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Abstract

In a real-time database system, timing constraints are associated with transac-
tions and data accessed by transactions may be valid for only specific time intervals.
'A correct transaction processing means that the transaction completes its processing
before its timing constraints and uses data that are both absolutely and relatively
timing-consistent. We define the two distinct performance indeces as timing con-
straint and date consistent constraint. It is ideal that an algorithm both improve
the two indeces at the same time, but they may affect each other. In this paper, we
explore that whether we can improve them simultaneously and, if not, the trade-off,

The simulation results show that by taking advantage of the data temporal con-
sistency constraints in transaction scheduling improve significantly the system per-
formance (miss percentage and temporal inconsistency percentage). The results also
show that some system parameters, such as the period of a {ransaction and the rel-

ative validity interval of a data set, have strong effects on the system performance.

1 Introduction

In a real-time system, a result must not only be functionally correct but also be delivered
by a deadline. A result produced too late becomes less useful or useless and, in some

cases, may even cause severe damage to property or life. Applications in the latter case
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are called hard real-time applications, while applications in the former case are called soft
or firm real-time applications. Typically, the constraints of a real-time task include its
ready time and deadline, as well as the data temporal consistency. In a real-time database
system, a transaction begins its processing after its ready time and must complete before
its deadline. Data objects accessed by a transaction reflects the state of the real world
and continuously changes as the state of the real world changes. A transaction therefore
must read sufficiently current data in order to deliver the correct results and the data
objects accessed by the transaction should be sampled relatively close to eé,ch other. Data
temporal consistency, defined in terms of the absolute and relative consistency, is concerned
with the time characteristics of the data objects involved in the computations. A temporal
data is absoluiely valid only during a given interval and becomes absolutely inconsistent
after its absolute validity deadline. A set of temporal data objects sampled within a given
interval, that is, its relative validity interval is relatively valid, otherwise the date set
becomes relatively inconsistent.

Even though there are many studies focusing on real-time database systems, most of
them took only the timing constraints of transactions into consideration in transaction
scheduling [8, 1, 4, 5, 6, 10, 9, 14, 17]. Recently, some authors studied the problems of
data temporal consistency [12, 13, 7, 15, 16, 2]. The pessimistic and optimistic concurrency
control algorithms were examined in maintaining data consistency for a hard real-time
system in [13]. The absolute consistency constraint was taken into account in transaction
schedulin.g for a firm real-time system in [15].

In this paper, a hard real-time system model similar to that in [13} was studied. A
type of priority-driven scheduling algorithms, known as earliest-deadline-first (EDF) al-
gorifhm [8], with an optimistic concurrency control algorithm was examined. The EDF
algorithm assigns the priorities to transactions according to their deadl_ines in execution.
The original EDF algoritﬁm was firstly extended to take the absolute consistency con-
straint of data objects into consideration in transaction scheduling. The absolute validity

deadline of a data object read by a transaction is viewed as the deadline of the transaction



as well as the timing deadline of the transaction. Then, a waiting scheme was proposed
for maintaining the relatively temporal consistency. When the read set of a transaction
is relatively inconsistent then the transaction tries to postpone its execution and wait for
the update of data objects in its read set. Simulations were carried out to evaluate the
performance of these scheduling algorithms. The performance metrics are the percent-
age of temporally inconsistent (absolutely or relatively inconsistent) transactions and the

percentage of transactions missing their deadlines (miss percentage for short).

2 Real-Time Database System Model
2.1 Real-Time Data Object Model

In the model under consideration, the system consists of a set of data objects representing
the state of the real-world. There are two types of data objects in the system: continu-
ous and discrete. Continuous data objects are related to real-world objects continuously
changing with time. Discrete data objects are static in the sense that their values do not
become obsolete as time passes. Depending on how their values are acquired, continuous
data objects can be further classified to image objects and derived objects. Image objects
are models of real-world objects and they are sampled periodically by sensors. An instant
at which the value of a real-world object is sampled is called a sampling time. The sampled
value of a real-world object at a sampling time is written to an image object stored in
the system. Each image object x is stamped with the sampling time of the corresponding
real-world object X. The value of a derived object is computed from the values of a set
of image objects and/or other objects.

An image data object associates with a time stamp and an absolute validity interval.
The time stamp shows when the value of the object was obtained. The absolute validity
interval shows the length of time during which the value of the object is considered to be
valid. The vaiue of an image object & achieves absolutely temporal consistency only when
tnow — te < UL, Where t,,, is the current time, £ is the time stamp of object k, and avi;

is the absolute validity interval of object k. The absolute validity deadline of a data objeét



1s used to show the time after which the value of the object becomes invalid. The absolute
validity deadline of data object k, ddy, is given by ddy = fx + avi,. In addition to the
time stamp and the absolute validity interval, a derived object associates with a relative
validity interval showing the allowable dispersion of the time stamps between data objects
in the set of data objects used to derive the new object. For such a derived object & and a
set of data objects Sy, used to derive object k, S; achieves relatively temporal consistency
when the time stamp difference between two data objects ¢ and j in Sy is not greater than
the relative validity interval rvig; that is |t; — ¢;] < rvig,i,j € S;.

The absolute and rela;tive validity intervals reflect the temporal consistency require-
ments of an application. They show how current and close in time the data objects must
be for the results of computations based on them to be considered correct. A continuous
data object is in a correct state as long as the value of the object satisfies both the ab-
solutely and the relatively temporal consistency constraints as well as the given integrity
constraints, while a discrete data object is in a correct state if and only if the value of the
objegf: is logically consistent. A set of data objects is said to be temporally inconsistent if
they are either absolutely or relatively inconsistent.

A continuous data object is assumed to have multiple versions and may have multiple
valid versions simultaneously [13]. A new version comes into existence when a new value
is written. This version is dated with a time stamp showing when it is obtained. The
versions of an image object are called image versions, whereas the versions of a derived
object are called derived versions. Each version of a data object has its own absolute
validity deadline. In the model under consideration, a real-time database R consists of
the following data objects: a set of image objects X = {zy, 2y, ..., s}, & set of derived
objects Y = {yi, 1, ...,yN}, and a set of discrete data objects Z = {2z, z,...,29}. A set
of data objects which is used to compute the value of a derived object y is denoted as

Sy = {81,32, veey Siy ...,SR},S,‘ e XUYUZ1<i<R



2.2 Real-Time Transaction Model

Transactions are assumed to be periodic; that is, a sequence of transactions ar-e carried
out af regular intervals [13]. In each period, a transaction can be started after the ready
time and should be completed before its deadline. It is assumed that the ready time of
a transaction is the beginning of each period and the deadline of a transaction is the
beginning of the next period. A transaction is stamped with a time stamp showing its |
startup time. During its execution, a transaction reads and/or writes the same set of data,
objects as the transactions in other periods. A transaction 7 can be characterized by five
parameters a,pr, ¢r, RS;, and WS,, where a, is the arrival (or release) time, p, is the
period, and ¢, is the execution time. RS, and WS, are the read set and write set of the
transaction, respectively; that is, they are the data objects the transaction may read and
write in every period.

Transactions are classified as being read-only, write-only, and update. A write-only
transaction models the periodic sampling of the reading of a sensor and updating of the
sensor values. It does not read any data object and periodically writes a sampled value of a
real-world object to the corresponding image in the system (i.e., WS, C X, RS, =0). An
update transaction reads a set of data objects, computes and writes to derived objects (ie.,
RS, C XUYUZ, WS, CY). An update transaction never writes to a.n& image object and
a write-only transaction never writes to any derived object. It is assumed that an update
transaction writes to only one derived object. The read set of an update transaction 7,
RS;, therefore corresponds to the data set used to compute the corresponding derived
object y, S;. A read-only transaction retrieves the values of a set of data objects but does

not write to any data object (i.e., RS, C X UY U Z, WS, =0).

3 Concurrency Control and Transaction Scheduling

‘The concurrency control algorithm examined here is an optimistic concurrency control
algorithm. As in [13], the algorithm supports multiversion data based on the well-known

version pool algorithm [3] and maintains weak consistency: Update transactions are guar-



anteed to be executed in a serializable manner, but read-only transactions see a consistent
view of the database and can read any versions of data objects with a time stamp less than
or equal to its startup time stamp. It is assumed that a read-only transaction reads the
most current (committed) version that has a time stamp less than or equal to the startup
time stamp of the transaction.

A write-only transaction does not read any data objects. Their write sets are disjoint
from each other and from the write set of any update transaction and, therefore, they have
no conflicts with any other transactions. When a write-only transaction writes an image
in each period, it creates a new version of the image. Read-only transactions read the
most recent versions of data objects and do not write to any data objects and, therefore,
conflicts with update transactions are eliminated. Update transactions, on the other hand,
may have read/write conflicts with each other.

With the optimistic concurrency control under consideration, an update transaction
has three phases to commit: a read phase, a validation phase, and a write phase. In each
period, an update transaction 7 reads the most recent versions of the data in its read
set without locking the data. Tramsaction 7 creates a new version, in its own workplace,
of each object it will write later. When transaction 7 is ready to commit, it enters the
validation phase. The validation test check if any data object written by 7 has been read
by any other update transaction o that is currently in its read phase, that is, whether
WS, and RS, overlap (WS, N RS, # 0). Any conflicting update transaction (such as o)
found is immediately aborted and restarted. Transaction 7 then enters its write phase.
In the write phase, the new version of each object in the local workplace of transaction 7
becomes permanent in the system. |

Two well-known scheduling algorithms, rate-monotonic {RM) and first-deadline-first
(EDF), are used as a baseline and for comparison purpose. In RM, higher priorities are
assigned to transactions with shorter periods and the priorities are determined before
execution. In EDF, on the other hand, the priorities are determined during execution ac-

cording to the timing deadlines of transactions and higher priorities are assigned to trans-



actions with earlier deadlines [8]. The RM and EDF algorithms, however, ignore the data
temporal consistency in transaction scheduling. Two extensions of the EDF algorithm,
earliest-data-deadline-first (EDDF) and earliest-data-deadline-first-wait (EDDF-W) algo-
rithms, which are cognizant of data temporal consistency requirements are examined.

The EDDF algorithm was proposed in [16] for a firm real-time database system and
in this paper is extended for the hard read-time model. In EDDF, in addition to the
timing deadline of a transaction, the absolute validity deadline of a data object in the
read set of the transaction is also viewed as the deadline of the transaction. The deadline
of transaction 7 is therefore determined by min(ddy,d,) where k € RS,.'a,nd d, is the
timing deadline of transaction 7. A higher priority is assigned to a transactions with a
smaller min(dd, d,).

The EDDF-W algorithm proposed in this paper attempts to reduce the percentage of
relatively temporal inconsistency by using a simple waiting mechanism. When 2 trans-
action find that its read set is relatively inconsistent it tries to postpone its execution
and wait for the update of the data object with the oldest time stamp in its lread set. It
checks whether the waiting still meets its timing deadline and whether the update makes
its read set satisfy the relative consistency constraints. It will postpone its execution if
it is true, otherwise it marks itself as relatively inconsistent and continues its execution.
Two cases under the mechanism for updating the data object with the oldest time staxﬁp
in the read set of transaction r are shown in Figs. 1 and 2. There is a transaction 7
which has two data objects in its read set, s; and s;. In F1g 1, transaction 7 finds that
the difference of the time stamps of s; and s; is greater than the relative validity interval;
that is, ¢2 — 1 > rvi,, and that after the update of s; the difference becomes not greater
than the relative éonsistency interval; that is, t3 — t3 < rvi,. It therefore decides to wait
fdr the update of s;. Transaction s; inherits the priority of transaction 7 and is executed
immediafely ! . Transaction s; triggers the execution of transacﬁon T once it completes

its execution. Fig. 2 shows the case where transaction 7 has to wait for the update of 85

I For simplicity, s is used to denote both a data object and the transaction writing to the data object
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until the next coming period for s;.

4 Simulation Results

This section presents the assumptions made in the experiments and the results obtained
in simulation. The transactions are periodic and their periods were chosen, as in [13], over
a uniformly distributed interval [1, Prasio] * Pogse, Where Py, is the baseline period and was
set to 100 time units, and P44, is the ratio of the longest périod to the baseline period and
was set from 2 to 50. There were 10 update transactions and 10 write-only transactions
in simulation and all transactions were started in phase; that is, the first periods of all
the transactions begin at the same time. The write-only transactions are believed to need
very little processor attention and therefore was set to one time unit and was assigned to
the highest priofity. It was assumed that update transactions read a set of data objects
and write to only one derived object, and conflict with each other. It is assumed that
- the most recent versions of data objects are used for read-only transactions. A version
selection scheme may be used to provide a proper version for a read-only transaction so
that the resultant dispersions read by the transaction should be better than the results
here indicate. The absolute validity interval of a data object written by transaction 7, avi,,
was set to 2p, and the relative validity interval for 2 defived object written by transaction
o, TUl,, was set to Qm?,x(p,-) where i € RS,.

The utilization of the update transactions was determined as in [13] using the following
three distributions: EQ where the utilization of every update utilization is U _/m (U is the
total utilization of the update transactions and m is the number of update transactions); .
LH where a transaction ¢ with a longer period is assigned to a higher utilization deter-
mined by Up;/ X7, p;; and SH where a transaction ¢ with a shorter period is assigned to a
higher utilization determined by (G —p;}/ 7L, pj, G = 2 7L, p;/m. The total number of
transactions in the simulation is denoted by N. The number of inconsistent transactions
that read either absolutely or relatively inconsistent data and the number of tra.ns_actions

that missed their deadlines are denoted by N, and Ny, respectively. The inconsis-



tency percentage and the miss percentage are therefore equal to N;,/N and Npes /N,
respectively.

Figs. 3-6 show the performance of the scheduling algorithrr;s when the utilization
distribution is LH. The results show that the inconsistency percentage and the miss per-
centage are improved significantly under EDDF and EDDF-W. From Figs. 3 and 5, it is
observed that when the period ratio becomes larger the breakdown utilization [11], from
which point the inconsistency occurs, becomes smaller. When the period ratio, Prs0, is
50, as shown in Fig. 5 the breakdown utilization of EDDF and EDDF-W is close to that of
EDF, even though the inconsistency percéntages of EDDF and EDDF-W increase slowly
afterward. It is also observed that the performance of EDDF is quite close to that of
EDDF-W. Because the relative validity interval, rvi,, was set to be large enough {equal
to 2 max;(p;), as described before) and therefore there were seldom cases happened where
the relative consistency constraints were violated.

Figs. 7 and 8 show the effects of 'read~only transactions on the performance of EDDF-
W when Fg, is 50: read-only transactions are 0, 20 and 50% of the sum of read-only and
update transactions. The performance of EDDF is quite close to that of EDDF-W and
therefore was not shown here. The periods of read-only transactions were chosen randomly.
In such a situation, a read-only transactions may preempt an update transaction or be
preempted by an update transaction, but no update transaction will be aborted even when
it is preempted by a read-only transaction. As shown in Fig. 7, the breakdown utilization
becomes much larger as the percentage of read-only transactions increases.

Figs. 9 and 10 show the performance comparison of the EQ, LH, and SH distributions
under EDDF-W when P4, = 50. Other parameters were fixed as in Figs. 3-6. The
results obtained here are similar to those obtained in [12]. The SH distribution provides the
smallest inconsistency percentage over a wide range of utilization, but when the utilization
is close to 1 the inconsistency percentage becomes sharply large. At high utilization, the
execution times of short period transactions are so long that they can hardly meet their

deadlines, resulting in high inconsistency percentage. When the distribution is LH, longer



period transactions with longer execution times are likely to be preempted many times
before they finish, resulting in violating the data consistency and deadline constraints,

Figs. 11-14 show the performance of EDDF-W in comparison with EDDF for various
period ratios (from 50 to 2) and various relative validity intervals (p, 2p,, and max;(p;)
where ¢ € RS;). The performance metric used here is the relative inconsistency percentage,
that is, the ratio of the number of relatively inconsistent transactions to the number
of the total transactions. It is observed that the period ratio and the relative validity
interval have strong effects on the relative inconsistency percentage. When the period ratio
Patio becomes large or when the rvi; becomes small the relative inconsistency percentage
increases. It is observed that when the utilization is not high (below 0.6) the EDDF-W
improves the relative inconsistency percentage over EDDF in all cases. When P, is 2,
on the other hand, EDDF-W behaves worse than EDDF if the utilization becomes large
(above 0.6).

An attempting at improving the relative inconsistency may malign other performance
metrics (the absolute inconsistency percentage or the miss percentage). The relationship
of these performance metrics was examined as shown in Figs. 15-18 when Fras is 10. It
is observed that EDDF-W behaves better than EDDF when rvi, is relatively large (equal
to max;(p;) where ¢ € RS;). Both the absolute and the relative inconsistency percentages
are improved while the miss percentage remains almost unchanged. It is observed, on
the other hand, that when rvi, becomes small (equal to 2p,), the absolute inconsistency
percentage and the miss percentage were sacrificed for the improvements of the relative
inconsistency percentage. It is observed that a shorter relative validity interval leads to
a higher absolute inconsistency percentage. When rvi, is small, a transaction often finds
that its read set is relatively inconsistent and tries to wait for the update of its read set.
‘The waiting may leave the system resource idle. Additionally, if a transaction with higher
priority comes into existence during the update process, the waiting transaction may be

preempted, resulting in missing its deadline.
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4 Conclusion

In this paper, transaction scheduling algorithms, EDDF and EDDF-W, that take the abso-
lute and the relative consistency of temporal data objects were examined using simulation.
To maintain the absolute consistency, the absolute validity deadline of a data object read
by a transaction is also viewed as the deadline of the transaction. To maintain the relative
consistency, a simple waiting scheme is employed where a relatively inconsistent transac-
tion tries to postpone its execution and wait for the update of data objects in its read
set.

The simulation results show that both EDDF and EDDF-W significantly iinprove
the inconsistency percentage and the miss deadline percentage over either RM or EDF.
The comparison of EDDF an;i EDDF-W show that when the relative validity interval
is large (e.g., equal to max;(p;) where i € RS;) EDDF-W improves the inconsistency
percentage over EDDF while the miss percentage remains almost unchanged. When the
relative validity interval becomes small (e.g., equal to or less than 2p,), on the other
hand, the improvement on the relative inconsistency percentage may sacrifice the absolute
inconsistency percentage and the miss percentage. It therefore needs to take a.trade-
off into account between the performance metrics under such a situation. The relative
inconsistency percentage can also be improved by selécting appropriate versions of data
objects. Such issues will be studied in the future work. The results obtained in this study
may give a guideliné for how to maintain the temporal consistency and which system
parameters play main roles in maintaining temporal consistency in a real-time database

system.
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