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Abstract.

Iet X, ... ,¥X, and ¥,, ... ,¥; be two independent samples randomly taken
from the Cauchy distributions C(p,,{,) and C(y.,¢.), respectively. ILet ¢ be
a real number such that O<g<l. We obtain the unbiased test of size ¢ for
testing the hypothesis H, :¢,=¢, versus the alternative hypothesis H, : 1¥82
usiﬂg Lagrange’ s method.

In the same way, we also obtain the unbiased test of size g for testing
hypotheses Hy:¢,=t; versus H,:{,%#¢,.



§1. Introduction.
In this paper we deal with the Cauchy distribution C(y, {) with the density

f{xlg, E)=ba" {82 + ()21 7%, for —o<x<n

where —w<y<w and £>0.

Iet X, ... ,X, be a random sample taken from the Cauchy distribution C(p,,
f1). Let ¥, ... ,Y, be another independent sample randamly taken from the Cauchy
distribution C(g,,¢,). We first consider the problem to test the hypothesis H,:
t1=1, versus the altermative hypothesis H, :p,+#4, when {, and {, are known. We
secondly consider the problem to test the hypotheses H,:§{,=f, versus H, :{,#{,
when either g, and p, are known or p,=g,.

Iet A be the acceptance region of the hypothesis Hy:iv=v,. Let [{v)=P, (A).
We call [(v) the operating (characteristic) function Iet ¢ be a real number
such that O<g<1l. The two-sided test of size ¢ is unbiased if [(v) is maximized
at y=y, and [ {vo)=1-1. In both problems we show that our two-—sided tests of
size @ are unbiased.

We assume that mn is odd. If mn is not odd, then we discard extra obser-
vations. We form mm differences X,-¥; for i=l, ... ,m and j=1, ... ,n. Let
Wy, ... ;Wyo be such differences. Since the characteristic fumction of W is of

form

E(e!t¥)=exp{ilk, -1z )t-(§1+E2) 11}, ¥ real t,

where i={—-1, W has the Cauchy distribution C(g,—p., {,+f.). We use this fact
for our analyses.

We call (U,,0;) a (1-¢) random interval for a parameter v if P, [U, <y U,y 1=
1-g.

ILet = be the defining property. Hereafter, we let 0%p;—y, and §=f,+f,.

In Section 2 we find the test for testing the hypotheses H,:6=0 versus H,:
p#0. In Section 3 we show that the test obtained in Section 2 is unbiased. 1In
Section 4, letting { be a known number we find the test for testing the hypo—

theses H,:{,=t,(=t) versus H, :{,#f;.



$2. The two-sided test for §.

In this section we assume that ¢; and {, are known. To test the hypothesis
Ho :=0 versus the alternative hypothesis H, :0+0 we first construct the shortest
(1-a) random interval using Lagrange’ s method which is similar method to obtain—

ing the two-sided tests for § in Nogami(2000).

‘ ILet Weiy ¢ oo Wmn dencte the ordered values of Wi, ---. ;Wae- Iebt pbea
nomegative integer. If mn=2p+l1, then we estimate § by W(p+1y. Iet U, ,,.
Then, by letting fw(u)=E(u[4, ) the density of U is given by
(1) gy (uld )=k(Fg (u))® (1-Fy(u) ) * £x(u), —® <ucw,
where
(2) k=T (2p+2)/{I (p+1) }?
and

(3) Fr(u)=x~ltan-!{§~t(u—g)} + 2-!, —wcuco.

Let r; and r, be real numbers such that r,<r,. To find the shortest (1-g)

random interval for f we want to minimize r,-r, subject. to
(4) Pa [r1 <U-§ Iy ]=1_ﬂ-
By a variable transformation V=Fy (U) we have that
(5) the left hand side of (4)=P, [Fy(r,;+8 ) <V<Fy(Ty+0)]=1-1a.
Hence, we want to minimize r;-r, subject to (5). To do so we use Lagrange’ s
miltiplier. Let } be a real number and define
Fe(r;+§)

LAL(x,, Ty ;1 )=, ~r, -0 { | hy(v) dv ~1+¢}
Fe(r,+f)



where with k given by (2}

hy (v)=kv? (1-v)>®, for O«w<l.
Since by Lagrange’ s method we have that iL/jr,=0=¢L/ir,, we get that
(6) hy (Fg (£, 40 ) )Ew (x40 )=hy (Fg (£ 40 ) )Ex (X H ) (=174), V0.

Iet f(e/2) be a positive number such that
B(e/2)
{ hy(v) dv = ¢/2 .
0
Without loss of generality we assume that 0<§{(2/2)<2"!. Wwhen we take that

(7) - Fwl(r;+)=f(e/2) and Fy(r:+f)=1-4(a/2),

iL/i2=0 or equivalently (5) is satisfied and furthermore we obtain by (3) that
T, =T, =-r where

(8) r=Fg~ ' (1-f(2/2))-0=4tan{(27'~§ (e/2) )x}.

From (7) and the fact that r,=-r;=-r we have that hy{Fyg(-r+f))=hy (Fg(r+i)).
We also have that fy{-r+})=fy(xr+f) by the definition. Hence, (6) with r,=—r,%-r
is satisfied. Therefore, from {5), (6) and the fact that r,=-r,=-r the shortest
(1~¢) random interval for ¢ is given by (U-r,U+r) with r given by (8).

Hence, by inverting this interval for §=0 our two—sided test-of size ¢ is
to reject Hy, if Ue(~w, -rjU[r,+w) and to accept H, if Ue(-r,‘r).

In the next section we prove unbiasedness of this test.

§3. Unbiasedness of the test in §2.
To see the unbiasedness of the two-sided test of size ¢ obtained in Section
2 we define the operating (characteristic) function [(#) associated with the

acceptance region (-r,r) as follows:

r

((8)=f gu(uit) du

-



where gy(ulf) is given by (1). Since from (4) and the fact._that T, =—T,;=—T
{(0)=1-¢, we show that [d[(§)/d01,-,=0 and [A2{(8)/A02],-,<0.

Because gy(ulf )=hy (Fy(u))fy(u), Yu and (6) holds for §=0 and T =-T,%r, we
have that
(9) (AL (0)/A8)e-o0=[Fu(—T10)—gu(x|0)]snmo=0.

We now show that [d2{(§)/dp%],.,<0.

Theoren.
[az(s)/ds2ls-0 < 0.

Proof.) Since d{{#)/di=gy(—r{8)—gy(ris), we have that
(10) (A0 (0)/A82% 1omo=LdGu(-T|0)/AD]s-0 ~ [AGu(x|8)/A8T0-0.
By (1) and the fact that dFy(u)/df=—Fy(u) we have that
dgy (uif) /a8 =-kp(£x (a))? (Fy () )*~* (1-Fx(u) ) *~1 (1-2F¢ (u) )
R (Fy (1) )® (1-Fy (u) }? (Afy (u) /A4 ).

Since [Fe(-r}louo =1-[Fu(Tr)lo-o=p(a/2) and since [Afy(r)/A)]yuo=~[AFx{~T)/A010s-0
=20 7 'zr[(Ew(x))?1o-0 and [fw(-r)lo-o=[fw(r)ls-,, putting these together leads to

(dgu (T(0)/A0 Jemo=KR[(Ew(T}}% g0 (1-p(e/2))° "1 (f(a/2))> "
{p(1-28 (e /2))+28 " 'xx(1-f (a/2) )8 (0 /2)}

and (dgy(-rl|§)/Aflo-o=-[dgy(r|6)/A)]s-o. Thus, in view of (10) we cbtain that
[Q*{(8)/A402],-0<0 for O<p{a/2)<271. (g.e.4.)

Therefore, from (9), Theorem and the fact that {(0)=1-¢ our test of size a
is unbiased.



In the next section we deal with the problem to test the hypotheses Hy:f,=t.

versus H, :f,#f{, when either y, and g, are known or p,=¢,.

§4. Optimal two—sided test for H,:f,=f,.
Let ¢ be a known number. To test the hypotheses H,:t,=f,(={) versus H,:

£, #t, we first construct the shortest (1-¢) random interval using Lagrange’ s
nmultiplier which is similar method to obtaining the two-sided tests for the
scale parameter in Nogami(2000).

Iet Wiy £ ... W(pny denote the ordered values of W,, ... ,W,, in Section 1.
Iet p be a nonnegative integer. Assume that mn=2p+l. Let ZZ1n|wWw-9i.

We beforehand derive the distribution of Z. Let §*=Iln §j. Since w=e*+§ for
wi; w=f-e* for w«l; z=—w for w=f, and since W is distributed according to the
Cauchy distribution C($,{), a variable transformation z=Injw-fi| leads to the

density of Z as follows:
qQz (2)=qz (2|8 )=Ew (e*+§ ) |d{e” +1 ) /dz | +£4 (8~ ) |A(f—e= ) /dz|
=2y lexp{z-§* }H 1texp{2(z—§*)}17}, —0<Z <
which is the same form as (28) in Nogami(2000) with ¢ there replaced by i.

We now estimate §* by U=Z ,,,,. Going through the same process as those
until (37) in Nogami(2000), we also obtain optimal (l-¢) random interval for
as follows: '

(11) (r,e', r.e")

where

(12) ry=[tan{2 'z (1-§{c/2))}11"* and r,={tan{2 'xf(a/2)}]1 *.

Hence, by inverting the above (l-¢) random interval (11) for §,=2( our two—sided
test is to reject H, if Ue(-w, é,"-1n r;1i[io*~1n r,, o) and to accept H, if Ue

{(io*—In xy,8,*-1n r, ) where r, and r, are given by (12).

Unbiasedness of this test of size 4 is proved in the same way as those in



7.

Section 5 of Nogami(2000) and Section 3 of Nogami(2001), so the author omits
the proof of it.
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