players 2 and
3 would not choose. In location game LG, player 1 can also make a decision by this
criterion.

The prediction-decision criteria HDC and NPC require different interpersonal
" introspections. In HDC, the interpersonal introspection takes a liner form: 1 thinks
about 2’s prediction about 3's decision. On the other hand, in NPC, the interpersonal

#Qur concern is ordinal preferences on strategy profiles. This.assumption can be interpreted as
meaning that the ordinal preferences are determined by hs(sz, s3) and ha(sa), though the actual
profits are slightly influenced by the choices of 1 andfor of 2. °




introspection takes a branching form: 1 thinks about 2’s and 3’s decisions separately.
This difference will be more explicitly discussed in Sections 7, 8 and 9.

3. Set of Formulae P and Epistemic Structures

We define the set of formulae and see how prediction-decision criteria are described
as formulae. We also define the concept of an epistemic structure, which will be used
in descriptive and inferential manners for the definition of our epistemic logic GLgp
of shallow depths in Section 4.

3.1. Definition of Formulae

We represent payoff functions g, ..., g, in terms of preference relations. We start
with:

strategy symbols: S11, ...,818,; 521, -+, S265} -+ Snl, --)Snt,;

2n-ary symbols: Py, Py, ..., Py;

unary symbols: dy,ds, ..., dn;

logical connective symbols: — (not), D (implies), A (and), V/ (or) ;

unary belief operator symbols: By, Bo, ..., By;

parentheses:  (, ); braces: {,} and commas: , .

We associate the intended meanings, “not”, “implies”, “and”, “or”, with connec-
tive symbols, =, D, A, V/, respectively. Unary belief operator symbol B; is ap-
plied to each formula. Strategy symbols are identical to those given in the Section
2. By a 2n-ary symbol F;, we consider the expression P;(s1,...,Sn : t1,...,tn) for
(81, .-380), (t1,-..,tn) € S. By a unary symbol d;, we consider the expression d;(s;)
for s; € S;. These expressions are called atomic formulae, and the set of them is
denoted by AF. For example, when n = 2 and ¢; = {3 = 2, AF consists of 32 + 4
atomic formulae. Atomic formula P;(s1, ..., $n : t1, ..., t,) is intended to means a weak
preference for (si,...,s,) over (i, ...,t,) for player i, and d;(s;) means that s; is a
default decision for player 7.

Regarding AF as the set of propositional variables, we define formulae inductively
as follows: ’

F1: any A € AF is a formula;
F2: if A and B are formulae, so are (—=A), (A D B) and B;(4) (i € N);

F3: if {Ap, A1, ..., A} is a finite nonempty set of formulae, then (A{Ao, 41, ..., Am})
and (\/{Ao, A1, ..., An}) are also formulae;

F4: any formula is obtained by a finite number of applications of F1, F2 and F3.4

“The above definition deviates from the standard textbook definition of formulae in that connec-
tives /\ and \/ are applied to a finite nonempty set of formulae, e.g., A{Ao, A1, ..., Am }, rather than
to an ordered pair of formulae. We take this deviation to facilitate game theoretical applications.
However, the resulting logical systems are equivalent (with respective to provabilities or validities
defined in the systems). This formulation does fit in some considerations, e.g., using the Godel
numbering. If one wants to take the Gédel numbering, then the standard formulation would be
more convenient.



We denote the set of all formulae by P. We say that a formula A is nonepistemic iff A
contains no By, ..., B,. We denote the set of all nonepistemic formulae by P". We fol-
low standard practices of abbreviations so that we could recover the original expres-
sions when necessary. We will also abbreviate A{4, B}, V{4, B, C}, A{4o, A1, vy Am}
as ANB, AVBVC, NiL, A, etc. We denote (A D B)A(B D A) by A= B. We also
denote -pApand ~pVpby L and T, respectively, where p is an atomic formula.

Here we look briefly at how the basic game theoretical concepts are expressed in
our language.

First, we express the payoff function g; of player i as the following set of prefer-

ences: |
{Pi(s 1) : 9i(s) 2 g:()} U{=Pi(s: 8) : gi(s) < qu(®)}, (3.1)

which is denoted by g;. The conjunction A g; of § is a formula. Hence, the payoff
functions for n players are described as the set g=g1U--Ugy, or as the formuls
AG1 U+ Ugy).

The statement that strategy s; for player ¢ is a best strategy to the others’
strategies s_; is described as the formula A{P(s:;s—; : ti; s—;) : t; € 5;}, which we
denote by Best;(s; | s_;). The statement that s; is a dominant strategy for player ¢ is
expressed as A{Best;(s; | s—;) : s; € S_;}. This means that s; is the most preferable
whatever the others choose. This is equivalent to A{Pisistoi,r ti;t-;) : t; € S; and
t_; € S_¢}, which we denote by Dom;(s;).

An undominated strategy needs a slightly longer definition: First, we denote the
following by dom;(;, s;) :

A Bltis_i,isgsci) A\ =PBsis_s,: ti;8-4). (3.2)
s_&5_; 3_;E5_;
The above, (3.2), states “t; dominates s;”. Using this formula, we define Und;(s;) :=
s, ~dom;(2;, s;). This states “s; is an undominated strategy”.

Finally, consider the prediction-decision criteria DC1 and DC2 for a 2-person
game g = (gy,g2). Criterion DCI for player ¢ is described as D} = {Domy(s;) : s; €
5:}. Criterion DC2 for player 4 is denoted by D? = {D2(s,) : s; € Si}, where each
D2(s;) is given as

V/Bj(Domy(5,)) A A\ (B;(Doms (s7)) > Besty(s: | 1) (33)

If player ¢ believes I' and B;{D2(s;)) is derived from his beliefs B;(T"), then s; is
regarded as a decision for ¢ as far as he adopts his prediction-decision criterion D?.
In Section 5, we discuss these and other prediction-decision criteria in a unified

manner.

3.2. Epistemic Depths of Formulae and Epistemic Structures

Although the set of formulae P allows any finitely nested structures of By, .., By,
the decision criteria D} and D? seem to need only small part of P. To capture this
idea, we introduce the notions of the epistemic depths of formulae and epistemic
structures. As stated in Section 1, the notion of epistemic structures will be used to
impose restrictions on:
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(i): interpersonal epistemic expressions in formulae;
(ii): interpersonal epistemic inferences in proofs.

In this section, we will discuss only (i), and will do (ii) in Section 4.

First, let N<¥ := {(%1,..c,%m) © %1,.--,2m € N}. Note that N<“ contains the
null sequence €, i.e., the sequence of length 0. We call e = (i1,...,%m) € N<% an
epistemic status. For e = (41, ...,im) € N<¥, B;,...B;, (A) is denoted by B.(A), and
Bc(A) is regarded as A. We define the following concatenation: for e = (i1, ...,%m),
e = (1, Jk) €E N<¥, let eo € = (21, ...y im, J1, - k). We also let ece =€oe =e.
We write (¢) oe and eo () as i 0 e and e o i, respectively.

We define the (epistemic) depth é"(A) of A € P by induction on the length of a
formula:

DO0: 6"(p) = {€} for any p € AF;

B & (-C) = 6"¢L;

D2: 6"(C D D) =6 (C)U " (D);

D3: 6" (A®) = 6"(V %) = Uges 57(O);

D4: §"(Bi(C)) = {ice:ec é(C)}.

Note that §"(A) is a subset of N<“. For example, §"(B2(Doms(s2))) = {(2)} and

6"(B2(D3(s2))) = {(2),(2,1)}. We define §"(T) = Uger 67(C) for a set T of formulae.®
To give a restriction on formal descriptions and formal proofs, we introduce the

notion of an epistemic structure. We say that a nonempty subset E of N<“ is an
epistemnic structure iff

(41, .--yim) € E implies (i1, ...,im—1) € E. (3.4)

When m = 1, (i1,...,9m—1) is the null symbol e. By the nonemptiness of E and
(3.4), we have € € E. Trivial examples for ¥ are N<“ and {e}. Less trivial examples
are {¢,(1),(2)} and {¢, (1),(2),(1,2),(2,1)}. The epistemic depth 6§"(A) of formula
A may not satisfy (3.4). However, for any given A, there is the smallest epistemic
structure including 6"(A).

Given an epistemic structure £, we define

Pe={A€P:6(A)CE}. - (3:5)

A formula A in Pg is said to be admissible in E. That is, when an (descriptive)
epistemic structure F is given, we admit only formulae whose depths are in E. For
example, when E = {¢, (1), (2)}, any formula in P may have B; and By without
nested occurrences. On the other hand, formula By(D2(s3)) belongs to Ple2),2,1)}
but not to Pg. Since the null symbol € always belongs to any epistemic structure E,
all the nonepistemic formulae are included in Pg, i.e., P* C Pg.

®This 6" differs in D4 from & given in Kaneko [4], which is the depth measure suited to the
KD4-type logics.
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4. Epistemic Logic GLgr of Shallow Depths

We adopt the Gentzen-style formulation of the epistemic logic GLgr of shallow
depths. The choice of the Gentzen-style is made so as to facilitate our arguments
rather faithfully. Intuitively speaking, GLgr is defined by imposing two restrictions
on formulae and proofs in the Gentzen-style formulation of KD™. In Section 4.1,
we give the Gentzen formulation of GLgr, and in Section 4.2, we see how it is
used for describing game theoretic decision making. We give detailed examples and
explanations in Section 4.3 and also state basic theorems on logic GLgg in Section

44,

4.1. Logic GLgr and Game Theoretic Statements

Let E and F be two epistemic structures with F C E. We give restrictions in terms of
these F and F, respectively, on formulae and on proofs. To formulate the restrictions
on proofs, we introduce the concept of a thought sequent.

Let e = (i1,...,4m} € E, and T, © finite subsets of Pg. Using auxiliary symbols L],
and —, we introduce a new expression B.[I' — ] := B;,...B;,. [’ — ©)], which we call
a thought sequent. The admissibility of a formula is extended to a thought sequent.
We say that a thought sequent Be[I" ~ ©] is admissible in E iff eo§(I'UG) := {eoe’ :
¢ € ("'UO)} C E. Admissible proofs with respect to F will be defined presently.

We abbreviate B[I' — O] as I' — ©. Also, we abbreviate B;[TUA — AU®] and -
Be[{A}UT — ©U{C}] as B[, A — A, ©)] and B.[4,T — Q,C], etc. We use the
convention to write B;(®) = {B;(A) : A € &}.

The notion of a thought sequent has some conceptual difference from Gentzen’s (3]
original notion of a sequent. Nevertheless, since we consider only thought sequents,
we may call thought sequents simply sequents.

By Bi,...B;,, [’ — ©)], we express the idea that player 7., in the mind of Tl o
in the mind of 4; conducts logical reasoning and believes that ' — ©. As in the
standard sequent calculus, I' — @ is intended to mean AT D VO, where A and
V @ are meant to be ~p V p and —p A p, respectively. Here, we note that if we forget
the outer Bg[- -] of B.[I" — ©] and impose no restrictions on formulae and proofs,
the following logical system would be the same as the Gentzen-style formulation of
KD".

The logical reasoning of the innermost player ¢, in B;,...B; [ -] is governed by
one axiom schema and various inference rules, which describe classical logic. One ad-
ditional rule connects player 4,,’s reasoning to #;,—1’s. In the following, I, ©, A, A, &
are finite sets of formulae, A4, B formulae and & is assumed to be nonempty.

Axiom (Initial Sequent): B.[4 — A],
Structural Rules:

B[’ — €] B[’ = 0,4] BA,A— A

Bar— 0,4 B.,A = 6,A (Cut)
Operational Rules:
B.[I' - ©, 4] B[4, T — Q]

(~ =) (=)

Bo[~4,T — 0] Bl — ©, 4]
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B[l - ©6,4] B.[B,T— 6] B[4, — ©, B

BJASB,T — 0] (3-) BT 56455
B,[4,T — O] (BT — ©,4]: A € &)
B O T ] MY MR AED B.[T — ©,\ 9] =N
{BoJA,T — O] : A € 3} B[l — ©, A]
Bver—e V7 Broeye (V) vheeded

Epistemic Distribution Rule:
Bem’ [F — @]
Be[Bi(T') — B:(©))]

Here |©)] is the cardinality of ©.

Inferences (O—),(— A) and (\/ —) have the sets of upper (thought) sequents,
which mean that each sequent is already proved. Some examples are given below.

The outer B[ - -] of the upper and lower thought sequents in each of the structural
and operational rules are identical, and these rules describe classic logic. That is, the
innermost player i, in e = (i1, ..., %) is assumed to be capable of conducting logical
reasonings described by classical logic. The outer B[ -] changes only at (B;,, —
Bi,.), and eventually the innermost 7., goes into the scope of By;, . ;. ,)[---]- The
length of e = (iy,...,4,) of the outer B[ -] gets shorter only at an application of
(Bi,, — By,,) in a proof.

Let Be[I' — O] be a thought sequent admissible in E. An admissible proof P of
B.[I' — ©] in GLgF is a finite tree satisfying the following conditions:

P1: a thought sequent admissible in £ is associated with each node;
P2: the thought sequent associated with each leaf is an instance of the axiom;

P3: adjoining nodes together with their associated thought sequents form an instance
of the above inference rules;

P4: B.[I' — O] is associated with the root node;
P5: ¢ belongs to F for any thought sequent Be/[A — A] in P.

We say that B.[I' — 0] is provable in GLgp, denoted by Fgp B[[" — O], iff there
is an admissible proof P of B.[I' — ©] in GLgp. The negation of Fgp Be[[' — O] is
denoted by ¥gr Be[I' — ©]. Recall that when e = ¢, we abbreviate the outer B/ - |,
that is, Fgr B¢[[' — O] is written as Fgr I’ — ©. When we write Fgp I' — © or
FgpT — O, we already assume that I' — © is admissible in E, i.e., §(I'U©) C E.

Consider one example of a proof. In Kaneko [4], it is shown that B;(A g}) D
B;i(Dom;(s;2)) is provable in KD4". This is now proved for ¢ = 1 in GLgp with
E =F ={¢, (1)} as follows:

{131[131(812,52 : 81,52) — Pi(s12, 82 : 51, 52)] }
. (Th)
B1[g1 — Pi(s12, 2 : 81, 92)]
Bi[gi — Domy(s12))]
B[B1(g1) — Bi(Domj(s12))]
B[ — Bi(g{) D B1(Dom(si2))

(B; — B;), where |©| <1andi€ N.

WS () (@)
(B1 — By)

] (=2)
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Note that inference (~ A) has [S| =2x2 upper thought sequents, each of which is
derived with (Th). In fact, Fgr — B1(g]) DB1(Domy(s12)) is equivalent to Fer
Bl(ﬁ}) — Bl(Doml(Slz)).

We define the inconsistency of I in GLgp by Fgr T' — L. Recall that L is the
formula —p A p, where p € AF. We say that I is consistent in GLgr if Kgr T — 1.
We will use the following fact:

I is consistent in GLgp if and only if ¥gp ' — . (4.2)

Indeed, let Fpp T" — 1. First, we have Fpr L — , which is proved as follows: _

p—=p
(=)
P
(A=)
PAp,p—
(A -,
PAp—

Then we combine this proof with a proof of have I' — 1 as follows:

- |1 L = A
- (Cut).
Conversely, if Fgr ' — , then Fgp ' — . by (Th). Thus, we have (4.2).
Also, when (i) € F, the following hold and will be used without mentioning:

Fep B,'(Af\ C’) — Bf(A) A Bi(O) and Fgp Bi(.A) A B,-(C) — Bi(A A C)

Note that for these, we use (B; - B;) once. This interchangeability holds for any
finite nonempty set ® of formulae, i.e., Fyp B; (A®) — ABi(%) and Fgp AB;i(8) —
Bi(A 2).

We need more comments, examples and basic theorems so as to use the above
Gentzen-style formulation of GLgp for investigations of game theoretical decision
making, We postpone such details to the next subsections, and here we mention only
how these definitions are used to describe the general problem of game theoretical
decision making,

4.2. Statements on Game Theoretical Decision Making

From the viewpoint of the investigator (cbserver), the problem is stated as the prov-
ability or unprovability of thought sequent

r— A : (4.3)

Here, T' is the set of formulae assumed by the investigator, and A is a consequence
to be derived from these assumptions I, Hence, if (4.3) is provable, we regard A as
derived from the assumptions I by the investigator, but if not, we do A4 as underivabje
“{from I by the investigator.
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When the investigator thinks about the logical reasoning of player i, (4.3) may

be expressed as
Bi (Fi) ——y Bi(Ai). (4.4)

That is, I and A takes the forms of B;(I';) and B; (A;). Exactly speaking, this means
that the investigator, rather than player i, has the assumptions B; (I;) and derives
consequence B;(A) from B;(T;). Conceptually, this differs from

B;:[[: — Ail. (4.5)

This thought sequent means that player i derives A; from his beliefs I';. When this
sequent is provable, the investigator understands rationally the derivability of A;
from I'; by player i. Here, the rationality is entirely in the sense of logic. Regardless
of the conceptual difference, the provabilities of (4.4) and (4.5) are, in fact, equivalent
in GLgp with ¢ € F. This will be proved in Section 6.

Now, consider a prediction-decision criterion. A prediction-decision criterion is
given as D; = {Di(s:) : s; € Si}, where Dj(s;) is a formula indexed by s;. The
dominant strategy criterion DC1 and the best strategy to a dominant strategy DC2
are examples for D;, that is, these are formulated in Section 3.1 as D} = {Dom;(s;) :
si € S;} and D} = {V, B;(Dom; (s5)) A\, (Bj(Dom; (s5)) D Besti(s; | s5)) : si € Si}-

The following thought sequent represents player ¢’s capability of decision making:

B4(T) ""yBi(Di(si))a (4.6)

where T is the finite set of player #'s basic beliefs. This means that the existence of
some de(_:ision s; is derived from player 7's beliefs T';.

The general statement by the investigator is expressed as the provability of the
following;:

T, B1(T1), - Ba(Tn) = V Bi(D1(s1)) A AV Bn(Da(sn) (4.7)

where T is a finite set of nonepistemic formulae, which expresses the objective sit-
uation such as §; U ... U . This is a statement on the capabilities of the decision
making of all the players.®

We regard, as a goal of this paper, the consideration of the provability of (4.7)
from the viewpoint of the investigator. We mention the following theorem, though
its proof needs various meta-theorems and will be given in Section 6. The theorem
states that for each player’s decision making, it suffices to consider (4.6) separately
and to ignore the objective part L.

6\We may restrict the set of players into a subset of NV. That is, some players reach decisions but
the others do not. Especially, there are various possibilities for the latter players. In this paper, we
do not go deep into this problem.
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Theorem 4.1 (Decomposition). Suppose that ToUB;(T'1) U ...UBR(I's) is consis-
tent in GLgp. Then the following two statements are equivalent:

(1): Fer Lo, B1(I‘1), ey Bn(I‘n) — VslBl(Dl(Sl)) A A Vsan(Dn(Sn));

(2): foralli € N, Fg,p. B;i(T;) — Bi{Di(s:)) for some s; € S,

where E; = {(é1, yim) € E 143 =i} U {€} and F; = {(41, ...,im) € F 147 =i} U {e}.
Since the disjunction before B;(D;(s;)) is dropped in (2), statement (2) asserts

the derivability of a particular decision and is more specific than (4.6). Also, this

becomes the form of (4.4) and enables us to look into player ¢'s thought. This problem

is the subject of Section 8.

Tn the following, we focus on the provability of thought sequents of the form (4.6)
rather than (4.7).

4.3. Examples of Admissible Proofs and Minimal Inferential Epistemic
Structures

In the definition of a proof in GLgp, F appears in P5, while E appears in P1. That
is, the outer B[ - -] in a proof P is constrained by F, and the entire description of the
proof P is constrained by E. For example, consider the thought sequent Bi(Ih) —
Bi(di(s11)) = Be[B1(T1) — Ba{da (s11))], where di(s11) € I'1. Thus player 1 has his
belief set T, including d;(s11), i.e., 1 has the basic belief that his first strategy is
a default decision. One possible proof for the sequent B1(T'1) — Bi(di(s11)) is as

follows:
0 B [dl(su) — dl(Sll)] (Bl — Bl)- (48)

Be[B1(d1(511)) — Bi(di(s11)))
B[B1(T'1) — Ba(di(s11))) (Th)

This is an admissible proof when E = F = {¢, (1)}, but is not when E = {¢,(1)}
and F = {e}. However, B¢[B1(di(s11)) — B1 {d1(s11))] is an instance of the axiom in
GL{E,(l)}{e}- This implies that

B.[B1(d1(s11)) — Bi{di(sn1))]
BG[BI(FI) — Bl(dl(sll))] Th). (4.9)

is an admissible proof in GLye, (1))} Thus, B1(T'1) — Bi(da (s11)) is provable both
in GLe,1)}e,1)) 3804 Gle, e}

The examples state that the same sequent is obtained by proofs with different
interpersonal epistemic depths. The proof of (4.8) has the redundancy in the inves-
tigator’s thought about player 1’s thought, while that of (4.9) has no redundancy in
that sense. This inferential epistemic structure F' = {¢} gives important information
for the sequent B1(Ty) — Bi(di(s11)). E.g., the above implies that any inferential
structure F (as well as E 2 F) works for the sequent By (1) — Bi(di(s13)). In
general, it may be the case that a sequent has very complex descriptive epistemic
structure E but it requires only a small inferential epistemic structure F. To reflect
this difference, we consider a minimal inferential epistemic structure F.

Let a thought sequent I’ — © be given. We say that F is minimal for I — o iff
Fep T — © and ¥gm T — © for any epistemic structure F' & F. Consider the above
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sequent By (1) — Bi(di(s11)): Inferential epistemic structure F' = {€} is minimal for
B1(T'1) — Bi(di(s11)). Thus, the derivation of a default decision from the assumption
of the same does not need the logical reasoning of player 1. Nevertheless, player 1
is conscious of the pure default decision, which requires E includes (1). This is the
argument on the default decision making mentioned in Section 1.

The proof given in 4.1 holds for ¢ = 1,2. Abbreviating the outer Be[- - -], we have

i, r, Bi(g}) — Bi(Domi(si2)), (4.10)

where E; = F; = {¢, (i)}, ¢ = 1,2. In fact, we can prove that this F; is a unique
minimal inferential epistemic structure for B;(g!) — Bi(Dom;(si2)). Similarly, we
have, for i = 1,2,

e, Bi(§}) — —Bi(Domy(si1))- (4.11)
In fact, this needs a slightly more complicated proof than (4.10). Indirectly, this
provability itself can be seen as follows: In a similar manner as 4.1, we have Fg,F,
Bi(§!) — Bi(—~Dom;(si1))- Then (4.11) follows from this and the fact that Fg, 5, Bi(—~A) —
-B;(A) for any formula A with §"(B;(A)) C E;. This follows: :

BiA — A]

B;[-A4,A — ]
Bi(-A), Bi(4) —

Bi(—4) — —Bi(4)

(0=)
{7

(B,‘ —* Bi).

We give one more example of a provable sequent. Let By = {€,(2),(2,1)} and
Fy = {¢,(2)}. From (4.10), we have, by (Th),

ey, Ba2(8), B2B1(g1) — Bz(Doma(saz)). (4.12)

This E, is needed for this sequent, while F = {¢, (2)} is a unique minimal inferential
epistemic structure.
Now, consider the decision criterion D2 for player 2. Similar to the derivation of

(4.10), we have

ByB1[§7 — Dom(s12)]
By[B;(§?) — Bi(Domj(s12))]
B2[B1(g) — V,, B1(Domi(s1))]
B2B1 (7)) — By(V,, B1(Domy(s1)))

Thus, for Bz = F = {¢,(2),(2,1)},

ey, BaB1(g7) — B2(V/ Bi(Domi(s1)). (4.13)

(B1 — B1)

(= V).
(B2 — Bg)

That is, player 2 predicts that 1 can choose some decision following DC1. In addition,
2 can predict what 1 would choose. That is, the following hold: Fg,p, ByB1(3?) —
ByBi1(Di(s12)) and kg, B2Bi(g}) — Bo(—B1(D}(s11))). It follows from these that

Feym, B2(62), B2B1(§2) — Ba(A (B1(Domy(s1)) D Besta(saz | 51)))- (4.14)
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That is, sy is a best strategy to whatever 1 chooses. Combining (4.13) and (4.14),
we obtain

ke r, B2(63), B2B1(§}) — B2(D3(s22))- (4.15)
Hence, player 2 derives his decision sg; satisfying decision criterion DC2 from B2B) (§2)
UB2(2). For this, E; and F; must be {, (2),(2,1)}.

Finally, consider the default decision criterion D9. For example, suppose that
player 1 has the beliefs on the game g' of Table 2.1 and that he has the belief that
his default decision is 511 and not s32. In this case, the question is what £ and F are
required to prove the thought sequent

B1 (gl), B] (dl(su)), B1 (—Idl (512)) g Bl(d]_ (811)). (416)

Since 6(A) = {(1)} for each A in this sequent, the minimum F must be {¢,(1)}. On
the other hand, the thought sequent of (4.16) is a special case of the endsequent of
(4.8). Thus the minimal inferential structure F for the sequent of (4.16) is {¢}.

To discuss the minimality of an inferential structure and its game theoretical
applications, we need various meta-theorems, which will be given in Section 6.

4.4. Cut-Elimination Theorem

The relation between the thought sequent formulation of KD™ and the above GLgp is
as follows. The sequent formulation of KD" is obtained by imposing no restrictions
on admissible formulae and on admissible proofs. Specifically, we delete all the
outer B[ -] from all the thought sequents in the axiom and inference rules, where
all formulae are taken simply from P. This sequent calculus KD" is standard in
literature, which corresponds to the sequent form of KD4” briefly mentioned in
Kaneko [4]. :

We have a more accurate relationship to KD", which is due to Kaneko-Suzuki
[7].
Theorem 4.2 (Relation to KD%). Let I" and © be finite sets of formulae, and let
E be any epistemic structure with (T’ U @) C E. Then Fgp» ' — O if and only if
rgp ' — O.

The following theorem is the key-theorem for GLgp.
Theorem 4.3 (Cut-Elimination). If Fgp B.[[' — ©], then there is a cut-free
proof P of B.[[' — O] in GLgr.

This is also mentioned in Kaneko-Suzuki [7]. A proof of this theorem is obtained
by modifying and simplifying the proof of the cut-elimination theorem for the in-
finitary predicate logic GLy, in Kaneko-Nagashima [6]. Theorem 4.3 will be one of
the key theorems to investigate interpersonal epistemic inferential complexities, in
particular, minimalities of inferential epistemic structures.

5. Prediction-Decision Criteria

In this section, we give a general definition of a prediction-decision criterion, and
also look at how the previous prediction-decision criteria are formulated within our

general definition.
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A prediction-decision criterion D; = {Di(s;) : si € S;} for player ¢ is defined
based on a prediction criterion P; and a valuation criterion R; of actions. These are
given as follows:

(1): P; = {Pre;;(s;) : s; € Sj and j € N — {i}}, where each Pre;;(s;) is a formula
indexed by 4,7 (j # ©) and s; € Sj.

(2): R; = {Resi(si | 5-3) : 8; € 5; and s_; € S_;}, where each Res;(s; | 5_;) is a
formula indexed by 4, s; € S; and s_; € S_;.

The first one, P;, describes player i's prediction about other players’ choices, and
the second one, R;, does the valuations of responses to predicted strategies. In the
following, we denote /\#iPre,;j(sj) by Pre;(s_;), which means that s_; is an (n—1)-
tuple of predicted strategies by player . Based on P; and R;, the decision criterion
D; = {D;(s;) : si € S;} is defined as follows: for s; € Si,

D,‘(Si) = V Prei(s_t-) A /\ (Prei(.s_z-) =3 Resi(s.;- ! S_i)) . (5.1)

S—i S—4

Here, \/,_, and A,_, are abbreviations of V,_,es., and A;_es_, - The definition
(5.1) states that player 7 has a prediction about what the other players would choose
and his decision is an appropriate response to the predicted strategies.

Now, we look at how (5.1) captures the examples of prediction-decision criteria
discussed earlier. Those examples except the last two are for 2-person games.

DC1: Consider D} = {Dom;(s;) : s; € S;}. Let Pj(sj) = T for all 5; € 5j (F 1)
That is, player ¢ excludes no strategy from his prediction, i.e., no prediction is made.
Then Dom;(s;) is equivalent to, in classical logic (i.e., GL{a{e})>

yﬂg(sj) A ﬁ\(P?j(Sj) D Besti(s; | s5))-

Note that s_; is the same as s; because N = {1,2}. Hence, D} is regarded as a
special case of (5.1).

DC2: This is given by (3.3) as D? = {Vsij(Domj(sJ-)) A/\sj(Bj(Domj(s,-)) 3
Best;(s; | sj)) : si € Si}. In this case, P? = {B;(Dom;(s;)) : s; € S;j} and Ri =
{Best;(s; | s;) : s; € S; and s; € S;} (7 # 1)-

DCO0: The pure default decision criterion D? = fdlai) i & € S;} can be formulated
as V. PJ(s5) AN, (P(s5) D di(si)) for si € Si.

DC20: The dogmatic prediction decision criterion is given as D = {V/;,B;(d;(s7))A
As;(Bj (d;(s;)) D Besti(s; | s5)) : si € Si}. In this case, the prediction criterion is
given as PP = {B;(d;(s;)) : s; € S;} (j # %), and the valuation criterion is RZ.
To make this criterion effective, player i needs some beliefs about player j 's default
decision.

vN(Maximin): In the non-formalized language, the maximin decision criterion for
i =1 is described as a strategy s; maximizing mins, g1(s1,s2). This is equivalent to
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that for any sy € Sz and t; € Sy, there is another ¢y € S such that P;(s1, s2 : t1,%2)
holds. This is described as the following formula:

ANV Pi(s1,52 : 83, t2).

82 i1 t2

Hence the maximin decision criterion is given as DY = {D¥(sy) : 51 € 51} =
{/'\s2 /\t1 \/t2 Py(s1,89 ¢ t1,t2) : 81 € S1}. Each D‘I’N(sl) is further equivalent to
Ve, Plals2) A Ay, (Ph(s2) 2 Ay Vi, Pils1,s2 = t1,t3)), which is a special case of
(5.1). The criterion for player 2 is formulated in a symmetric manner.

Consider the hierarchical decision criterion HDC and negative prediction criterion
NPC in the 3-person case: '

HDC: We define the prediction criterion P = {Prefl(s;) : s; € Sj and j = 2,3} of
player 1 as follows:

(1): Prefi(s) = V,_,(Pfi(51)ABs(Doms(s3))A
Ns_, (P2 (s1)AB3(Doms3(s3)) D Besta(s2 | s-2))) for all s3 € Sy;
(2): Pre{‘é (s3) = P{’3(53) =T for all 33 € 53 — 1 does not predict 3’s choice.
Now, DH = {DH(s1) : 51 € 51} is given as
(3): V,_,Preff(s_1) A \,_, (Preff(s_1) D Best1(s1 | s-1)),

where Pref! (s_;) = Pref}(s2)APref{ (s3). Thus, HDC is a special case of (5.1). Notice
that Pref}() is also taking the form of (5.1). That is, we would find a structure
parallel to (5.1} in the prediction criterion. This parallelism will be discussed in

Section 8. .
NPC: We define the prediction criterion PJ¥ = {Pre1;(s;) : 5; € 5; and j = 2,3} as .
(1): Prefi(s;) = B;(Und;(s;)) for s; € Sj and j # 1

That is, player 1 predicts that player j would play a undominated strategy. Then
each formula in D = {D¥¥(s1) : 51 € Si} is given as

(2): V,_ Pref (s—1) AA,_, (PreY (s—1) D Besti(s1 | s-1))-

6. Various Meta-Theorems

In this section, we provide various meta-theorems to be used in the logico-game
analysis of decision making. The reader who is interested only in the game theoretical
results can skip this section. The first two theorems are proved in Kaneko-Suzuki [8]
in the model-theoretic manner, and the others are proved in Kaneko-Suzuki [9].
Let S be a subset of N U {0}, and A a formula in P. We say that A is an

S-formula iff
(i) € = (21, tm) € 67(A) and m > 1 imply ¢; € S;
(ii} € € 67(A) implies 0 € S.

For example, BoB1(Domy(s1)) is a {2}-formula. Any {0}-formula is nonepistemic.
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We have the following separation theorem.

Theorem 6.1 (Epistemic Separation). Let S, ..., Sk be disjoint nonempty sub-
sets of N U {0}. Let I'; be a finite set of S;-formulae and A; an Si-formula for
t=1,...,k. Also, we let By = {(41, ..., im) € E : 11 € Si}U{e} and F; = {(i1,..-,im) €
F:i3€ S U{e} fort=1,..,k.

(1): Suppose that I'; is consistent for ¢ = 1, ..., k. Thenkgp I't, ..., — AN AN A
if and only if bg,p, Tt — A for allt =1, ..., k.

(2): Fer 1,0,k — A1 V...V A if and only if Fg,p, Ty — A; for some t = | -

We need to evaluate the provability of sequents such as By(I';) — V. Bi(Di(s:))
of (4.6). For this purpose, the next theorem is provided.

Theorem 6.2 (Epistemic Disjunction). Let I be a finite set of formulae and ®
a finite nonempty set of formulae. Then Fgp B;(T;) — VBi(®) if and only if Fpp
B;(I';) — Bi(A) for some A € ®.

The if part is proved with (— \/). The only-if part is essential here. It can
be proved using the cut-elimination theorem. However, Kaneko-Suzuki [8] proved

Theorem 6.2 using model-theoretic surgical operations.
Using Theorems 6.1 and 6.2, we can prove Theorem 4.1.

Proof of Theorem 4.1. The derivation of (1) from (2) is straightforward. Con-
versely, suppose (1). Then Fgr To, Bi(T1),..., Ba(Tn) — T A (VSlBl(Dl(sl))
A+ A (Vs Bn(D(sn))). By Theorem 6.1.(1), we have Fg;r, Bi(I';) — V., Bi(Di(si))
for each i € N. Then, by Theorem 6.2, we have (2). W

Here, we give another theorem and two more lemmas, which will be used for
evaluations of an inferential epistemic structure F for a given sequent. Proofs of
them are given in Kaneko-Suzuki [9].

Theorem 6.3 (Epistemic Inferences). Let I be a finite set of formulae and A a
formula.
(1): If I"EF B,-(I‘) — or }"EF — Bi(A), then (’L) e F.
(2): If Fpp Bi(T') — B;(A) and A¢ T, then (i) € F.
(3): Let F be a minimal inferential epistemic structure for B;(T") — B;(A). Then
A € T implies F' = {e}. ‘
(4): If F = {€} and FgF B;(I") — B;(A), then A €T

To exemplify this theorem and the following lemma, we consider the thought
sequent — ByBi(p D p), where p € AF. It holds that Fpr — B2Bi(p D p),
where E = F = {,(2),(2,1)}. Let us see the minimality of F' = {¢,(2),(2,1)}
for — ByBi(p O p). Applying Theorem 6.3.(1) to this thought sequent, we have

(2) € F. It remains to show (2,1) € F. For this step, the following two lemmas are
useful.

Lemma 6.4. Consider a thought sequent B;(I") — B;(0) with |©] < 1. If Fgr
Bi(l—‘) — B,-(e) and (1,) € F, thentgr Bi[I‘ — 9]
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For an epistemic structure F and (¢) € E, we write E_; = {e : io e € E}. Then
E_; is also an epistemic structure. For example, when £ = {¢, (2),(2,1)}, we have

E_o={ (1)}
Lemma 6.5. Let (i) € F. Then Fgr B;[I' > ©)] if and only if Fg_,p_, T -~ ©.
Let us return to the minimality of F = {¢,(2),(2,1)} for — B2Bi(p D p). By

Lemma 6.4, we have Fgp B2{ — Bi(p D p)]. By Lemma 6.5, we have Fg_,p , —
Bi(p O p). Again, by Theorem 6.3.(1), we have (1) € F_p, which implies (2,1) € F.

7. Minimal Inferential Epistemic Structures

Theorem 4.1 guarantees that we consider separately the provability of an individual
statement:

Fam Bi(T:) — Bi(Di(s;)). (7.1)
‘We evaluate a minimal F; foi this sequent. In fact, Theorem 6.3 already gives some
information about a required F;. When D;(s;) ¢ T';, we have () € F;. Here, we
consider the previous examples.
DC1: Recall (4.10), i.e., Fgp Bi(§?) — B;(Dom;(siz)), where E; = F; = {e, (z)}
This F; is a unique mlmmal one for this sequent. Indeed, since Dom; (Szz) & g}, we
have (i) € F; by Theorem 6.3.
DC2: Recall (4.15), 1.e., E‘E,‘,F2 Bz(‘@%),BzBl(ﬁ%) —* Bz(D%(ng)), where Ez = Fg =
{€,(2),(2,1)}. In this case, Fy is a unique minimal one. Here, we give a proof for
this fact, which needs some steps.

Let F5 be any epistemic structure for which (4.15) holds. By Theorem 6.3.(2),
we have. (2) € F. It remains to show (2,1) € F;. Applying Lemma 6.4 to (4.15), we’
have

FEar Bal33, B1(8]) — D3(s22)),

and then, by Lemma 6.5,

FE_oF_y 35, B1(81) — D3(s22),
where E_g = {e: 20€e € Eo} and F.y = {e : 20e € Fp}. Since D3(syp) =
V4, Bi(Domi(s1)) A A,, (B1{Domj (s1)) D Besta(szz | s1)), we have

FE_oF s §3,B1(8%) = V B1(Domi (s1)).
&1

This nnphes Fr_oF_y 83, B1(3}) = LV V, Bi(Dom(s1)). By Theorem 6.1, we have
FE o, 92 — Lortg ,r, B1(g1) — V31B1 (Dom; (31)) Since §2 is consistent, the
latter is the case. Then by Theorem 6.2, Fg_,7_, Bl(gl) — B1(Domji(s1)) for some
51. Since Domn;(s1) ¢ §%, we have (1) € F_z, which implies (2,1) € F5.

Undecidability with DC2 and F, = {¢,(2)}: We can prove the following unprov-
ability results:

(U1): ¥a,p, B2(92),B2B1(§2) — Ba(D2(s22));
(U2): ¥y, Bo(82),B2B1(9%) — Ba(~DE(se2));
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(U3): ¥,y B2(93),B2B1(g7) — —B2(Dj(s22))-

Fact U1 follows the minimality of {¢,(2),(2,1)} for the sequent. Facts U2 and U3
can be proved in various manners.” These are slightly different: U2 states that player
2 himself cannot reach —~D#(s22) (from the viewpoint of the investigator), but U3
that the investigator does not derive from By(§2),B2B1(97) that 2 does not believe
D2(s22). In sum, player 2 cannot rationally decide whether or not he could reach
a decision with criterion DC2 without reading player 1’s mind. It will be shown in
Section 8 that these unprovabilities can be stated from the viewpoint of player 2.

The above undecidability results Ul, U2 and U3 hold even if we change game
g% to ¢! and keep criterion DC2 with Ez = {¢,(2),(2,1)} but F; = {¢,(2)}. In this
case, however, if player 2 switches his criterion back to criterion DCI1, then he could
make a decision in g' without reading 1’s mind.

The above considerations are paraphrased in terms of inferential complexities.
In game g!, decision criterion DC1 gives a decision, but in game g2, it is incapable
of giving a decision to player 2. A remedy for this incapability is to change DCI to
DC2 including the prediction over player 1's decision. However, this remedy requires
a deeper inferential complexity of interpersonal introspections, i.e., player 2 need to
read player 1’s mind.

Although we do not repeat paraphrastic interpretations like the above paragraph,
it would be helpful to think about the arguments in the subsequent sections with the
above paraphrastic manners.

Let us see minimal inferential epistemic structures in situations with other prediction-
decision criteria.

DCO: Default decision criterion DY is derived from a dogmatic belief on default
decisions. Suppose di(sy;) € I'. Then it is proved in (4.8) that kg, r B1(I'1) —
Bi(dy(s11)). By di(s11) € I'1 and Theorem 6.3.(2), F1 = {e} is a unique minimal
inferential epistemic structure. There is no subtlety in criterion DC0. However, we
meet some subtlety when we use DCO for the prediction criterion for player 2.

DC20: Let T = {di(s11), ~d1(s12)}. Then we have the following:
Fe,p, B2(§),B2B1(T) — Ba(D3’ (s21)), (7.2)

where Fy = Fy = {¢,(2),(2,1)}. This F, is a unique minimal one for this sequent.
From the above argument for DCO, {¢, (2)} might be expected to be a minimal one
for (7.2), but actually, it is not. Let us explain the subtlety involved in (7.2) with
IS -

Suppose that player 2 assumes that 1 has the belief set T'§ = {di(s11)} rather
than I'§. In this case, (7.2) breaks down, i.e.,

¥y, B2(52), BaB1(I'§) — Ba(D3(s21))- (7.3)

"One proof of U2 is as follows: Let € be the B-eliminating operator ¢, i.e., A4 is obtained from
formula A by eliminating all occurrences of By, ...,Bn in A. Then it can be proved that if Fgp ' — o,
then Fye}qc) eI’ — €©. Now, suppose the sequent of U2 is provable. We apply the above result to
the sequent of U2, and obtain (e} (4 §3,9; — —D3(s22). This is impossible. U3 can be proved in
the same manner.
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This thought sequent is unprovable whatever F} is. This unprovability is caused by
the fact that 2 has no beliefs on strategy s;; in B1(T'{), while s17 is taken into account

in decision criterion D2°,
From the viewpoint of player 2, we need to assume that 2 believes that 1 does

not think about si2. This is formulated as {B2Bj(di(s11)), B2—Bi(d;(s12))} rather
than BgB1(T'§). If this is assumed, we have

g5 B2(83), {B2Bi(ds (Sn)),BzﬁBi(Ch (s12))} — B2(D3(s21)), (7.4)

where Bz = {¢,(2),(2,1)} and F» = {¢, (1)}. Indeed, this 5 is a minimal one for
this thought sequent, which can be shown in the same way as in the case of DC2.

In (7.2), player 2 needs to infer, from his belief of 51 being not a default decision,
that player 1 does not believe that s12 is a default decision. In this inference, we
use Axiom D, which is expressed as the possible emptiness of © in the distribution
rule (B; — B;). On the other hand, the result of this inference is assumed in (7.4).
Therefore, F> for (7.4) is smaller than F; for (7.2).

vIN (Maximin): This has a similar epistemic status to DC1 in that both require
only E; = {¢,(1}}. However, vN differs from DC1 in being capable of recommending
a decision for any game. Let ¢ = (g1, gg) be any game. Then it holds that for some
strategy s; € Si, Frr Bi(§:)) — Bi(DPN(s:)), where E; = F; = {¢,(¢)}. This F;
is a unique minimal inferential epistemic structure for this sequent. Indeed, since
DN (s;) ¢ &, we have () € F; by Theorem 6.3.

Here we consider the prediction-decision criterion NDC for the location game
h = (hi, k2, h3), and postpone considerations of the hierarchical decision criterion
HDC to the next section.

NPC: In this case, we have the following:
Fpa i, B1(h1), B1Ba(Ra), B1Bs(hs) — Bi(DY (s11)), (7.5)

where E; = F1 = {¢,(1),(1,2),(1, 3)}. This states that player 1 would choose “open
his store” s11, predicting that 3 would choose s32 as an undominated strategy and 2
would choose either sg; or s39 also as an undominated one.

The inferential epistemic structure Fy = {e, (1), (1,2),(1,3)} is minimal for the
sequent of (7.5). Indeed, this minimality is shown in the same manner as in DC2.

8. Transitions of the Viewpoint and Inner Parallelisms

In this section, we consider further reductions of decision statement (7.1), i.e., The-
orem 4.1.(2). Up to now, we have kept our considerations of prediction-decision
making from the viewpoint of the investigator (observer). However, before the in-
vestigator comes to his'own viewpoint, he takes the viewpoint of each player ¢ as if
he were player 7. In general, the transition of the viewpoint from player i to m—1
(or to the investigator if m = 1) occurs in the epistemic distribution rule:

B(il,...,im)[A — O]

B;,, — Bi,.), where |©] < 1.
B mn Ben (0 5 Bon(0)] ¢ ) o]

24




In this section, we show that we can take the opposite route to trace this transition
back. In this backward transition, we find a parallel structure to Theorem 4.1.(1),
looking into the inner structures of a prediction-decision criterion. We call this
parallel structure in prediction- and decision-making an inner parallelism. In Section
8.3, we will consider the implications of inner parallelisms to our basic assumption
on the logical rationality of the players.

8.1. Backward Transitions and Inner Parallelisms

‘The following are the reduction steps of the backward transitions of the viewpoint
from the outward statement to a statement in a player ¢’s mind. By an inner paral-
lelism, we mean that after one round of the following three steps, another round of
paraliel three steps appear in player #’s mind. '
Step 0: eutward n-person statement from the investigator’s viewpoint — Th.4.1.(1);
Step 1: outward individual statement from the investigator’s viewpoint — Th.4.1.(2);
Step 2: individual statement from player ¢'s viewpoint — Th.8.1.(2) & (3);
Step 3: inner statement in player %’s mind — Th.8.4.

Although the first theorem is an immediate consequence of Lemmas 6.4 and 6.5,
it is worth mentioning for the understanding of our problem. In the following, we

make the same setting as those for Theorem 4.1, i.e., I; is the set of player #’s basic
beliefs and D; = {D;(s;) : s; € S;} is player 4’s prediction-decision criterion.

Theorem 8.1 (Transitions of the Viewpoint). Let (i) € F}. Then the following
three statements are equivalent:

(1): ke, Bi(l:) — Bi(Di(s:));

(2): Fgr Bill; — D;{s:)};

(3): l"E._,-F_; P.; — .D,-(.s.;).

Hete E_; = (E;); ={ice:e€ E;} and F_; = (Fi)—i={toce:e € F}.

The first states that the investigator derives B;(D;(s;)) from Bi(T;), the second
that the investigator recognizes that player ¢ himself derives D;(s;) from his basic be-
liefs T';, and the third is a restatement of the second by regarding player #’s viewpoint
as the investigator’s. Thus this theorem describes the backward transitions of the
viewpoint. This backward reduction reflects the presumption we have adopted that

player 7 has logically rational in the same sense as in that the investigator’ logical

rationality. _
Theorem 8.1 can be used to obtain the equivalent unprovability statements from

U1l and U2 Qf Section 7:

(UL*): ¥y, Bold3.81(4]) — Di(s22)l;

(U2): ¥y m Bo[33,B1(37) — —Di(s22))-

Therefore, Theorem 8.1 implies that it does not matter to take either the inves-
tigator’s viewpoint or player’s. Note that U3 of Section 7 is changed into K, p

Bz(gg),BgBl(ﬁf) Bo(D3(s22)) =  and then is reduced into ¥e,r Bz[_&%,Bl (), D%(Sgg)
— |. This is equivalent to U2*.
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Now, we return to the general situation of Theorem 8.1, and look into the
structure of Dj(s;}, which is now assumed to be given as (6.1), i.e., Di(s;) =
Ve_ Prei(s—i)A A,_, (Pres(s_;} D Resi(s; | s_;)). Theorem 8.2 is also immediate, but
is stated explicitly. Recall Pre;(s_;) = AjziPreii(s;).

Theorem 8.2. Let ({) € Fi. Then Fg,p, By(l}) — B;(D;(s;)) if and only if the
following two hold:

(1): Fe_ir, T = V,_ Prei(s_s);

(2): Fe_r, Ti— /\s_',(Prei(s_,—) D Res;(s; | 8-i)).

Proof. Suppose (1) and (2). It follows from (1) and (2) that Fg_.p, T; —
Vs__iPre,;(s_,-) A /\s_-',(PI‘ez‘(S_,') - Res,-(si ] s_,-)), i.e., I—E_gF_.i Pi — Di(«-‘:‘i)- This
is equivalent to Fgpy B;[l; — D;(s;)] by Lemma 6.5. Then, by (B: — Bi), we have
F ek Bi(T:) — Bi(Di(s:)).

Suppose Fg, g Bi(T;) — B;i(D;(s:)). This is equivalent to Fe ., Ti — Di(s;) by
Theorem 8.1, ie., Fg_,r, Ty — (Ve_ Pre(s_))A A,_, (Prei(s—:) D Resi(s; | s-:)).
This implies (1) and (2). &

This theorem states that the investigator derives B; (Di(s:)) from B;(I;) if and
only if player ¢ derives, in his mind, V. Prei(s—i) - — the existence of predicted
strategies for the other players — ~ and Ns_;(Prei(s—:) D Resi(s; | s_;)) - - the
appropriateness of his decision s; to the predicted strategies. In fact, the exis-
tence of his predictions has a similar status to (4.7), ie., T'g,B1(T1), w;Br(ln) —
Vo, Bi(D1(s1)} A .. AV, Brn(Dn(sn)). We can regard (4.7) as the predictions made
by the investigator. In the mind of player 4, player ¢ makes a similar prediction. We
call this parallel structure an inner parallelism.

To explicate this inner parallelism more, we look into Theorem 8.2.(2). First, we
have the following lemma.

Lemma 8.3. If (a) Fp_p, Ty — Vo_i AjuiPreij(s;), then (b) Fg_,p, Ty —
Njoti Vsj Prey;(s;).

Proof. Suppose (a). Let t_; be an arbitrary element in S-;. Using successively
(A ~) and (— V), we have bp_.p NiziPresi(ts) — V, Preg(sg) for all & # 4.
Then kg_.p; AjuPre;(t;) — Njts VsjPre,-_.,-(sj) by (— A). Since t_; is arbitrary
in S, we have, by (V =), bu_ir_; V,_, AjuiPresi(ss) = Ay V,, Presj(s;). Using
this conclusion and the supposition of the lemma, we have

L — Vs_.- A doAd Prei;(s;) Vs_,- /\j?é-i Pre;i(s;) — /\j;éi Vs_-,- Pre;; (33) ©

ut ).
T: = A Vs, Prosg(s;) )

-

Unless we assume further structures on the belief set I'; and prediction criterion
Pre;;(s;), we could not go further than (b) of Lemma 8.3. However, we find some
natural assumptions on T; and Pre;;(s;) from the viewpoint of player 3. First, we
make the following assumption on the belief set T; of player ¢ :

I'; is written as I'jg U U Bj(l",-j), (81)
Fi
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where I';g consists of nonepistemic formulae. Second, we make the following assump-
tion on the prediction criterion P; = {Pre;;(s;):s; € Sj and j € N — {z}}:

each Pre;;(s;) is expressed as Bj(Pre%(Sj)). (8.2)

Here, Pre?j(s,-) may be any formula for j # i. For example, the prediction-decision
criterion DC2 takes this form. For simplicity, we assume (8.2) for all players. For
this reason, (8.2) is not fully satisfied in the consideration of criterion HDC below,
but the modification is straightforward.

Under the assumptions (8.1} and (8.2), (b) of Lemma 8.3 is expressed as

Fe_ip TioU l?.éJ Bj(Ti) = A VB;(Preli(s;)). (8.3)

J#i 85

Now, we have an apparent parallelism between (4.7) and (8.3). That is, (8.3) is
an outward description of prediction makings and is stated as if player 7 were the
investigator. An only difference from (4.7) is that player 7 himself is excluded in
(8.3), since he is predicting what the others would choose. If we have equivalence
between the two statements of Lemma 8.3, then our parallelism is complete. The
following theorem states this equivalence under (8.1) and (8.2).

Theorem 8.4 (Inner Parallelism). Assume (8.1) and (8.2), and that I'; is con-

sistent in GLg_;p_;. Then (b) of Lemma 8.3 is equivalent to (a), which is further
equivalent to that for all § # 4,

Fe_ir_; Bj(Ti;) — B;(Pref;(s;)) for some s; € ;. (8.4)
Proof. Suppose (8.4) for all  #4. Then bp_,p, T; — N;j:Bi(Pred(s;)) for some
$-i € §—;. Hence bg_p Ty - \/, Aj#:B;(Prel(s;)), which is (a) of Lemma 8.3.
It remains to show that the (b) of Lemma 8.3 implies (8.4).

Suppose g7y Ts = Ay Vs, Preis(s;). Then bg_p , T; — Ve, Bi(Prei(s5))
for all j # 4. Let k # ¢ be an arbitrary player. Since Fe_.r, Tio U U#z-Bj(I“,-j) —
Vs, Be(Pred(sx)) by (8.1) and (8.2), By Theorem 6.1, we have Fe .7 Brp(Ti) —
Vs, Br(Pred,(sk)). By Theorem 6.2, we have Fe_r. Br(Ti) — Bg(Pred (sg)) for
some $x € Sg. Thus, we have (8.4). M

Notice the parallelism between (8.4) and
Fer Bi(T;) — Bi(D;(s;)) for some s; € S;. (8.5)

Statement (8.4) states that the investigator thinks that player § can derive Pre?j(sj)
from B;(I';;). Pre?j(sj) means the decision for player j predicted by player i. There-
fore, this is essentially the same as D;(s;) from the investigator’s viewpoint. We can
repeat another round of Steps 1-3 from (8.4).

8.2. Further Reductions

The reduction of decision statements eventually leads us to look into the inner struc-
ture of each prediction-decision criterion. We have started the discourse of reductions
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from Theorem 8.1.(1), and now, we can repeat the same discourse from (8.4). Indeed,
applying the argument for Theorem 8.1 to (8.4), we obtain

Fe_ir; B[y — Predi(s;)]

if () € F;.
The parallelism can be even more explicit if we specify the prediction criterion
B; (PreU (s7)) more. Now, we assume that each Pref ;(87) Is written as the same form

of (5.1}, that is, it is defined by another prediction ¢riterion ’P",c = {Pref(s1) s 51 €
Sk} and valuation relation R} = {Resi(s; | s-;):s€ S} :

Prefi(s;) = V Pref(s_;) A A (Pref(s_j) D Resi(s; | s_y)), (8.6)

Soj S5

where Pret t(s-j) = /\k#]Pre 1 (5). We note that Pre? k(sk) and Resi(s; | s_;) are
subJect1ve ones in the mind of player 4, and that they may differ from the “true”

Pre;r(sz) and Res;(s; | s—;).
Now, if (j) € F_;, then (8.4) becomes

FE_y;Fi; Ty — V Pre (s__,) A /\ (Prej(s_g) O Res? (85 ] 5-5)), (8.7)

S—j

where E_j; = (E_;)-; and F_;; = (F_;)_;. Hence, we can repeat Theorem 8.2,
Lemma 8.3 and Theorem 8.4 for (8.7). This repeating process is summarized in the
steps in the beginning of this section.

The inner parallelism is trivial in our examples of prediction-decision criteria,
except for criterion HDC in the location game LG of Section 2. Here, we look at
HDC briefly.

HDC: First, it holds that
FEy sy B1(T1) — B1(Df (s11)), (8.8)

where Ty = fUB3(h2)UB,Bs(hs) and By = Fy = {¢,(1),(1,2), (1,2,3)}. This F} is
a unique minimal inferential epistemic structure. However, our present concern is
the deduction of (8.8) into the following:

(a1): Fgm Bill1 — Dff (sn)k
(32): J"E 1F 1 Pl — D{{(Sn)
Thus, the player’s inner v1ewpomt is regarded as the investigator’s. Recall that

Dff(s1) is given as V,_ Prefl (s_1)A A,_, (Pref/(s_1) D Best;(s1 | 5_1)). Then (a2)
is reduced into

(b1): Fg_,p, T1— Vs_lPre{{(s_l);

(b2): FE_ypy T1 = A,_, (Pref (s_1) D Besty(s11 | 5-1)) — — Theorem 8.2.

Then (b1) is further reduced into ‘

(¢): FE_yF_, Ba(ha),B2Bs(h3) — Ba(V,_,Preff (s_1)) — — Theorem 8.4,

Since Preff(s2) = V,_,(Pfi(s1) ABs(Doma(ss)))A A,_, (P8 (s1) ABs(Domg(ss)) D

Besta(s2 | s-2)), we can repeat a parallel reduction from statement (c).
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8.3. Basic Assumption on GLgr for the Inner Parallelisms

Here, let us consider basic assumptions for the inner parallelisms. There are two basic
assumptions relevant for them. First, a prediction-decision criterion in question has
an inner parallelism in the sense that prediction about another player’s behavior
takes the form of a prediction-decision criterion. This inner parallelism must be
apparent in the previous two subsections. The other is a basic assumption for the
epistemic logic GLgpr to enables us to discuss the inner parallelisms.

Let (41,...,%,--,im) be any epistemic status in F. Recall the basic assumption
that player i) has the logical rationality same as the investigator’s, which are reflected
in Lemmas 6.4 and 6.5. In fact, this basic assumption is made for any (imagined)
player 2 in (41, ..., ik, ...,%m). That is, player ¢ in the mind of 7, ... in the mind of 4
has the same logical rationality as the investigator. Technically speaking, player i;’s
logical rationality is represented by the logic GL gk g, where EF = {e: (i1, ..., 5)0e €
E} and F* = {e: (41, ..,ix) oe € F}. If GLgkps is regarded as part of GLgr, then
it describes the logical rationality of 4 in the mind of g1 ... in the mind of 4;. On
the other hand, if GL gk is considered alone, it describes the investigator’s logical
reasoning. Thus, we have treated the players even appearing in the minds of players
as well as the investigator in the same manner. This treatment guarantees the inner
parallelisms.

9. Further Developments

In this section, we give two remarks on further developments of our logico-game
analysis. Specifically, we consider a compound prediction-decision criterion and
a compound one with a last-resort default decision. In Section 9.1, we take the
prediction-decision criteria DC1 and DC2. of Section 2.2 as composing subcriteria,
though we can discuss compound criteria in a more general manner. More extensive
treatments will be given in a future paper.

9.1. Compound Decision Criteria

Suppose that player i has decision criteria D} and D?. We formulate the new com-
pound criterion Df = {D§(s;) : s; € S} as follows:

Di(s:) = D}(s;) v D¥(s;) for all s; € S;. (9.1)

This recommends a strategy if at least one of D} and D? does it.

Theorem 4.1 holds for the above compound criterion Df. Hence, we can focus
on the individual decision making of player . Here we look at the case of 5 = 2.
Let g = (g1, 92) be a two-person game, and let the belief set of player ¢ be given as
I';:(§) = 8:UB;(§;), where 4,5 = 1,2 (¢ # 7). We would like to find 2 minimal Fyg)

s0 that
FEry(g) B2(T2(9)) — XBz(DE(Sz)), (9.2)

where B3 = {¢,(2),(2,1)}. A minimal inferential epistemic structure F3(g) for (9.2)
depends upon game g. When we look at game g! or g2, we have the following result.
We omit its proof.
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Theorem 9.1 (Minimal Epistemic Structures in Games g' and g2).
(1): Let g = g*. The minimal Fy(3') for (9.2) is {e, (2)}.
(2): Let g = g% The minimal Fp(g?) for (9.2) is {e, (2),(2, 1)}

In all the previous examples, a minimal inferential epistemic structure for a se-
quent is uniquely determined. Here we give one counterexample by considering the
compound decision criterion DTN = {DfN(s1) : 51 € 51} of DI and DV for the
location game LG, where DffV(s;) = DH(s;) v Dy (sy) for s; € 8. Then it follows
from (7.5) and (8.8) that

Fer B](51),3132(52),B1Bs(fts),BleB3(ﬁa) — VDN (s1), (9.3)
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where E = {¢,(1),(1,2),(1,3),(1,2,3)} and F is an epistemic structure including
{e,(1),(1,2),(1,3)} or {,(1),(1,2),(1,2,3)}. We can prove the following theorem,
whose proof is omitted.

Theorem 9.2 (Minimél Epistemic Structures in Location Game). There are
exactly two minimal epistemic structures F for (9.3), which are {e, (1), (1,2),(1,3)}
and {¢, (1),(1,2),(1,2,3)}.

9.2. The Last-Resort Default Decision

Recall that the game g = (g%, g4) of Table 2.4 has no dominant strategies and no
Nash equilibria, Then (9.2) does not hold for this game as far as T2(3%) = §3UB, (¢%)
is adopted. The pure default decision criterion can be applied to this game. However,
the following method may be more typical than applying the default decision directly
to this game: First, one considers non-default decision criteria, and if those criteria
give no decisions, then a default is applied. This idea can be formulated as adding
the last-resort default decision to the compound criterion. '

The compound decision criterion DF = {DE(s;) : s; € §;} of composing criteria
Dy = {Dir(s:) : 5; € S;},k = 1,...,m, is given simply as

D?(s,-) = Di(8;) V...V Dy (s;) for all s; € . (9.4)

Composing criteria of Dy, ..., D;y, themselves may be compound criteria of some

other composing criteria.
The compound decision criterion D% = {DFs;) : s; € §;} with the last-resort
default is formulated as -

D?I(si) = D,;G(s,-) V di(s;} for all s; € S;. (9.5)

This criterion itself.is formulated as a compound criterion.

As we needed to assume that the belief set of player 7 includes some predetermined
default decision for (4.16), we need some assumption on the belief set of player i to
make (9.5) workable. The idea of the last-resort default decision is: if player ¢ verifies
that none of his strategies satisfy any of his non-default decision criteria, then he
would use the predetermined default decision s;. This idea is expressed as

Bi(- y DY (s1) > ds(sn))- (9.6)
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The antecedent of the inside of B; of (9.6) means the negation of criterion Df for
any strategy. Thus, =V, DE(s;) is a key for (9.6).

We assume that the belief set I; of player 4 is given as I'; @u{-V, D) >
di(Sﬂ))} =g; U Uj;eiBj(Fz‘j)U {—. Va,- D,-C(s,-) D di(sﬂ))}, where T';; is any finite set
of formulae. Then the derivation of the last-resort default decision is equivalent to
the derivation of the negation of the other criteria. N amely,

Theorem 9.3. Let () € F;. Suppose that By(I;) = Bi(T:(§))V {Bi(-V,, DF(s:)
D d;(si1))} is consistent in GLg, 5. Then the following two statements are equivalent:
(1): Fgm Bi(Ti) ~ Bidi(sin));

(2): Far Bi(T) — Bi(=V,, D (s2)).

Thus, player ¢ uses the default decision s;; if and only if he proves that none
of the other criteria recommends a decision. This equivalence reflects the use of a
default decision in our ordinary life.

The derivation of (1) from (2) needs some steps, but the converse is essential and

is proved below. Either (1) or (2) is stated from the viewpoint of the investigator,
but is equivalent to the following statement from the viewpoint of player 1 :

(3): Feor, Ti— _’Vs,- D?(St)

The equivalence between (2) and (3) are guaranteed by Lemmas 6.4 and 6.5,

In the proof of Theorem 9.3 and in the Appendix, we use the following terminol-
ogy: a side formula of an operational inference rule I is one to be changed in the
upper sequent, and a principal formula of I is one changed in the lower sequent. For

" example, in
I'—-6,A4 BT —@&

ADBT—©

A and B are side formulae and A O B is the principal formula. When 7 is the
distribution rule :

Beoi[F — e]

Be[Bi(T') — B;(©)]
all formulae in the upper sequent are side formulae and all in the lower sequent are

principal formulae. When [ is a thinning (Th), a formula added in the lower sequent
is called a thinning formula.

Proof of Theorem 9.3. We prove that (1) implies (2). Suppose (1). That is,
Fer: Bi(G:), EEJ BiB;(L's), Bi(=V DY (s1) D di(sin)) — Bi(di(sin)).
FHEE 5§

(3-)

(B; — By),

By (?) € F;, we can apply Lemmas 6.4 and 6.5 to this sequent, and have
Fe_ir; Gi, g Bj(Ti;), ~V DY (1) D di(si1) — difsin).
FoEt 8

By the definition of i, 3 is expressed as ; = g U{~A : A € g’} with gF Ngr = 0.
Also, each formula in g and §;"is atomic. Then we have

Fe_iE 7 g B;(Ts), =V DE (si) D difsa) — di(su1), 45
J#

5
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Let A =gfu Uj:B3(Ti5) and A = {di(si1)} U ;. By the Cut-Elimination Theorem
(Theorem 4.3), we have a cut-free proof P of A, -V, DF(si) D di(s1) — A. Note
that g7 and g consist of atomic formulae with grng =0.

First, we show that A — A is not provable. Then, by Theorem 6.1, we have
FE_.F, g‘rf — di(sa1),§; or Fg_, Fy U#z-Bj(I‘ij) — . The former is equivalent to
FE_ir_; § — di(sa1), which is not the case. The latter is also not the case by the
consistency assumption of the theorem. Therefore, A’ — A’ is not provable for any
A" C A and A’ C A. For otherwise, A — A would be provable by (Th).

_ Looking at the formulae in A, =V, DE(s;) D di(sa) — A, we find that the

lowermost inference in the proof P is either (Th) or (>—). If it is (Th), the upper
sequent is A~V DZ(s;) O di(siy)} — A’ for some A’ C A and A’ C A, which
follows from the conclusion of the above paragraph.. We can repeat this argument
until we meet (O—). Hence we can assume that for some A’ € A and A’ C A,
A=V, DE(si) O di(sn) — A is the lower sequent of (D—). Then (D—) is ex-
pressed as

Al = A - Ve, D¢ (s;) A, di(si) — A
A", = v.s,; .D,‘C(S.,) 2 di(Sﬂ) — A

Hence Fp_,p, A — N, -V, Df(s;) and Fg_p, A,di(siy) — A’. Looking the
latter sequent and applying Theorem 6.1 to this, we have d; (sin) € A,

Now, consider the former. Let P’ be the subproof of the proof of P whose
endsequent is A" — A’,=V/, DE(s;). Consider the ancestors of di(si1) in A’. Since
di(ss1) does not oceur in A’ the uppermost ancestor of di(si1) in A’ is a thinning
formula of (Th) and its descendant is never a side formula of an operational inference
or (B—B). Hence, we can delete all occurrences of these ancestors, d;(s;1), from P’
Hence we have

(5=).

Fo_p, A, — A, =\ D (s;),
8¢

where A" = A’ — {d;(s;1)}. Since A’ CA = gt?ir UU#Z-B_,-(I‘,;:;) and A" C g, we have,
by (Th),
Feor 37 g B;(Tij) — g7,V Df (s:).
- J7-1 8§

We have Fg_.r_, G, U;:B3(Ti5) — —V, DF (s:). This is equivalent to |- & F: Bi(§:),
U;:BiB;(T's5) = Bi(- V,, Df (s:)) by Lemmas 6.4 and 6.5. W

10. Concluding Remarks

We have developed a theory of prediction-decision making in game situations. Each
player has a prediction-decision criterion involving only shallow interpersonal intro-
spections. We have shown that an outward statement on decision makings for all the
players is decomposed into each individual statement, and that an individual state-
ment has an inner parallelism to the component statements. Therefore, discussions
in Section 8 can be used cyclically until the bases of criteria are reached. We have
considered the behavior of minimal inferential structures in Section 7.

Various examples of prediction-decision criteria are considered together with some
games. These examples would suggest more general treatments of minimal inferential
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structures. Compound criteria of prediction-decision criteria suggested in Section 9
are important examples for further developments, since they depart considerably
from the symmetric treatments of the decision criterion for an individual player
himself and his prediction on other players. As a whole, we would like to convey
the message that our theory enables us to investigate inferential complexities of
interpersonal introspections for decision making in game situations.

We emphasized a broad perspective of new research areas where players have
shallow epistemic interactions with other people. This includes the possibility that
each player has narrow interactions only with relatively few people surrounding him-
self, which may be read as being suggested in the location game L.G. Particularly,
our theory may provide candidates for a theory or model derived from individual
experiences such as in the inductive game theory of Kaneko-Matsui [5]. Although
such areas are in the scope of our theory, we would need more developments of a
systematic procedure,

Another remark is on complexities of intrapersonal reasoning in terms of informa-
tional content. In principle, it would be possible to have such a consideration. This
is a topic to which a lot of attentions have been given recently in the proof-theory
literafure. Nevertheless, no consensus has been reached, especially, even on purely
finite problems. A general development would be difficult also in game theoretical
contexts, but some special considerations may be possible since we can often impose
special structures on game problems.

A complexity of intrapersonal reasoning in terms of informational content seems
to be related to the number of initial sequents. For example, consider the proof given
in (4.1), where game g' is replaced by a general 2-person game g with dominant
strategy s11 for player 1. The proof of By[§y — Dom;(s11)] has |S1] x |:S3] number
of initial sequents, which reflects the number of verification for s;; to be a dominant
strategy including the comparisons of s;; with itself. In this case, the premise g;
is treated as stored beliefs and is not counted in the informational content used. If
player 1 has the additional information \/, ,Dom (s1), then the informational content
of B1[g1, V,, Domy(s1) — Domy(s11)] has becomes |S;| under the assumption of no
indifferences in g;. That is, it suffices for player 1 to check his strategies fixing s;;.
In a future paper, we will investigate into this problem of bounded intrapersonal
inferences for decision making.

As pointed out in Section 2, criteria DC1 and DC2 are related to the procedure of
iterated elimination of dominated strategies (cf., Moulin [10] and Myerson [11]). The
minimal depth of inferential epistemic structure appears to be related to the number
of the rounds for the iterated eliminations of dominated strategies. However, the
method of iterated eliminations of dominated strategies is not directly a special case
of our general definition of a prediction-decision criterion. To consider this method
in our approach, the definition of a prediction-decision criterion should be modified.

Finally we give a remark on Aumann-Brandenberger [2], who claimed that com-
mon knowledge is not required to have a Nash equilibrium, more specifically, the
epistemic depth required to have a Nash equilibrium is at least one. Their claim was
stated in a probabilistic model. We may formulate the essential part of their claim in
our framework. Consider the statement (¥): if - T, Ty — By (D (51))AB2(Dq(s2)),
then - § — Nash(s;, s2), where I is the provability relation of some epistemic logic,
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say, KD". Aumann-Brandenberger’s (2] claim is interpreted as follows: we may find
some condition on I'1, 'y as well as D1, Dy for (*) so that the epistemic depths for
these formulae are 1. From our point of view, there are many prediction-decision
criteria satisfying this (%), for example, DCL.

The question of whether or not common knowledge is required for the classical
(ex ante} Nash equilibrium argument is not to find epistemnic requirement for (), but
is to find epistemic requirements of the classical Nash equilibrium argument itself,
The latter is discussed in Sections 7 and 8 of Kaneko [4]. '

11. Appendix: Treatment of Axiom 4

In Kaneko (4], multi-modal epistemic logic KD4" is treated as central arnong various
candidates. On the other hand, we exclude Axiom 4 in our epistemic logic GLgp
of shallow depths, i.e., GLgr is of KD-type. It is a reason for this exclusion that
our focus is the consideration of interpersonal introspections but not intrapersonal
ones. Nevertheless, it may be a natural question what would happen if Axiom 4 is
included. In this appendix, we argue that the results given in this paper essentially
remain to hold in GLgr even if Axiom 4 is included.

The relation of KD4™ to KD™ is just an addition of Axiom 4 to KD". On the
other hand, to incorporate Axiom 4 to our GLEgr keeping the basic developments
such as the cut-elimination theorem as well as completeness result, we need to modify
the basic definitions of depths and epistemic structures.

First, we change N<“ into N<¥> = {(j, wn¥m) § By enim € N,m > 0 and
i F iy fort=1,...,m-— 1}. Also, we change the concatenation o to * so that for
e= (il;--':im)’el = (jl:'":jk) € N<w>: exe = (ila "':im)j%"',jk) ifim = J1 and
exe = (11,0, tm, 01, . J&) if ip, 5 ji1. Here, the repetitive occurrences of the same %
is excluded, since Axiom 4 takes care of such a repetition. Then we change §" into
6 so that § is defined by conditions D0~D4 with * instead of o for D4. For example,
6(B1B1(p)) = {(1)} but 6"(B1B1(p)} = {(1,1)}. Descriptive and inferential epistemic
structures £ and F' are now assumed to be subsets of N<w> satisfying (3.4). Then
the KD4-type GL% R is defined by the above list of the axiom and inference rules
only with the replacement of the distribution rule by '

Be*,' [F, Bi(A) b @]
Be[B:(TUA) — B;(0))

(B; — B,-)4, where [O] <1andie N.

The provability of GL%p is denoted by F4p . In the modified logic GL%,, any
formula in T'U© in the upper sequent of (B; — B;)* is a side formula, and any one
in B;(T)UB;(©) in the lower sequent is a principal formula.

Axiom 4 is allowed in the following sense:

Be*i[Bi(A) — Bt(A)]
Be{B:(A) — B;B;(A4))

(B; — B)%

Since we are now using &, we have no constraints on the repetitions of B;. That is,
when e = (41, ...,4m) and i, = 4, we have e* 7 = e itself. To see that GL%r captures
Axiom 4, we can show the following: Let T' and © be any finite sets of formulae in
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P and E an epistemic structure with §(I'U©) C E C N<¥>_ Then
Fkpan I' — © if and only ifF4; T'— ©, (11.1)

where Fxpgn is the provability of KD4” in the sequent form (cf., Kaneko [4], Section
4.3). This is a variant of Theorem 4.2 for KD4™.

The cut-elimination theorem (Theorem 4.3) holds for GL%r, and also, the se-
mantics for GLE; has been developed (Kaneko-Suzuki [7} and [8]). If P’ is a proof
of Be[l" — ©}, then the cut-elimination theorem gives a cut-free proof P of the same
endsequent Be[I' — ©]. We emphasize that a cut-free proof P enjoys the subfor-
mula property that any formula in P occurs as a subformula also in the endsequent
Be[l' = ©] of P.

The changes from GLgr to GLgp may look small. However, GLL, is more
difficult to be handled than GLgg in considerations of meta-theoretical arguments.
In GL} z, for example, Theorem 6.3, Lemmas 6.4 and 6.5 would need some additional
assumptions and their proofs would become much more complicated. Nevertheless,
as far as formulae are restricted to ones compatible with our restriction to purely
interpersonal introspections, we can prove that provability f—“E r is equivalent to Fgp.

Theorem 11.1. Let F and F be epistemic structures with F C E which are subsets
of N<“> and let &"(I'UA) € N<“>, Then Fi&p T — A if and only if Fgr T — A.

The if part is automatically implied, but the only-if part needs a long proof,
which will be given below.

Proof of Theorem 11.1. Suppose 4 I' — A. There is a cut-free proof P of
I' — A in logic GL% . Note that since P is cut-free, it satisfies the subformula
property that any formula in P occurs as a subformula in the endsequent I" — A of

B
'Then P may contain some application of (B; — B:)* of the following two types:

Be[AI,B,‘(Ag) — 91]
Bg[Bi(Al UAg) — Bi(E—)l)

(B)' B(ﬁ,---,im)[Al: Bi(Az) — 91]
. B(i1,...,im_1) [Bz(Al U Qz) — Bg(@])

where e = (41, ...,%,) and 7 = 4. It suffices to find another proof P* of I' — A where
there are no applications of (B; — B;)* of type (A) and every applications of (B; —
B:)? of type (B) has “empty” B;(As). Specifically, we will modify P into P* so that
we “delete” the type (A)’s and change the type (B)’s into

(A): ] (Bi — By)*,

] (Bt - Bi)4:

Bi,,...im)[B1, A2 — ©]
B(i,ime1){Bi(A1 U Ag) — B;(6)

] (B,; — B;).

Then we will show that P* is a proof of I' — A in logic GLEgp.
Since 6" U A) C N<“> we have

§"(A) € N<“* for any formula A occurring in P. (11.2)
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Indeed, consider a formula A in any sequent BelA — A] in P. By the subformula
property of P, A occurs as a subformula in the endsequent I' — ©. Hence §"(A4) C
N<w>,

Now, consider a particular application 7, in P, of an inference of the form:

Blis,im) (A1, Bi(Ag) — 6]

: B; — By~
7 B(il,...,im-ﬂ[Bi(AlUA:Z)""Bi(el)]( = B)

where e = (41, ...,4m) and iy = i. Let Q be the part of P consisting of the ancestor
sequents, with the same outer Be|- - -], of the upper sequent of . We stipulate that @
includes the upper sequent of 7. The uppermost sequent of ¢} is either (a): an initial
sequent Be[D — DJ or (b): the lower sequent of (B;,,,, — B;_. w)® with 4y # 4.
First, we list several facts on P, and using these facts, P will be modified into
P>
(1): First, the succedent = of Be[lT — Z] in @ does not have a formula of the
form Bi(4) = B;,(A). Indeed, if £ has a formula B:i(A), then its descendant of
occurs as a subformula in A; U Ag U ©; of the lower sequent of 71, which implies we
have (1,1, j1, ..., fe) € 6"(Bi(A1 U A2)UB;(©1)) for some (71, -+ J¢), a contradiction to
(11.2).

(2): Consider an initial sequent B.[D — D] in Q. Then D cannot be the form Bi(4)
by (1).
(3): Consider any application 7 of (B; — B;)4, in Q, of the form:

¢+ Be[A1,Bi(Ag) — 5]
" Be[Bi(A; U Ag) — By(E;)]

(B; — By)*.

By (1), 51 = @
Consider an arbitrary occurrence ¢ of a formula B; (4) =B;,(4) in Q.

(4): First, £ is not a side formula of any inference. Suppose, on the contrary, that
it is a side formula of some inference rule I. Let I be (B; — B;) such as 7' of (2).
Then B;(4) is in Ay UZ1, and we have B;(4) € A; by By = ¢ by (3), which implies
that B;Bi(4) € Bi(A1), a contradiction to (11.2). Note that it may be the case that
¢ is in B;(Ag) in the upper sequent. :

. For any operational inference I, we can show in the same manner that § isnot a
side formula of T,

(5): The uppermost ancestor of £, having the form B;(A4), in Q is not a principal
formula of (B;,,,; — Bi,,,)?, since im1q # im.

(6): By (1), (2}, (3),(4) and (5), the uppermost ancestor, having the form B;(A), of
¢ in @ is either an thinning formula of (Th) or a principal formula of (Bi — B;) of
the type B, and every descendant of ¢ occurs as B;(A4) in Q.

Now, we replace all occurrences of any formula of the form of B;(A) = B;, (A)
in @ by A. The new part is denoted by @'. Let P’ be the tree obtained by replacing
Q by @'. Now we show that the part @' is correctly constructed with the inference
rules for GLgp. Since @’ is affected for a sequent including a formula of the form
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Bi(A). By (4), we need only to consider an application ' of (B; —B;)* in (3): # is

changed into
Be[A1, A — ]

BE[A1 UA; — ]

Thus the upper and lower sequents are the same. This is regarded as (Th). Hence
@' is correctly connected in GLgp. The lowermost sequent of ¢’ is:

B(il)---pim) {Al U AZ —* 6].

Hence we have
Syt P2 20 (B B,
Bir,sim-2)[Bi(A1 U Ag) — B;(0)]

In this manner, we change the part of each application of the form 77 in the above
way. The resulting P* is a proof of ' — A in GLgr. M

List of Some Symbols:

N = {1,...,n} : the set of players;

S; = {8i1,...,8i¢,} : the set of strategies of player 1;

9= (g1,-..,gn) : & game consisting of payoff functions Gy oey G}

N<“ = {(i1, .0rim) 141,y € N and m > 0};

N<w> = {(il, vy b} € N<W 1 4, # gy for t = I,.,m— 1};

€ : the null sequence;

=, 2, A\, V : logical connectives;

P : the set of formulae;

A, B, C, D; formulae;

B;(A) : player i believes A;

Ji : the set of preferences expressing payoff function g;;

T:-pVp and L : -pAp;

6(A) : the epistemic depths of formula A;

E and F': epistemic structures with F' C E;

E; = {{i1,..,im) € B4y =i} U {e}; and E_; = {(i2, e im) : (1, oy im) € B}
Pe={AecP:6(A)CE);

T',8, A : finite sets of formulae;

@ : a nonempty finite set of formulae;

Bi(®) := {Bi(4): A€ o}

Be[I' — ©] : a thought sequent;

GLEgr : epistemic logic of shallow depths;

Fer: the provability relation of GLgp;

Best;(s; | s_:) : s; is a best response to $_;;

Dom;(s;) : s; is a dominant strategy;

Und;(s;} : s; is an undominated strategy;

D; = {D;(s;) : s; € 8} : a prediction-decision criterion;

Pi = {Pre;;(s;) :s; €S;and j € N — {7}} : prediction criterion of player 1;
Ri= {Resi(s; | s-;):s: € §; and s_; € S_;} : valuation criterion of player 4;
Pls;)=T.
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