No. 892

Best symmetric two-sided test for the positional parameter of the uniform distribution

by

Yoshiko Nogami

December 2000

Best symmetric two-sided test for the positional parameter of the uniform distribution.

By Yoshiko Nogami December, 2000

Abstract.

Let $\mathfrak g$ be a real number such that $0 < \mathfrak g < 1$. In this paper we show that the two-sided test obtained in Nogami(2000, §3) has the greatest power among the size- $\mathfrak g$ tests symmetric about $\mathfrak g$.

Let $\mathfrak g$ be a real number such that $0<\mathfrak g<1$. In this paper we show that the two-sided test obtained in Nogami(2000, §3) has the greatest power among size- $\mathfrak g$ tests symmetric about $\mathfrak g$.

We shall prove the following theorem:

Theorem. Let X_1, \ldots, X_n be a random sample from the p.d.f. $f(x|\theta)=c^{-1}$, for $\theta+\theta_1 < x < \theta+\theta_2$; =0 otherwise where $\theta_1 < \theta_2$ and $c=\theta_2-\theta_1$. The test ϕ^* given by (9) with θ_0 some constant for testing the null hypothesis $H_0: \theta=\theta_0$ versus the alternative hypothesis $H_1: \theta+\theta_0$ has the greatest power among size- α tests symmetric about θ .

<u>Proof.</u>) Let $X_{(1)}$ be the i-th smallest observation such that $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$. Let $Y=(X_{(1)} + X_{(n)} - i_0)/2$ with $i_0 = i_1 + i_2$. As we have seen in Nogami(2000) the p.d.f. of Y is given by

$$g(y|\theta)=nc^{-n}(c-2|y-\theta|)^{n-1}I_{(-c/2|c/2)}(y-\theta)$$

where for a set A $I_A(x)=1$ for $x \in A$; =0 for $x \notin A$.

Let ϕ be a size- α test symmetric about θ (namely, $\phi(y) = \phi(2\theta - y), \forall y$). Then, it follows that

(1)
$$E_{\theta}(\phi(Y))=\alpha$$

and

(2)
$$E_{\theta}(Y \phi(Y)) = \theta E_{\theta}(\phi(Y)) = \theta \epsilon$$
.

Above (2) holds because $E_{\theta}((Y-\theta)\phi(Y))=0$ and (1) holds.

Hence, by generalized Neyman-Pearson Lemma / maximizes the integral

$$\int \phi(y) g(y|\theta') dy$$
 for $\theta' \neq \theta_0$

out of all functions ϕ , $0 \le \phi \le 1$, satisfying (1) and (2), when there exist real

constants k1 and k2 such that

(3)
$$\psi(y) = \begin{cases} 1, & \text{if } (c-2|y-\theta'|)^{n-1}I_{(-c/2,c/2)} (y-\theta') \\ & \geq (k_2+k_1y)(c-2|y-\theta_0|)^{n-1}I_{(-c/2,c/2)} (y-\theta_0) \\ 0, & \text{if } (c-2|y-\theta'|)^{n-1}I_{(-c/2,c/2)} (y-\theta') \end{cases}$$

(4)
$$(k_2+k_1y)(c-2|y-\theta_0|)^{n-1}I_{(-c/2,c/2)}(y-\theta_0).$$

We check the existence of such k_1 and k_2 and show that the test i is of form (8). We first check the existence of such k_1 and k_2 until the fifth line below (7).

When $\theta' < \theta_0 - 2^{-1}c$ or $\theta_0 + 2^{-1}c < \theta'$, we take $k_1 = 0$ and $k_2 = 1$. Let $\theta' < \theta_0 - 2^{-1}c$. Let $a \lor b$ be the maximum of a and b. Then, the inequality (4) holds for $(\theta_0 - 2^{-1}c) \lor ((\theta_0 + \theta')/2) < y < \theta_0 + 2^{-1}c$ and the inequality (3) holds otherwise. Let $\theta_0 + 2^{-1}c < \theta'$. Let $a \lor b$ be the minimum of a and b. Then, (4) holds for $\theta_0 - 2^{-1}c < y < ((\theta_0 + \theta')/2) \lor ((\theta_0 + \theta')$

Let $\ell_0 < \ell' < \ell_0 + 2^{-1}c$. Then, for $\ell_0 - 2^{-1}c < y < \ell' - 2^{-1}c$, the inequality (4) holds when $k_1 = 0$ and $k_2 = 1$. On the other hand, for $\ell_0 + 2^{-1}c < y < \ell' + 2^{-1}c$, the inequality (3) always holds for any real k_1 and k_2 .

Let $\theta_0-2^{-1}c < \theta' < \theta_0$. Then, for $\theta'-2^{-1}c < y < \theta_0-2^{-1}c$, the inequality (3) always holds for any real k_1 and k_2 . On the other hand, for $\theta'+2^{-1}c < y < \theta_0+2^{-1}c$, the inequality (4) holds when $k_1=0$ and $k_2=1$.

Henceforth, it is enough to consider the y's in $(\theta'-2^{-1}c, \theta_0+2^{-1}c)$ for $\theta_0 < (\theta' < \theta_0 + 2^{-1}c)$ or in $(\theta_0 - 2^{-1}c, \theta' + 2^{-1}c)$ for $\theta_0 - 2^{-1}c < \theta' < \theta_0$. We let

$$h(y)=(c-2|y-\theta'|)/(c-2|y-\theta_0|)$$
 (\geq 0)

and

$$z(y) = (k_2 + k_1 y)^{1/(n-1)}$$
 (>0).

We also let

(5)
$$y_0 = -k_2/k_1$$
.

For $\theta_0 < \theta' < \theta_0 + 2^{-1}c$, take y_0 such that $\theta' - 2^{-1}c < y_0 < \theta_0$. For $\theta_0 - 2^{-1}c < \theta' < \theta_0$, take y_0 such that $\theta_0 < y_0 < \theta' + 2^{-1}c$. Let p be a given number such that $0 . Take <math>y_0 = (1-p)\theta_0 + p(\theta' - 2^{-1}c)$ for $\theta_0 < \theta' < \theta_0 + 2^{-1}c$ and take $y_0 = (1-p)\theta_0 + p(\theta' + 2^{-1}c)$ for $\theta_0 - 2^{-1}c < \theta' < \theta_0$. Then, from (5), k_2 is taken as follows:

(6)
$$k_{2} = \begin{cases} -k_{1} \{ (1-p)\theta_{0} + p(\theta'-2^{-1}c) \}, & \text{for } \theta_{0} < \theta' < \theta_{0} + 2^{-1}c \\ -k_{1} \{ (1-p)\theta_{0} + p(\theta'+2^{-1}c) \}, & \text{for } \theta_{0} - 2^{-1}c < \theta' < \theta_{0}. \end{cases}$$

Substituting these values into z(y) we have

(7)
$$z(y) = \begin{cases} [k_1 \{y - ((1-p)\theta_0 + p(\theta' - 2^{-1}c))\}]^{1/(n-1)}, & \text{for } \theta_0 < \theta' < \theta_0 + 2^{-1}c, \\ [k_1 \{y - ((1-p)\theta_0 + p(\theta' + 2^{-1}c))\}]^{1/(n-1)}, & \text{for } \theta_0 - 2^{-1}c < \theta' < \theta_0 \end{cases}$$

which are drawn by stripe lines in the figure below. Since we must accept H_0 for $y=\theta_0$, we must have $h(\theta_0) < z(\theta_0)$. We take $k_1=2(pc)^{-1}$ for $\theta_0 < \theta' < \theta_0 + 2^{-1}c$ and $k_1=-2(pc)^{-1}$ for $\theta_0-2^{-1}c < \theta' < \theta_0$. Then, $(z(\theta_0))^{n-1}=h(\theta_0)$. Hence, we have $h(\theta_0) < z(\theta_0)$ because $|\theta_0-\theta'| < 2^{-1}c$. k_2 is obtained by substituting these values of k_1 into (6).

To show that the test ϕ is of form (8) we check the existence of two intersection points of h(y) and z(y). Since for $\theta_0 < \theta' < \theta_0 + 2^{-1}c$

$$h(y) = \begin{cases} 1 - \{2(\theta' - \theta_0)/(2y + c - 2\theta_0)\}, & (\theta' - 2^{-1}c < y \le \theta_0) \\ -1 - \{2(c - (\theta' - \theta_0))/(2y - c - 2\theta_0)\}, & (\theta_0 < y \le \theta') \\ \\ 1 - \{2(\theta' - \theta_0)/(2y - c - 2\theta_0)\}, & (\theta' < y < \theta_0 + 2^{-1}c), \end{cases}$$

h(y) is an increasing function for $\theta'-2^{-1}c < y < \theta_0+2^{-1}c$. Since for $\theta_0+2^{-1}c < \theta' < \theta_0$

$$h(y) = \begin{cases} 1 + \{2(\theta_0 - \theta')/(2y + c - 2\theta_0)\}, & (\theta_0 - 2^{-1}c < y \le \theta') \\ -1 + \{2c - 2(\theta_0 - \theta')\}/(2y + c - 2\theta_0), & (\theta' < y \le \theta_0) \\ 1 + \{2(\theta_0 - \theta')/(2y - c - 2\theta_0)\}, & (\theta_0 < y < \theta' + 2^{-1}c), \end{cases}$$

h(y) is a decreasing function for $\theta_0-2^{-1}c < y < \theta'+2^{-1}c$. On the other hand, when $\theta_0 < \theta' < \theta_0 + 2^{-1}c$ dz(y)/dy>0 for ally>y₀ and when $\theta_0-2^{-1}c < \theta' < \theta_0$ dz(y)/dy<0 for ally<y₀. Since $0=z(y_0) < h(y_0)(<1)$ and since for $\theta_0 < \theta' < \theta_0 + 2^{-1}c$ z($(\theta_0+2^{-1}c)-) < \lim_{y\to-(\theta_0-1)} \frac{1}{2} \frac{1}{2}$

Let y_1 and y_2 be such y-coordinates of these intersection points with $y_1 < y_2$. Then, we finally have the optimal test of form

(8)
$$\psi(y) = \begin{cases} 1, & \text{if } y \leq y_1 \text{ or } y \geq y_2 \\ \\ 0, & \text{if } y_1 < y < y_2. \end{cases}$$

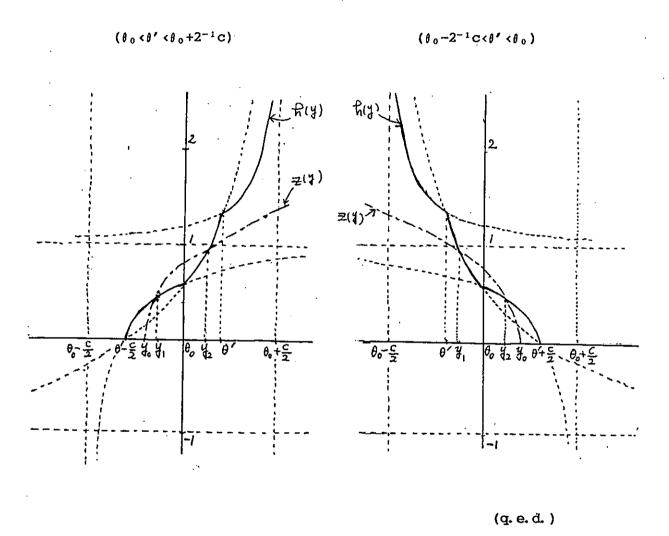
Hence, the test in Nogami (2000, §3) provided by

(9)
$$\phi^*(y) = \begin{cases} 1, & \text{if } y \le \theta_0 - r \text{ or } y \ge \theta_0 + r \\ \\ 0, & \text{if } \theta_0 - r < y < \theta_0 + r, \end{cases}$$

where $r=c(1-e^{1/n})/2$, is the size-e test with the greatest power among size-e tests symmetric about θ .

and the Sec.

Figure. The graphs of h(y) and z(y)



Reference.

Nogami, Y. (2000). "An unbiased test for the location parameter of the uniform distribution. Discussion Paper Series No. 861, Inst. of Policy and Planning Sciences, Univ. of Tsukuba, April, pp. 1-4.