No. 883

PRICING PATH DEPENDENT SECURITIES
BY THE EXTENDED TREE METHOD
by
Naoki Kishimoto

September 2000






PRICING PATH DEPENDENT SECURITIES
BY THE EXTENDED TREE METHOD

Naoki Kishimoto*

Current Draft: September 2000

*  University of Tsukuba, Institute of Policy and Planning Sciences, Tsukuba, Ibaraki
305-8573, Japan, (0298) 53-5096. The author thanks Giovanni Barone-Adesi, Douglas
Breeden, Douglas Foster, Chi-fu Huang, Andrew Lo, Kevin McCardle, and seminar
participants at Duke University, MIT, and European Finance Association Meetings for
helpful comments on earlier drafts. In addition, Thomas Ho’s excellent introduction to
the U.S. mortgage-backed securities market and financial support from Japan Produc-
tivity Center are gratefully acknowledged. Part of this paper was circulated in earlier
papers, titled “Pricing Path Dependent Securities by the Extended Binomial Tree” and
“A Simplified Approach to Pricing Path Dependent Securities.” The usual disclaimer
applies.



PRICING PATH DEPENDENT SECURITIES
BY THE EXTENDED TREE METHOD

Abstract

This paper presents a discrete time method (ET method) for pricing path dependent se-
curities (PDSs) by the supplementary variable technique and examines the ET method
rigorously from the point of view of Arrow-Debreu’s event tree. If supplementary vari-
ables satisfy certain conditions, the ET method always yields the same PDS price as
a valuation method based on Arrow-Debreu’s event tree. In addition, the ET method
compares favorably with competing methods in computational size. Two applications
of the ET method are presented: collateralized mortgage obligations and American
average options where the average is computed over a moving period with a fixed

length.



PRICING PATH DEPENDENT SECURITIES
BY THE EXTENDED TREE METHOD

I. Introduction

Since the seminal work of Goldman, Sosin, and Gatto (1979) on lookback options,
extensive research has been carried out on various types of path dependent securities
(PDSs), such as average options, barrier options, and mortgage-backed securities. The
purposes of this paper are to present a discrete time method for pricing PDSs where the
path dependence is dealt with by the supplementary variable technique and to examine
this method rigorously from the point of view of Arrow-Debreu’s event tree.! This
valuation method is referred to as the extended tree (ET) method. It is developed in
discrete time for two reasons. First, the discrete time setup makes the method directly
applicable to PDSs of American type and PDSs that contain embedded options of
American type. Second, the discrete time setup allows us to easily account for time
lags of specified lengths, which are found in typical floating rate notes, adjustable rate

mortgages, and average options.

A number of researchers valued PDSs by the supplementary variable technique in
discrete time. Earlier examples include McDermott, Hakanoglu, and Roman {1988) on
corporate bonds with optional sinking fund provisions, Kishimoto (1989) on collateral-
ized mortgage obligations (CMOs) and floating rate notes, Kau, Keenan, Muller, and
Epperson (1990) on adjustable rate mortgages, Hull and White (1993) (HW) on look-
back options, average options, and mortgage-backed securities, and Thompson (1995)
on take-or-pay contracts, which are commonly employed in the natural gas industry.
In addition, the forward shooting grid method proposed by Barraquand and Pudet
(1996) can be viewed as an implementation of the supplementary variable technique

for computing partial differential equations numerically.

The ET method builds on the work of Cox, Ross, and Rubinstein (1979) (CRR) in
specifying the uncertainty model for an underlying state variable and Goldman, Sosin,
and Gatto (1979) in dealing with path dependence by the supplementary variable tech-
nique. In particular, we assume that a state variable follows a binomial process, which

is a generalization of CRR’s binomial process. In addition, we assume that for a PDS

1 See, for example, Cox and Miller (1965) and Bertzekas (1987) for expositions of
the supplementary variable technique in general.
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in question, there exists a set of supplementary variables that summarizes past real-
izations of the state variable and satisfies five conditions.? First, the set of values each
supplementary variable may take on is finite. Second, if the PDS pays cash flows other
than those that are specified by boundary and terminal conditions, they are correctly
specified for each combination of time, the state variable, and the supplementary vari-
ables. Third, if the PDS has boundary conditions, they are correctly specified for each
combination of time, the state variable, and the supplementary variables. Fourth, the
terminal condition of the PDS is correctly specified for each combination of the state
variable and the supplementary variables at the maturity of the PDS. Fifth, condi-
tional on time, the state variable, and the supplementary variables, the ensuing values
of the supplementary variables are correctly determined by the ensuing value of the
state variable. Under these conditions, the PDS admits .a one-period risk-neutral valua-
tion relationship (RNVR) conditional on the supplementary variables. Therefore, with
boundary and terminal conditions, the PDS can be valued by applying the one-period
RNVR recursively.

‘We develop our valuation method in a general and formal setting for three reasons.
The first reason is to examine this method rigorously. In particular, we prove that the
conditions listed above are sufficient to ensure that the ET method always yields the
same PDS price as a valuation method based on a comparable Arrow-Debreu’s event
tree; a proof requires a formal setup. The second reason is that once we have a general
and formal framework, we can reduce the problem of valuing a complex PDS to that
of finding appropriate supplementary variables. In other words, we can concentrate
on a smaller and well-defined problem. The third reason is that we can address the
computational size of the ET method in general terms. In particular, we present a
measure for the computational size of the ET method, and show that the ET method

yields exact model prices with manageable amounts of computation.

This paper is organized as follows. Section II sets up a valuation framework for
PDSs and derives a one-period RNVR conditional on supplementary variables. In
addition, this section presents a valuation procedure based on the one-period RNVR.
The next two sections present applications of the ET method to two types of PDSs.
In the first application, the CMO model by Kishimoto (1989) is extended to CMOs
where a CMO collateral is modeled as a pool of mortgage loans with heterogeneous

prepayment costs. In the second application, we value American average options where

2 Some, but not all, of these conditions were pointed out by Kishimoto (1989) and
HW. A precise statement of these conditions is given in Assumption 6.
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the average is computed over a moving period with a fixed length. We call such options
American moving average options to distinguish them from ordinary average options
studied in earlier papers. Section V discusses the valuation of PDSs on Arrow-Debreu’s
event tree and examines the ET method from the point of view of the event tree. In
particular, this section shows that the ET method yields the same PDS price as a
valuation method based on a comparable event tree. In addition, Section V presents a
measure for the computational size of the ET method and shows that the ET method
requires much less computation than the method based on a comparable event tree.

Finally, Section VI summarizes the paper and provides additional discussion.

II. Extended Tree Method
A. The Basic Framework
These are the basic assumptions of the ET method.3

Assumption 1. The market opens at N + 1 discrete points in time, which are indexed
byn=0,...,N.

The discrete point indexed by n is called fime n, and the interval from time n — 1 to

time n is referred to as period n.
Assumption 2. The market is frictionless unless otherwise noted.

Assumption 3. At timen = 1,..., N, one of two events, an up event and a down event,

occurs. The event at time n is independent of events at time 1,...,n — 1.

"The number of up events that occur from time 1 to time n is denoted by i, =0,...,n
and referred to as the underlying state variable.? Clearly, each pair of (n,i,) corre-

sponds to a node of a binomial tree, which is labeled as a binomial node.

Assumption 4. There exists a security such that its price is uniquely determined at

® These assumptions can be relaxed to extend the ET method to other discrete time,
discrete state frameworks, including discretized versions of continuous time models as
in Boyle (1988). '

4 In addition, we include time 0 in the time domain of the underlying state variable,
where we set i = 0.



each binomial node (n,%), i =0,...,n, n=0,..., N, and its price at (n,4) differs from

that at (n,i—1), i=1,...,n, n=1,..., N,

In CRR, for example, an underlying stock satisfies Assumption 4. In Ho and Lee (1986)
(HL), any default-free bond satisfies it.

Assumption 5. There exists a risk-free asset at time 0,..., N — 1, where the risk-free

rate is specified at each binomial node (n,%), {=0,...,n, n=0,...,N —1,

Let r(n,t) denote one plus the risk-free rate prevailing at a binomial node (n, ). The
risk-free rate can be either stochastic or deterministic, depending on the specification
of the model. If it is stochastic, r(n,) differs across i = 0,...,n for a given value of
n. If it is deterministic, r(n,4) is identical across i = 0,...,n for a given value of n.
Clearly, the framework set up by Assumptions 1-5 contains CRR and HL as special

Cases,

Next, we define terms and notations for securities where the cash flow depends on
both current and past realizations of an underlying state variable. Set e, = (ig,...,1,).’
In addition, let E,, denote the set of values e, may take on at time n. Each element of
E, is referred to as a path through time n. The structure of paths can be represented
by a tree as in Debreu ((1959), p.99), where each node represents a particular path, i.e.,
a particular value of e,,. We call this tree a path tree (PT) and each node a path tree
(PT) node. An example of the path tree is illustrated in Figure 1. A security is labeled
as path dependent, if the determination of its cash flow requires more information on
the path than the current value of the underlying state variable. In addition, a security
is labeled as path independent, if the determination of its cash flow requires no more

information on the path than the current value of the underlying state variable.

For some PDSs, we can find a variable or a set of variables that summarizes
information on the path and, with the current value of an underlying state variable,
provides sufficient information to determine cash flows. We label these variables as
supplementary variables and develop a valuation method for PDSs based on them.
Specifically, for a PDS in question, we first identify supplementary variables at each
timen=0,...,N. Let h.,(f ) denote the 41 supplementary variable at time n and h,, the

vector of all, say, m supplementary variables at time n, (hﬁ,,l), ceey B }.% Second, we

® In general, m depends on n. Note also that m can be set at 0 initially, because
there is no need to define supplementary variables at time 0.
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identify a set that contains the set of all values each supplementary variable may take
on at time n.® Third, we define the state space at time n of h,, as Cartesian product of
the sets that are identified above for the individual supplementary variables.” Fourth,
we define Z,, as the set of points in Euclidean (m + 2)-space that (n, i, h,) may take
on at time n. Frequently, (n,in, hy) is denoted by z,. Given these terms and notations,

we impose five conditions on PDSs.®

Assumption 6. For a PDS with a finite life through time N, there exist a set of
supplementary variables and its state spaces such that:

i) At each » =0,...,N when the supplementary variables are defined, the state
space is finite and contains all values the set of supplementary variables, h,,, may take
on.

ii) If the PDS pays cash flows other than those that are specified by boundary and

terminal conditions, they are correctly specified at all z € Z,,, n=1,...,N.

iii) If the PDS has boundary conditions, they are correctly specified at all z € Zin,
n=0,...,N—1. '
iv) The terminal condition of the PDS is correctly specified at every z € Zy.

v) Given z € Z,, h,41 is correctly determined by 4,,;,7=0,..., N — 1. Further-

more, this value of h,.; is contained by the state space at time n+ 1 of hy, 1.

The condition ii) is not imposed at time 0, because we solve for the initial price,
exclusive of the cash flow at time 0. ii)-iv) jointly require that the (m + 2)-tuple
Zn = (n, iy, hy,) provides sufficient information to determine the cash flow to the PDS
correctly. v) requires that the ensuing value of the set of supplementary variables,
h,.11, is correctly determined by its current value, the current time, and the current

and ensuing values of the underlying state variable.® In addition, v) requires that

6 In general, identifying the exact set of all values each supplementary variable may
take on at time n requires more information on the path than the supplementary
variables provide. This is why we identify a set that is sufficiently large to contain the
exact set. Clearly, the set we identify is not unique.

7 We make state spaces to be specific to time n to keep them relatively small and to
accommodate the situation where different sets of supplementary variables are defined
at different points in time. Incidentally, for some PDSs, such as the one discussed in
Section 1V, state spaces can be made even smaller if they are made specific to each
binomial node.

% In Section V, we elaborate on the term “correctly” used in Assumption 6.

% This part of v) holds if and only if (i,,, h,) is Markov. The proof is available upon
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this value at time n + 1 of the set of supplementary variables is contained by the
state space at time n 4 1. In other words, we must construct state épaces such that
each of them satisfies this condition in relation to the immediately preceding one. As
these conditions suggest, the choice of supplementary variables and the construction of
their state spaces are the most important considerations in implementing our method.
Note also that the structure of (m + 2)-tuples Zo,...,Zn can be illustrated by a tree
diagram, as in Figufe 2, where each node represents a particular value of a {m + 2)-
tuple 2z, = (n,iy,, h,). We label this tree as the extended tree (ET) and each node as an
extended tree (ET) node.® Clearly, the ET provides more coarse information than the

path tree, but finer information than the binomial tree of the underlying state variable.
B. Valuation of Path Dependent Securities on the Extended Tree

We turn to the valuation of a generic PDS that satisfies Assumption 6. Let S(n, )
denote the price at a binomial node (n,%) of a security that satisfies Assumption 4,
and C(n,1, h) the price at an ET node (n, 1, h) of the PDS.1! In addition, let X (n,1, h)
denote the cash flow at an ET node (n, %, h) to the PDS, as specified by ii) of Assumption
6. Now, v) of Assumption 6 implies that given (n,i,h) € Z,, the value of h,y is
determined for each of 4,41 =i+ 1 and 4,4; = 1. Let h* and h? denote the value of
h,y1 when i, = i+ 1 and when i,;; = i, respectively. Using these notations, we
present one-period RNVR for the PDS.

Proposition 1. Under Assumptions 1-5, if a PDS satisfies Assumption 6, its arbitrage-
free price at an ET node (n,i,h) € Z,, n =0,...,N — 1, is given by Cap(n,i,h),
where

1
(1) CAF(”: i: h) = mh’(nz z)(C(n + 1’7: + 1? hu) + X(n + 1:7: + 1: hu))

+ (1~ p(n, )} C(n +1,4,h®) + X(n + 1,4, h%)}],

and

.\ _ r(mi)Stn,i) ~ S(n + 1,4)
) p(n”’)_S(n+1,z'+1)~5'(n+1,i)'
request. '

10 A binomial node is viewed as an ET node when supplementary variables are not

defined.
11 h drops as an argument in these and all other expressions in the paper whenever

supplementary variables are not defined.



Proof. See Appendix.

p(n, 1) is the risk-neutral probability that an up event occurs at time n4-1 following the
binomial node (n,?). Therefore, (1) implies that the arbitrage-free price of the PDS is
given by the expected value of the ensuing price plus the cash flow of the PDS that is
discounted by the current risk-free rate. Certainly, this expectation is computed with
respect to the risk-neutral probabilities.1?

Next, we specify boundary and terminal conditions for the generic PDS. First, the
price at time N of the PDS is determined by the terminal condition.

(3) C(N,i,h) = H(i,h), V(N,i,h) € Zy.

In addition, the PDS may have upper and/or lower bounds, which are specified by iii)
of Assumption 6. Let U(n,%,h) and L(n,%,h) denote the upper and lower bounds at

an BT node (n,%,h), respectively. Then, we have

(4) L(n,i,h) < C{n,i,h) < U(n,i,h), Y(n;i,h) € Z,, n=0,...;N —1.

Given these conditions, the PDS can be valued as follows. First, (3) determines
the PDS price at time V. Second, (1) is used to compute the arbitrage-free price at
time N —1 of the PDS. Third, the PDS price at time N —1 is determined by combining
(1) and (4).

(5) C(N —1,4,h) =max[ L(N ~ 1,4, h),min(Car(N — 1,4, h), U(N ~ 1,4, h))].

Similarly, the PDS price at time n = N — 2,N — 3,...,0 is computed by (1) and
(4) recursively. To be precise, the extended tree (ET) method refers to this valuation

procedure.

ITI. Application of the ET Method to CMOs

In this section, we present an application of the ET method to CMOs. The
primary purpose of this presentation is to illustrate how the ET method can be applied
to CMOs. Therefore, for ease of exposition, we take a simplified view on underlying

mortgage loans and consider a CMO with very simple structure. Note, however, that

12 (1) would reduce to the one-period RNVR. of CRR (or HL), if the uncertainty were
modeled as in CRR (or HL}, and if the security to be valued were path independent.
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with slight modifications, our CMO model can be applied to various CMOs with more

complex structures.

In general, a CMO is a set of multiple classes of bonds (or tranches) collateralized
by a pool of mortgage loans where the cash flow from the collateral is allocated among
the bond classes by prespecified rules. FEach mortgage loan is accompanied with a
prepayment option, which allows its holder, i.e., the mortgagor, to repay a part or
the entirety of the loan any time before the stated maturity. It is widely observed
in the U.S. mortgage market that bulks of loans are prepaid when market interest
rates fall below contract interest rates and that loans differ in interest rate differential
that triggers an interest-rate-related prepayment. As a result, prepayments are heavily
dependent on the interest rate path, which leads to the strong path dependence of
CMO bonds. '

Our CMO model has two features, which are designed to address the path depen-
dence of CMOs. First, following the studies on pass-throughs by Timmis (1985) and
Johnston and Van Drunen (1988) (JV), we model the collateral of a CMO as a pool of
mortgage loans that différ in costs of prepayment. This heterogeneity in prepaynient
costs is intended as a mechanism for generating the path dependence of prepayments.
According to the study of pass-throughs by Stanton ((1995), p. 677), this way of mod-
eling collaterals “captures many of the empirical features of mortgage prepayments.” 12
Note, however, that adopting this collateral model for CMOs entails the difficulty that
did not exist in Timmis (1985) and JV. Namely, because a pass-through represents a
claim to the entire collateral, it can be valued by summing the values of underlying
mortgage loans, as in Timmis (1985) and JV. By contrast, a CMO bond does not have
a claim to any fixed portion of the collateral. Rather, its relation to each portion of the
collateral changes, depending on the past prepayment history. Therefore, CMO bonds
cannot be valued by the same method as in Timmis (1985) and JV.

Fortunately, this seemingly complex path dependence of CMOs can be dealt with
by the ET method, if the collateral is modeled as in Timmis (1985) and JV. Therefore,
we value CMOs by the ET method, which is the second feature of our CMO model.
As discussed in Section V, the ET method has clear numerical advantages over Monte

Carlo simulation, which is the standard method for CMO valuation.'? One advantage

13 To be precise, Stanton (1995) extended Timmis (1985) and JV in several ways,
where the most important extension was to allow prepayment decisions to occur at

random discrete intervals,
14 McConnell and Singh (1994) and Singh and McConnell (1996) used Monte Carlo
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is that the ET method yields model prices free of statistical errors, which are inherent in
Monte Carlo simulation. Another advantage is that the ET method compares favorably

with Monte Carlo simulation in computational size.

A. Model for Collaterals

For ease of exposition, we take a very simple view on CMO collaterals. First, we
assume that all loans in a collateral are default-free and identical in contract interest
rate, stated maturity, and scheduled payments for each dollar of the initial principal,*?

In particular, we sef

N = number of periods from time 0 to the stated maturity.
¢ = contract interest rate per period.

X, = scheduled payment at time n = 1,...,N for each dollar of the initial
principal. ‘

F,, = principal remaining in the n*® period, n = 1,...,N + 1, for each dollar
of the initial principal, given that the loan has not been prepaid. Clearly
Fy1 = 1. We assume that the loans are fully amortizing; namely, Fy,, =
0.

Each mortgagor is given a prepayment option. Prepayment options are exercised
for various reasons, including refinancing, moving, default, deaths, and divorce of mort-
gagors. Clearly, prepayments for refinancing are driven by interest rate movements. In
addition, it is likely that prepayments due to moving and default are partially corre-
lated with general economic conditions and as a result, with interest rates. To account
for these interest-rate-related prepayments, we assume that each mortgagor prepays if
an arbitrage profit from prepayment exceeds costs of prepayment. Furthermore, to gen-
erate prepayment heterogeneity within a collateral, we assume that mortgagors in the
collateral differ in prepayment costs. Note that prepayment costs in our model include
not only monetary costs but also non-monetary costs, such as the opportunity costs of

keeping track of interest rate movements and executing transactions for prepayment.

simulation to value CMOs, where the collateral of a CMO was modeled as in Stanton
(1995). Childs, Ott and Riddiough (1996) extended the valuation method of McConnell
and Singh (1994) to CMOs backed by commercial mortgages.

15 Mortgage loans underlying CMOs are typically collateralized through agency pass-
through securities. Therefore, they can be viewed as default-free from the standpoint
of CMO investors.



Therefore, prepayment costs may vary substantially across mortgagors. Specifically, we
assume that the costs of prepaying a loan are proportional to the remaining principal
of the loan and that mortgagors differ in proportionality factor. Let G, denote the &t
lowest proportionality factor, where k = 1,2,...,k. A loan with the proportionality
factor of Gy, is labeled as a loan of type k. By denotes the total principal at time O of
type-k loans. Then, the initial principal B of the entire collateral satisfies the relation

. k
(6) B=>"B;.

In addition, some prepayments occur independent of interest rate movements.
Such prepayments can be attributed to events such as moving, default, deaths, and
divorce of mortgagors. We refer to these interest-rate-unrelated prepayments as exoge-
nous prepayments.’® Now, suppose.that interest rate uncertainty constitutes the only
systematic source for prepayments and that exogenous prepayments are completely in-
dependent of the interest rate uncertainty. Then, because there are several thousands
of mortgage loans in a typical CMO collateral, the law of large numbers implies that
the exogenous prepayment rate of the entire collateral is roughly nonrandom. There-
fore, it is plausible that the market expects some known proportion of the collateral to
be prepaid for exogenous reasons at each time n. To implement this idea in a tractable
manner, we assume that all mortgagors in the collateral make partial prepayments
gradually, such that the sum of these partial prepayments at time n coincides with the
market expectation of exogenous prepayments in the collateral at time n. In particu-
lar, we assume that a known proportion d,, of the remaining principal of each loan is
prepaid for exogenous reasons at time n = 1,...,N — 1 and that mortgagors do not

incur costs in these partial prepayments. In addition, we define

o - {1, ifn=1;
an= T .
[;-1(1~4;), ifn=2,...,N.

Then, given that a loan has not been prepaid for refinancing, the partial prepayments

reduce the period-n principal of the loan for each dollar of the initial principal to

F, ifn=1,...,N;
® = {o"

0, ifn=N+1

16 To be precise, we should exclude the interest-rate-related component of prepay-
ments due to moving, default, deaths, and divorce from exogenous prepayments.
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Furthermore, these partial prepayments alter the time-n cash flow of the loan for each
dollar of the initial principal to

(9) P {3::;:,-!- onbnFryi1, iiz:;,l\f— 1;

The term 0,5, accounts for the partial prepayment at time n, exclusive of the |
scheduled principal payment.!” Note that if we allow &, to change over time, we
can easily incorporate stylized facts about prepayments, such as the seasonality of
prepayments and low prepayment rates in the early stage of the collateral life, into our
" collateral model.

We now turn to the valuation of a loan of type k. First, we specify a one-factor
interest rate model that is constructed on a binomial tree. Among such models, we
choose the one by HL because it is a simple and well-known binomial model for interest;
rate uncertainty. Next, let Vi(n,?) denote the value at a binomial node (1,4) of the
type-k loan to the capital market for each dollar of the initial principal. Also, let
Wy(n,t) denote the value at (n,1) of the type-k loan to the mortgagor for each dollar
of the initial principal. Both Vi(n,1) and Wi(n, ) are exclusive of the cash flow at time
n that are specified by ii) of Assumption 6. As Dunn and Spatt {(1986) have shown,
Vi(n, %) is less than Wi {n,i) because the capital market does not receive servicing fees
and prepayment costs the mortgagor incurs. In our model, a servicing fee equal to s

times the principal balance is payable at the end of every period.

In essence, Vi(n,4) and W(n,1) are computed by the standard backward recursive
procedure used by HL and others. That is, our first step is to determine their terminal

values, assuming that the loan has not been prepaid for refinancing. Because Fj +1 =0,

we have
(10) Wi(MN,i) =0, i=0,...,N.
(11) Vk(N,i) =0, i=0,..., V.

Our second step is to determine the arbitrage-free value at time N — 1 of the loan
to the mortgagor, W' (N —1,4), and that to the capital market, VAF(N —1,4). They

are given by
(12) WHP(N —1,i) = P(N — 1,9) X%, i=0,...,N—1.

17 For instance, the principal balance in period 2 is as F5. Hence, the partial prepay-
ment at time 2 is given by aadaF5. This amount apda Fo, however, includes part of the
scheduled principal payment equal to ads{Fo — F3), which is also included in a3 X5. To
avoid double counting, oda(Fy — F3) is subtracted from cgdyFy, which yields cdy Fs.
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(13) VAF(N — 1,3) = P(N — 1,i) (X% — sFYy), i=0,...,N —1.

P(N —1,4) represents the price at a binomial node (V — 1,1) of a one-period discount
bond with $1 face value. The term sFy represents the servicing fee the mortgagor
pays but the capital market does not receive. Now, if WAF (N — 1,4) is greater than or
equal to the sum of the remaining principal and the prepayment costs at time N — 1,
the mortgagor prepays the loan to make an arbitrage-free profit.!® By contrast, if
W,fF (N — 1,7) is less than this sum, the mortgagor holds the loan. Therefore, the
value at a binomial node (IV — 1,%) of the loan to the mortgagor is given by

(1 + Gy) Fy, if WAFP(N — 1,3) > (1 + Gr) Fiy;

14 —Li) =9
(14)  Wi(V —-1,9) {WEAF(N ~1,4), if WAF(N —1,1) < (1 + Gx)Fy,

for i =0,...,N — 1. Similarly, the value at a binomial node (N — 1,4) of the loan to

the capital market is given by
_ Fl, if WAF(N —1,7) > (L+ GR)Fl:
(15) Vk(N—l,z)={ Ar B e NS L2 (L4 Gy
- VAY(N = 1,4), i WH(N —1,4) < (1+ Gp)Fy,
fori=0,...,N—1.
At timen =N —2,N —3,...,0, the arbitrage-free value of the loan to the mort-
gagor and that to the capital market are given by

(16) WEE (n,1) = P(n, d)[aWi(n+1,i + 1) + 1 — -)Wi(n + 1,1) + Xl

(17) VkAF(n,i) = P(n,d)[zVe(n+ Li+ D)+ (1 -mW(n+1,9)+ X, ., — sF} a0,

for ¢ = 0,...,n. In these equations 7 is the risk-neutral probability of an up event
in HL. The term sF}, ., represents the servicing fee, which reduces the interest the
capital market receives. In short, (16), (17), and analogues of (14) and (15) are used
recursively to obtain the initial value of the loan to the mortgagor and that to the

capital market.

B. Model for CMOs

This section presents a model for CMOs based on the collateral model in Section

ITIT.A. CMOs vary widely in rule for allocating cash flows among CMO bonds. Most

18 This implies that in this model all mortgagors of the same type prepay entire
remaining principals for refinancing at the same time.
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CMOs, however, have the common feature that the allocation is based on the principal
balance of the collateral. Therefore, in our CMO model, the allocation rule is based
solely on the principal balance of the collateral.  Furthermore, for ease of exposition,
we consider a CMO with extremely simple structure. Specifically, we assume that
a CMO consists of two classes of securities, Bond A and a residual.’® Bond A has
principal B4 at time 0. At the end of every period, if Bond A is not fully retired, it
receives all principal payments made by the mortgagors in the collateral. In addition,
Bond A receives an interest equal to its interest rate c4 times its remaining principal.
By contrast, the residnal receives the difference between the interest payments made
by the mortgagors, exclusive of servicing fees, and the interest paid to Bond A. In
addition, if Bond A is fully retired, the residual receives all principal payments made
by the mortgagors in the collateral.

As pointed out earlier, CMOs exhibit complex path dependence, which cannot be
dealt with by standard backward recursive methods in option pricing. Therefore, we
use the ET method to value CMOs. In particular, we define a supplementary variable
hn, =0,1,...,k as the number of types of loans that have been prepaid for refinancing
before time n, that is, at time 1,...,n —~ 1. Note that if it is optimal to prepay a
loan of type h, it is optimal to prepay all loans with proportionality factors lower
than or equal to G. In other words, if h, = h, loans of type 1 to type A must have
been prepaid for refinancing previously, and loans of type A + 1 to type k must be
outstanding immediately before time n. Hence, the value of A, implies the amount
Qn(h) of cumulative principal payments made at time 1,...,n — 1. In particular, if
h < &, Qn(h) is given by the initial collateral principal B minus the sum of the principal
balances immediately before time 7 of type-(h + 1) to type-k loans. By contrast, if
h = k, all types of loans have been prepaid, and hence, Q,,(h) is equal to B. Combining

these two cases, we have

B-YF  F'By, ifh=0,... k-1

(18) On(h) = { B, if b=k,

fori=0,...,n, n=1,...,N.

Next, let 5(n,%,h) denote the number of types of loans that are prepaid before
and at an ET node (n,%,h). Clearly, if b = k, n(n,i,h) = k. If b < &, n(n,i,h) is
given by A plus the number of types of loans that are prepaid at the ET node n{n, i, k).

19 At the end of this section, we show how our model for two-class CMOs can be
used to value CMOs with more than two classes.
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As discussed in regard to (14), loans of type k are prepaid at time n, if the loans are
outstanding immediately before time 7, and if the condition WAF (n,i) > (14+G)F!, 4

is satisfied. Hence, we have

k . . _
(19) n(n,i,h) = { g‘l' 2 k=hi1 IWAF (n,d) > (1 + Gr)F, 1], 1? :; = g, k=1
ifh=EF,

fori=0,...,n, n=1,...,N. In (19), I[] denotes the indicator function that takes on
one if the condition in the bracket is satisfied and zero if it is not. Note that the value of
n(n,i, h) implies the amount Q(n,4,A) of cumulative principal payments made before
and at the ET node (n,i,h). In particular, if A < k and n < N, Q(n,%,h) is given
by the initial collateral principal B minus the sum of principal balances immediately
after time n of type-(+ 1) to type-k loans, where 7 denotes the value of 7(n, 1, h). By
contrast, if h = k or n = N, Q(n,%,h) is equal to B. Combining these two cases, we
have

. ]’5 ) :
(20) O(n,i,h) = B =3 a1 1B, ifh=0,...,k—landn=1,...,N —1;
' B ifh=korn=N,

)
fori=0,...,n.

' Now, we show that the supplementary variable h,, and its state space {0, ..., %} at
n=1,..., N satisfy Assumption 6 with respect to Bond A. First, it is clear that this
state space satisfies i). Second, we consider ii). If the cumulative principal payments
made before time n are greater than or equal to the initial principal of Bond A (Q,(R) >
B4), Bond A must have been fully retired before time n. Hence, the cash flow X (n, i, h)
to Bond A is 0. ‘

(21) X(n,i,h) = 0.

If the cumulative principal payments are less than B4 before time n but greater than
or equal to B4 immediately after time n (Qn(h) < B4 < Q(n,4,h)), Bond A is fully
retired at time n, and its cash flow is equal to the remaining principal balance of Bond

A plus interest. -
(22) | X(nyé, ) = (1+ ca)(Ba — Qn(h).

If Bond A is still outstanding immediately after time n (B4 > Q(n,1, k)), its cash flow
is equal to the interest on the Bond A principal remaining in the n'® period plus all

current principal payments made by the mortgagors in the collateral.
(23) X(n:i: h’) = CA(BA - Qn(h')) + (Q(n': i h’) - Qn(h‘))

14



Combining (21)-(23), we have
(24) X(n, i: h’) = (1 + CA)(BA - Qn(h))+ - (BA - Q_(n!iF h’))+:

at each ET node (n,t,h) € Z,,n = 1,...,N, where (-)* takes on the value of the
expression in the parenthesis if that value is nonnegative and 0 if that value is negative.
Since (24) is well defined, ii) of Assumption 6 is satisfied with respect to Bond A. Third,
Bond A has no boundary condition to consider in regard to iii}. Fourth, the terminal
condition is X(N,i,h) = 0 for all (V,i,h) € Zy. Fifth, (19) implies that the value of
Ry is correctly determined by the value of (n,%,, 1y, ).2° In addition, the value of Pyl
is contained by the state space at time n + 1. Therefore, v) is satisfied with respect to
Bond A. To sum up, the supplementary variable h,, and its state space satisfy all the
conditions in Assumption 6 with respect to Bond A, and as a result, the ET method
is applicable to Bond A.

Next, we turn to the valuation of Bond A. Let T'(n, ¢, h) denote the price at an ET
node (n,1,h) of Bond A, exclusive of its cash flow at (n,4,h). Because the PDS has no
boundary condition, T'(n, %, h) directly satisfies the one-period RNVR. of Proposition 1.
Namely,

T{(n,i,h) = P(n,i)[n(T(n+ 1,4+ 1,n) + X(n+1,i+1,7))

(25)
+({1=m)(T(n+1,4n) + X(n+1L,i,m),

where 1 = n(n, i, h) and 7 is the risk-neutral probability of an up event in HL. There-
fore, starting with the terminal condition T'(N,4,h) == 0 for all (IV,i,h) € Zy, (25) is
used recursively to obtain the initial price of Bond A.2!

To complete the valuation of the CMO in question, we consider the valuation of
the residual. As shown in Section IILA, the initial value Vi(0,0) of the type-k loan
- to the capital market for each dollar of the initial principal can be computed by the
backward recursive procedure. Therefore, the initial value V. of the entire collateral to

the capit;é.l market is given by summing the initial values of all loans in the collateral.

k
(26) Ve=>_Vi(0,0)Bx.
k=1 :

Next, considering that cash flows from the collateral are divided between Bond A and
the residual, the initial price V.. of the residual is given by the initial value V, of the

20 This is a trivial case of h,,41 being a function of i,;.
21 To be precise, & drops as an argument of T'(n, i, k) when n = 0.
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collateral minus the initial price 7'(0,0,0) of Bond A.
(27) . Vi=Ve— T(0$ 0) 0)

Before closing this section, we illustrate how this model for two-class CMOs can
be used to value CMOs with more than two classes. In particular, consider a CMO
that consists of Tranches A, B, and C and a residual with sequential-pay structure,
where the initial principals are equal to four, two, three, and one tenths of the entire
collateral, respectively. To value Tranche B, for example, we consider a hypothetical
portfolio of a long positidn in Bond A of the two-class CMO mode] with principal equal
to six tenths of the principal of the entire collateral and a short pbsition in Bond A of
the two-class CMO model with principal equal to four tenths of the principal of the
entire collateral. Clearly, the cash flows to Tranche B are identical to those to this
portfolio. Therefore, the price of Tranche B is given by the price of the first Bond A
minus the price of the second Bond A.?2 This example shows that the two-class CMO
model of this section provides a way to value sequential-pay CMOs with more than

two classes.

IV. Application of the ET Method to Moving Average Options

Average options {or Asian options) are options where the payoff is based on the
average price of an underlying asset over a prespecified period. They were studied by
a number of researchers, including Kemna and Vorst (1990}, Turnbull and Wakeman
(1991), Levy (1992), HW, Geman and Yor (1993), Cho and Lee (1997), Milevsky and
Posner (1998), and He and Takahashi {2000). Note, however, that in these studies,
. the average was computed over a period whose beginning and end were both fixed. In
other words, none of them addressed the valuation of average options where the average
was computed over a moving period with a fixed length. As HW (p. 30) pointed out,
“T'he pricing of these types of options presents ongoing challenges for analysts.” We
call such options moving average options (MAOs) and value them by the ET method.

First, we specify a model for asset price uncertainty. Following CRR, we assume

that the underlying asset price at a binomial node (n, 1) is given by

(28) Sn,)=uvd**S8, i=0,...,n, n=0,...,N,

22 Alternatively, Tranche B can be valued by the direct application of the ET method.
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where u and d are constant and S is the underlying asset price at time 0. In addition,

we assume that the one-period interest rate is constant through time N —1.

Next, we consider a MAO with very simple structure. Namely, the MAO gives its
holder the right to buy one unit of the underlying asset for the arithmetic average of
the asset price over two prior calendar periods. Specifically, a calendar period, such
as a week and a month, consists of two unit periods of the model, and the average is -
computed based on the price at the end of each of two prior calendar periods.?* The
MADO is exercisable at any time n =0, ..., N. Furthermore, for ease of exposition, we

assume that time 0 is at the end of a calendar period and so is time N.

Clearly, this MAO is path dependent, and we value it by the ET method with two
supplementary variables. The first supplementary variable h,(ml) represents the binomial
node that the path has passed at the end of the last calendar period in relation to the
current binomial node at time n. In particular, we define h,(ll), n=1,...,N, depending
on whether time 7 is at the end or in the middle of a calendar period. If time n is at
the end of a calendar period, the end of the last calendar period is time n — 2, and hg)

is defined as

N
(29) B =i, —i,0, n=2k, k=12..., 5.
Therefore, h,(ll) takes on 0, 1, or 2, depending on the number of up events that may
occur at time n — 1 and time n. By contrast, if time n is in the middle of a calendar

period, the end of the last calendar period is time n — 1, and hY is defined as

N

(30) A = 4, — iy, n=2%-1k=12..,5-

Clearly, h.,(f) takes on 0 or 1 in this case.

In addition, we define a supplementary variable hslg) , Which represents the binomial
node that the path has passed at the end of the calendar period immediately preceding
the last calendar period in relation to the binomial node that the path has passed at the
end of the last calendar period. In particular, we define h,(lz) ,n=23,...,N, depending
on whether time n is at the end or in the middle of a calendar period. If time n is at
the end of a calendar period, time n — 2 is at the end of the last calendar period, and

time 7 —4 is at the end of the calendar period immediately preceding the last calendar

23 Average options are typically based on averages of prices at specified points in
time,
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period. Therefore, %) is defined as

(31) R =i, 9 —tn_g, n=2k, k=2,3,...,1—;—.

By contrast, if time = is in the middle of a calendar period, time n — 1 is at the end of
the last calendar period, and time n—3 is at the end of the calendar period immediately

preceding the last calendar period. Therefore, hg) is defined as

(32) B2 =4, ) —ip_z, n=2k-—1, k=2,3,...,%.

h$ takes on 0, 1, or 2 in either (31) or (32).

Next, we set

(33) h, = (hr(zl)ahr(w,z))r
and define its state spaces as**
{0,1}, for A",
{0,1,2}, for hgl) ;o

{0,1} x{0,1,2}, forh,, n=2k—-1, k=2,3,..., %,
{0,1,2} x {0,1,2}, for h,, n=2k, k=2,3,...,%.

Let us examine whether Assumption 6 is satisfied by h, and its state spaces. First, it
is clear that i) is satisfied. Second, this MAO pays no cash flow other than those that
are specified by a boqndary condition. Hence, ii} is not applicable to this MAQO. Third,
we consider iii). Let A(n,4, ), h®) denote the average at an ET node (n,1, A1), h(2)
of the underlying asset price over the last two calendar periods. If time n > 3 is at the
end of a calendar period (n = 2k,k = 2,3,..., ), (29) and (31) imply

(34) A(n,é, 5, n?) = %(S(n ~2,i— hM) + S(n — 4,6 — B® — 1)) .

1, o 0 o (1) (@) 4 (1) (2)
=-—-(fu,‘ h dr 2—i+h S-i—'u,‘ h'\''—=h dr 4it-h\ V4R S)

24 With these state spaces, we need to allow the argument ¢ of S(n,4) to take on
—4,...,~1 and n+1,...,n + 4 because of (34). Note also that the values of S(n,1)
with these values of ¢ do not contribute to the initial MAQO price, because ET nodes
with these values of ¢ are not accessible from the initial ET node (0,0). Incidentally,
if we allow state spaces to be specific to each binomial node, we can avoid having 7 of
S(n,%) take on these values.
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If time n > 3 is in the middle of a calendar period (n = 2k — 1,k = 2,3,..., &), (30)
and (32) imply

(35) A(n,i,hD ) = %(S(n —1,i = b))+ 8(n - 3,5 — V) — p(})

1, . oy ) (1) _p @) a1 5 (2)
_ (uz h dr 1—i+h S+t htY —h dar 3—i+h'Mpp S)

2

Af time 1 and time 2, the average is computed by
(36) Afm,5,h0) = £(5(0,i~ hY) + 5_y),

where §_o denotes the underlying asset price two unit periods before the initial time.

At time 0, the average is computed by

(37) A(0,0) = %(3_2 +8_9),

where S_4 denotes the underlying asset price four unit periods before the initial time.
Given (34)-(37), the boundary condition of the MAO is

(38) C(n,i, MV, h2) > max (8(n,i) — A(n,i, D, m3), 0),

for n=0,...,N — 1, where h{Y) drops as an argument when n = 0, and ~(® drops as
an argument when n = 0,1, 2. (38) clearly shows that this boundary condition is well
defined at each ET node. Fourth, the terminal condition is given by

(39) C(N,i, BV, h®) = max(S(N, i) — A(N, i, kD, n?), 0).

Fifth, we consider v) of Assumption 6 in two cases. The first case is where time n is
at the end of a calendar period, and the second case is where time = is in the middle
of a calendar period. In the first case, the first supplementary variable at time n + 1

counts an occurrence of an up event at time n + 1. Therefore, we have

. . N
(40) R | = p1 — iy n=2k k=01,..,> -2
The second supplementary variable at time n + 1, in this case, represents the relation
of the time-n binomial node to the time-(n — 2) binomial node that the path has
passed through, which is what the first supplementary variable represents at time n.

Therefore, we have

(41) M =hY, =2, k=1,2,---,%r——2.
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In the second case, where time n is in the middle of a calendar period, the first

supplementary variable at time n 4+ 1 counts the number of up events that may occur

at time n and time n -+ 1, which is given by R plus (in+1 — tn).
N

(42) W = O 4 (i1 — ), n=2k-1,k=1,2,..., =3

The second supplementary variable, in this case, does not change value from time n to

time n + 1, because both binomial nodes that the path has passed at the end of the

last calendar period and at the end of the calendar period immediately preceding the

last calendar period are unchanged from time n to time n + 1.

(43) A8, =n®, n=2k-1, k=2,3,...,%.
(40)-(43) imply that v) of Assumption 6 is satisfied. To sum up, h,, and its state spaces
satisfy all the conditions in Assumption 6, and as a result, the RNVR in Proposition
1 is applicable to this MAO. In particular, if time n is at the end of a calendar period

(n =2k, k=0,1,...,N/2 — 2), we have
1 .
(44) Car(n,i, AW, n3)) = - [p Cn+1,i+1, 1, A + (1 — p) Cln+1,4,0, h(l))],

where r is one plus the one-period interest rate and p is the risk-neutral probability of
an up event in CRR.?® If time n'is in the middle of a calendar period (n =2k— 1, k =
1,2,...,N/2), we have®

(45) Cap(n,i, A, RD) = %[p Cln+1,i+ 1,20 4+1,A3)
+ (1 -p) Cln+ 1,5, K0, RP)].

Therefore, starting with (39), we use (38), (44), and (45) recursively to obtain the
initial price of the MAQ.

To conclude this section, we point out that this MAO model can be easily extended
to a more general setup, where the moving average is computed based on the asset
prices at the ends of the last & calendar periods and a calendar period consists of j
unit periods of the model. In such a setup, we define k supplementary variables and

use a one-period RNVR that is conditional on these supplementary variables.

25 To be precise, if n = 2, h(?} drops as an argument of Cap. If n = 0, both A(}) and
h?) drop as arguments of Cap, and A1) drops as an argument of C.
2 If =1, h{® drops as an argument of C4r and C.
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V. The Extended Tree and The Path Tree

In Assumption 6, we have imposed five conditions on PDSs. Clearly, these condi-
tions are necessary to apply the ET method to PDSs. A question remains, however,
whether these conditions are sufficient to ensure that the ET method yields correct
prices of PDSs at all times. In this section, we address this question from the point
of view of the P'T. In particular, given that PDSs are valued correctly on the PT, we
examine whether the conditions in Assumption 6 ensure that the ET method yields
the same initial prices of PDSs as a valuation method based on the PT.

A. Valuation of Path Dependent Securities on the Path Tree

First, we describe a method for pricing a generic PDS on the PT. The definition
of PDSs implies that the cash flow to the PDS is correctly specified at each PT node.
Let X*(e) denote the cash flow at a PT node e, exclusive of the cash flows that are
specified by boundary and/or terminal conditions. In addition, let C*(e) denote the
PDS price at the PT node e, exclusive of the cash flow X*(e). By definition, the PT
node e contains the current, say, time-n value of the underlying state variable. Denote
this value by i¢. Then, we can represent the ensuing PT node e,q) by (e,i + 1) if
an up event occurs at time n 4 1 and by (e, %) if a down event occurs at time n + 1.
Under Assumptions 1-5, the usual no-arbitrage condition yields the arbitrage-free price
Chr(e) of the PDS at a PT nodee € E,, n=0,...,N — 1.

(46) Ciple) = (% [p(m,)(C*(eyi +1) + X (eyi + 1))

+ (L= p(n, ))(C*(e,3) + X*(e,4))],

where p(n, ?) is the risk-neutral probability of an up event given by (2). In addition,

the PDS has a terminal condition and may have boundary conditions.

(47) C*(e) =H*(e), Ve€ Ep;
(48) L*(e) <C*(e) < U*(e), Ve€ E,,n=0,...,N - 1.

Given this setup, we can value the PDS by starting with (47) and proceeding backward,
where (46) and (48) are incorporated into the PDS price by

(49) C*(e) = max[L*(e), min(C}p(e), U* ()], Ve € Ep,n=0,...,N —1.
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We call this valuation method the path tree (PT) method. It is clear that (46)-(49)
resemble (1) and (3)-(5), respectively. In fact, the only difference is found in the
arguments the pricés, cash flows, and bounds take on. On the ET, an ET node provides
available information. Hence, the ET node enters as an argument. By contrast, on

the PT, a PT node provides available information. Hence, the PT node enters as an

argument.
B. The Extended Tree and the Path Tree

Next, we examine the ET method from the point of view of the PT method. For
this purpose, we introduce additional notations. First, we assume that if the values
of 2, and i,,; are given, the value of h,; is determined uniquely.?” Let f(2z,in+1)
denote this value of h, 41 for given values of 2, and in41. In other words, f(,-) specifies
transitions of z, émong ET nodes. Second, the definitions of h, and e,, imply that the
values of n, i,, and h, can be determined by e,. Namely, the number of elements of
en determines n, the last element of e, gives ¢y, and the definition of supplementary
variables specifies the mapping of E, to Z,. Therefore, let g(e,) denote the value of
z, = (n,in, h,) for a given value of ¢,,.

In addition, to examine the ET method from the point of view of the PT method,

we rephrase Assumption 6 in relation to the PT.

Assumption 6. For a PDS with a finite life through time N, there exist a set of
supplementary variables and its state spaces such that: 7

i) At each n =0, ..., N when the supplementary variables ar¢ defined, the state
space is finite and contains all values the set of supplementary variables, h,, may take
on. |

ii) If a pair of an ET node z € Z, and a PT node ee E,, satisfies the relation
z = g(e), the cash flow other than those that are specified by boundary and terminal
conditions at z is identical to that at e. That is, Vz € Z,,,Ve€ E,,n=1,...,N,

(50) if z=g(e), X(2) =X*(e).

iii} Given that the PDS has boundary conditions, if a pair of an ET node z € Z,

and a PT node e € E, satisfies the relation z = g(e), the boundary conditions at z are

27 In this section, we do not take Assumption 6 as given. Instead, we will shortly
make Assumption 6°, which sets the condition that the value of h,; is determined

correctly.
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identical to the boundary conditions at e. That is, Vz € Z,,,Ve€ E,,n=0,...,N -1,
(51) if z=g(e), L(z)=L*(e} and U(z) = U*(e).

iv) If a pair of an ET node z € Zy and a PT node e € Ey satisfies the relation
z = g(e), the terminal condition at z is identical to that at e. That is, V2 € Zy,Ve €
EN ]

(52) | if z=g(e), H(z)=H"(e).

v) If a pair of an ET node z € Z,, and a PT node e € E, satisfies the relation
z = g(e), the ET node specified by f(z,%) is identical to the ET node specified by
g(e, 1) for every i € {in,...,n+ 1} where i,, denotes the value of the second element of
z. That is, Vz € Z,,Ve € By, and Vi€ {in,...,n+1}, n=0,...,N -1,

(53) | ifz=gle), f(z,4)=g(e,1).

Furthermore, f(z,%) is contained by the state space at time n + 1.

As stated at the beginning of this section, we take it given that PDSs are well defined
on the PT..Therefore, in the case of ii), for instance, the question of whether the
cash flow X(z) at an ET node 2 is correctly specified or not can be reduced to the
question of whether X (z) is identical to the cash flow X*(e) at the PT node e that has
correspondence ¢(-) with the ET node z. This is why we can rephrase Assumption 6

as in Assumption 6.
Now, if a PDS satisfies Assumption 6, the ET method yields the same PDS price

one period before maturity as the PT method.

Proposition 2. Under Assumptions 1-5, if a PDS with a finite life through time N
satisfies Assumption 6/, then z = g(e) for z € Zy_, and e € Ey_; implies C(z) =
C*(e).

Proof. See Appendix.

In words, under Assumptions 1-5 and €', if an ET node z € Zy_; and a PT node
e € En—1 satisfy the relation z = g(e), the PDS price at the ET node z is identical to
the PDS price at the PT node e. This proposition is used to prove our main result in

this section.

23



Proposition 3. Undef Assumptions 1-5, if a PDS satisfies Assumption 6/, the ET
method yields the same initial price of the PDS as the PT method.

Proof. See Appendix.

Therefore, Assumption 6’ sets sufficient conditions for the ET method to yield correct

prices of PDSs at all times.

Next, we elaborate on the relation of Assumption 6’ to Assumption 6. Clearly,
these assumptions are concerned with the same conditions. They, however, differ in ET
nodes they impose the conditions on. Namely, Assumption 6’ imposes the conditions on
only those ET nodes that have corresponding PT nodes.?® By contrast, Assumption 6
imposes the conditions on all ET nodes of the ET, including those ET nodes that do not
~ have corresponding PT nodes. We make four points in regard to this difference. First,
in general, an ET node does not contain sufficient information to discern whether it has
a corresponding PT node or not. As a result, when we construct ET nodes, we need to
define a sufficiently large state space, say, at time n of m supplementary variables to
ensure that the state space contains all points in Euclidean m-space the supplementary
variables may take on at time n. Therefore, this difference of Assumption 6 from
Assumption 6’ is absolutely necessary. Second, PDSs we apply the ET method to
are only those that satisfy Assumption 6. In other words, we deal with PDSs whose
contractual terms allow us to examine Assumption 6 at every ET node, independent
of whether that ET node is ever accessible from the initial ET node.?® Third, the fact
that Assumption 6’ imposes the conditions on less ET nodes than Assumption 6 implies
that if a PDS satisfies Assumption 6, it always satisfies Assumption 6’. Fourth, ET
nodes that do not have corresponding PT nodes are not accessible from the initial ET
node. As a result, the prices of a PDS calculated at such ET nodes do not contribute

to the initial price of the PDS. Therefore, there is no harm in including these nodes in
the ET.

To conclude this section, we compare the ET method with the PT method in terms

28 If an ET node z € Z, has a PT node e € B, that satisfies 2 = g(e), we say that
the ET node z has a corresponding PT node. Clearly, such an ET node is accessible
from the initial ET node (0, 0).

2% Recall that when American put options, which can be viewed as PDSs as in Merton
((1992), p. 446), are valued by an explicit finite difference method, correct boundary
conditions can be set at an arbitrary node, independent of whether that node is ever
accessible from the initial node. :
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of computational size. With the PT method, we set up 2™ nodes at time n. Therefore,
when we apply the PT method to a PDS with N periods to maturity, we must set up
all of 1, 21,...,2" nodes, which sum to (2V*! — 1) nodes. By contrast, with the ET
method, we need to set up considerably less nodes to value PDSs. To show this point,

we establish an upper bound to the total number of ET nodes.

Proposition 4. Let

R = RE) 5=
(54) h Jax, R §=1,...,m,
where ﬁ,(f } denotes the number of values the 7" supplementary variable may take on at
time n, and m denotes the total number of supplementary variables defined for a PDS
in question. Then the total number of ET nodes that are required by the ET method
is bounded above by

(55) ANV +2) 2

=1

Proo f: See Appendix.

Using these results, we examine the computational sizes of the two methods for a
few examples. Our first example is a CMO collateralized by 30—yeart mortgage loans.
Let the unit period be a month. Then, with the PT method, we must deal with
(236! — 1) nodes, which are approximately 4.7 x 101% nodes. By contrast, if the ET
method is applied to the CMO model in Section III, and if the CMO collateral consists
of 5 types of mortgage loans as in McConnell and Singh (1994), then we need at most
(1/2)(361)(362)(6) nodes, which are roughly 3.9 x 10° nodes. Therefore, when N is
large, the implementation of the PT method is practically infeasible, but that of the
ET method is not.3°

Our second example is the MAO model presented in Section IV. In particular,

consider a MAO that expires in 5 years, where a calendar period is a month, and a

30 Certainly, we can use Monte Carlo simulation to obtain an approximate solution
for the PT method. For example, if 10,000 paths are generated to value the CMO as in
Childs, Ott and Riddiough (1996), Monte Carlo simulation involves (360)(10,000) =
3.6 x 10% nodes. Therefore, in this particular example, Monte Carlo simulation requires
about ten times as many nodes to obtain approximate solutions as the ET method
requires to obtain exact solutions.
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month consists of two unit periods of the model. Then, the number of unit periods to
expiration, N, is 120. Therefore, with the PT method, we must consider (21?1 — 1) PT
nodes, which are roughly 2.7 x 10% nodes. Next, consider applying the ET method
" to this MAO, where hszl) and hg) of Section IV are used as supplementary variables.
Recall that at a generic binomial node, each of the supplementary variables takes on a
value among three or less possible values. Hence, #{*) and A(?) in Proposition 4 are both
3, which implies that the upper bound for the ET nodes is (1/2)(121)(122)(3)(3) =
66,429. '

Our third example is the extension of the MAO model discussed at the end of
Section IV, where the moving average is computed based on the asset prices at the
ends of the last k calendar periods and a calendar period consists of j unit periods
of the model. In particular, we assume that the MAQO expires in 5 years, that the
moving average is based on the asset prices at the ends of the last 6 months, and that a
month consists of 4 unit periods of the model. Then, if we apply the PT method to this
MAO, we must consider (224! —1) PT nodes, which are approximately 3.5 x 1072
By contrast, if we apply the ET method to this MAO, we define six supplementary

nodes,

variables, each of which takes on a value among no more than five possible values
at each binomial node. Therefore, the upper bound to the number of ET nodes is
(1/2)(241)(242)(5°), which is roughly 4.6 x 10%. Admittedly, this figure is large, even
though it is a major improvement over that of the PT method. Therefore, when j or
k or both are relatively large, users of the ET method must reset the values of j and

k considering the trade-off between accuracy and computational costs.

V1. Conclusions

This paper presents a discrete time method, called the extended tree (ET) method,
for pricing path dependent securities (PDSs) by the supplementary variable technique.
In particular, we develop a general and formal framework for the ET method, where
the most important considerations are the choice of supplementary variables and the
construction of their state spaces. We impose five conditions on the supplementary
variables and their state épaces. These conditions are obvious requisites for the ET
method to be operational. Yet, possibly because these conditions seem so apparent,
they have never been stated explicitly in the prior literature on PDSs, except Kishimoto
(1989) and Hull and White (1993), who set forth some, but not all, of these conditions.
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The advantages of presenting the general and formal framework are threefold. First, it
enables us to examine the ET method rigorously. In particular, we can prove that the
five conditions are sufficient to ensure that the ET method always yields the same PDS
price as a valuation method based on a comparable Arrow-Debreu’s event tree: a proof
requires a formal framework. Second, given the general framework, the problem of
valuing a complex PDS can be reduced to that of identifying supplementary variables
that satisfy the five conditions. Third, the general framework makes it possible to
address the computational size of the ET method in generai terms. In particular, we
establish an upper bound to the computational size of the ET method and provide a
few examples of PDSs that can be valued by the ET method with manageable amounts

of computation.

We show two applications of the ET method to PDSs. In the first application,
we value collateralized mortgage obligations (CMOs) where the collateral of a CMO
is modeled as a pool of mortgage loans with heterogeneous prepayment costs. Such a
collateral model generates prepayments based on the distribution of mortgagors’ pre-
payment costs, which is probably fairly stable, as Stanton ({1995), p. 707) pointed out.
Therefore, this way of modeling prepayments makes CMO models more robust to shifts
in economic environments than the alternative way of modeling prepayments based on
purely empirical prepayment functions. In addition, this model of collaterals makes it
possible to apply the ET method to CMOs. As discussed in Section IV, CMOs are
typically valued by Monte Carlo simulation, where the sampling error is related to the
requisite observations by a square law: for instance, the reduction of the error tenfold
requires a hundredfold increase in observations. By contrast, the ET method yields
exact model prices with manageable amounts of computation. Therefore, our CMO
model has distinct numerical advantages over Monte Carlo simulation. Furthermore,
in a typical CMO, cash flows are allocated among multiple classes of bonds based on
the remaining principal of the CMO collateral. Therefore, the CMO model presented
in Section III should be applicable to most CMOs if it is modified appropriately.

It should be added that the ET method is complementary to Monte Carlo sim-
ulation. This is because the ET method can be used in a control variate technique
to reduce sampling errors in Monte Carlo simulation. Consider, for example, apply-
ing Monte Carlo simulation to a CMO model where prepayments are generated by a
purely empirical prepayment function, as in McConnell and Singh (1993). Y denotes
the value of a CMO bond that is obtained by applying crude Monte Carlo simulation to
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this CMO model. Next, consider another CMO model where the collateral is modeled
as in Section III. As shown by McConnell and Singh (1994) and Singh and McConnell
(1996), we can first determine a prepayment boundary for each type of mortgagors and
second use these boundaries, in conjunction with Monte Carlo sirnulation, to value the
same CMO bond as above. Let C denote this value of the CMO bond. Then, following
Rubinstein ((1981), p. 127), we can use C as a control variate to construct a new
estimator Y'(3) for the CMO bond value that is likely to have a smaller variance than

the original estimator Y.
Y(B8)=Y - B(C - pc),

where pc is the expectation of €, which is obtained by the ET method. A simple

computation shows that the variance of Y(8) is minimized at

. _ ou(%,0)
= var(C)

The variance of Y'(8*) is given by
var(Y (8%)) = (1 - p*)var(Y),

where p denotes the correlation coefficient between Y and C. Since Y and C are likely
to be highly correlated, the ET method provides a promising way to reduce sampling

errors in Monte Carlo simulation.

In the second application of the ET method, we value average options where the
average is computed over a moving period with a fixed length. We refer to such options
as moving average options (MAOs). This application implies that the ET method
is applicable to other types of PDSs where path dependence arises from the direct
dependence of cash flows on lagged state variables. Examples of such PDSs are floating
rate notes, adjustable rate mortgages (ARMs), and swaps.3! PDSs of this type were
studied by Ramaswamy and Sundaresan (1986), Sundaresan (1991), and others. Note,
however, that valuing them by the ET method has two major advantages over these
studies: the ability to account for time lags of specified lengths and the applicability
to PDSs with American option features. Take, for instance, Sundaresan (1991) to
understand the latter point. He developed an ingenious model for interest rate swaps
where each discrete payment was based on the interest rate that preceded the pé.yment

by a specified length of time. His model was, however, inapplicable to an interest rate

81 Therefore, the ET method is applicable to CMOs backed by ARMs.
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swap with an embedded option, if the option was exercisable anytime between the
payment date and the reset date. Because with such an option it was impossible to

obtain a closed form solution for the value of each floating-rate payment.

Kau, Keenan, Muller, and Epperson (1990) (KKME) were among the first who
valued a type of PDSs where cash flows directly depended on lagged state variables
by the supplementary variable technique in discrete time. In particular, they valued
ARMs by solving a partial differential equation by an explicit finite difference method
(EFDM) where the dependence of ARM payments on lagged interest rates was handled
by treating the interest rate on the most recent adjustment date as a supplementary
variable.3? Note that their model can be couched in the framework of the ET, if
the uncertainty structure of the ET is modified accordingly. Therefore, naturally,
their model has the strengths of the ET method. There is, however, a subtle but
nontrivial difference between KKME’s ARM model and the MAO model presented
in this paper. In the extended MAO model described at the end of Section IV, the
supplementary variables are defined in relation to the current binomial node or another
supplementary variable. Therefore, there are at most § + 1 values each supplementary
variable may take on, and as a result, the state spaces are kept relatively small. By
contrast, KKME constructed the state space for their supplementary variable without
utilizing information on the underlying state variable.3® Therefore, their state space is

far larger than those of the MAO model, and so is their overall computational size.

To conclude this paper, we stress that the BT method is not limited to the uncer-
tainty models employed in this paper. First, because the uncertainty structure set up in
this paper admits any binomial model, the ET method is directly applicable to other
binomial models, such as Black, Derman, and Toy (1990). Second, the ET method
can be modified to accommodate any Markov chain, as long as the Markov chain is
accompanied with a one-period valuation relationship. For instance, it is a simple ex-
ercise to modify the ET method to accommodate a trinomial or multinomial model of
uncertainty. Furthermore, as mentioned above, the ET method can be implemented in

the framework of an EFDM, if Assumption 6 is modified accordingly.

32 The valuation procedure employed by KKME satisfies the EFDM analogue of
Assumption 6 and is free from the possible numerical problem of EFDM pointed out
by Barraquand and Pudet (1996).

33 This point is apparent in their statement on page 1420: “This entire procedure
must be done over the year for each possible value 0 < a(n — 1) < a(0) + ¢,” where
a(n — 1) denotes the interest rate set on the most recent adjustment date.
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Appendix

A. Proof of Proposition 1

To simplify expressions, we define a function
G(n,t,h) = C(n,,h) + X(n,4,h),

onall (n,4,h) € Z,,n=1,...,N. At ageneric ET node (n,i,h) € Z,,n=0,...,N—1,
form a portfolio of A units of a security that satisfies Assumption 4 and B dollars of
default-iree one-period discount bond such that the value of the portfolio is equal to

the price plus payoff of the PDS at each ensuing ET node.

AS(n+1,i4+1)+r(n,i)B=G(n+1,i+ 1,h"%),
AS(n+1,%) +r(n,i)B = G(n+ 1,4, h?).

Solving these equations, we have

AzG(n+1,i+1,h“)-—G(n—i—l,i,hd)

Sn+1,i+1)-8(n+1,9) '
B_ 1 Sh+1,i+1)G(n+1,i,b%) - S(n+1,1)G(n+1,i+1,h%)
"~ r{n,i) S(n+1,1+1) — S(n+1,4) '

Then, to preclude an arbitrage opportunity, the arbitrage-free price Cap(n, 4, h) of the
PDS must be equal to

Car{n,i,h) = AS(n,i) + B
_ 1 [ r(n,%)S(n,i) — S(n+1,7)
r(n,i) S(n+1,i+1) - S(n+1,7)
S(n+1,14+1) — r(n,9)S(n,1)
. Sin+1,i+1)— S(n+1,%)
1

= T“"‘“"“(n 'L) [p(n: Z)G(?’L +1,i-+1, h'“) + (]_ — p(fn,, '),))G(n + 1,4, hd)]

Therefore, the arbitrage-free price of the PDS is given by (1) and (2).

G(n+1,i+1,h%)

G(n+1,%,h%)]

B. Proof of Proposition 234

First, fix a pair of an ET node z € Zxy_1 and a PT node e € Ex_; that satisfies
the relation z = g(e). In addition, let 2 € Zy and 2% € Zx denote the ET nodes that

34 This proof is valid when no supplementary variable is defined at time n and/or
time n 4 1.
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follow the ET node z if an up event and a down event occur at time N, respectively.
Similarly, let e* € Ex and e? € Ey denote the PT nodes that follow the PT node e if
an up event and a down event occur at time NV, respectively. Then, by v) of Assumption
6/, 2* = g(e*) and z? = g(e?), which imply H(z*) = H*(e*) and H(2%) = H*(e?) by
iv) of Assumption 6’. By (3) and (47), these equalities imply equalities in price.

C(z*) = C*(e*) and C(z%) = C*(e%).

In addition, z* = g(e*) and 2% = g(e?) imply X(z*) = X*(e*) and X(29) =
X*(e?) by ii} of Assumption 6. Furthermore, z = g(e) implies that the value of the
underlying state variable at the ET node z is identical to that at the PT node e. Let
i denote this value of the underlying state variable. Then, the ET node 2 and the PT
node e share the same values of one plus the one-period interest rate, (N — 1,4), and
the risk-neutral probability p(N — 1,4) of an up event. Therefore, comparing (1) with
(46), we can see that the arbitrage-free price of the PDS at the ET node z, Cap (z), is
identical to that at the PT node e, C}p(e). Finally, iii) of Assumption 6’ ensures that
the PDS price at the ET node z, C(2), is identical to that at the PT node e, C*(e),
when the PDS has boundary conditions at z and e.

C. Proof of Proposition 3

This proposition is proved by mathematical induction. First, consider a generic
PDS with one period to maturity that satisfies Assumptions 1-5 and 6’. Clearly, the
value of the function g(-) for eg = (0) is zp = (0,0). In other words, the initial ET node
#zg and the initial PT node eg trivially satisfy the relation zy = g(e). In addition, the
valuation problem of this one-period PDS is a special case of the valuation problem at

time N — 1 of a generic N-period PDS. Hence, invoking Proposition 2, we have
C(Zo) = C*(eo).

Namely, Proposition 3 holds for N = 1.

Next, we prove Proposition 3 for a generic PDS that has N > 2 periods to maturity,
assuming that Proposition 3 holds for PDSs that have N — 1 periods to maturity. For
this purpose, consider a hypothetical (N — 1)-period PDS that resembles the N-period
PDS in question in the following way.

i) The cash flow at an ET node z € Zy_; to the hypothetical (N — 1)-period PDS is
equal to the cash flow at z of the N-period PDS in question, where the cash flows
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refer to those that are specified by ii) of Assumption 6. In addition, the terminal
condition at z of the hypothetical (N — 1)-period PDS is given by the price at z
of the N-period PDS in question that is obtained by the ET method.

ii) The cash flow at a PT node e € Ey_; to the hypothetical (VN — 1)-period PDS is
equal to the cash flow at e of the N-period PDS in question, where the cash flows
refer to those that are specified by ii) of Assumption 6’. In addition, the terminal
condition at e of the hypothetical (N — 1)-period PDS is given by the price at e
of the N-period PDS in question that is obtained by the PT method.

iii) The hypothetical (VN —1)-period PDS is identical to the N-period PDS in question

in all respects at timen=20,...,N — 2,

Clearly, the initial price of the hypothetical (N — 1)-period PDS agrees with the initial
price of the N-period PDS in question, when these prices are computed by the BT
method. Similarly, the same statement holds true, when the prices are computed by
the PT method. Therefore, we can conclude that Proposition 3 holds for the N-period
PDS in question, if we show that the two methods yield the same initial price of the

hypothetical (N — 1)-period PDS.

Now, to show that this if-statement holds, we invoke the hypothesis of mathemat-
ical induction: Proposition 3 holds for any (N — 1)-period PDS, if the PDS satisfies
Assumption 6'. Hence, we examine the hypothetical (VN — 1)-period PDS with respect
to Assumption 6. First, it is obvious that this PDS satisfies i) forn = 0,..., N—1. Sec-
ond, the PDS clearly satisfies ii) forn = 1,...,N—1, and ili) and v) forn = 0, ..., N—2.
Hence, the only condition that remains to be examined is iv) for time N — 1. To see
that this condition is satisfied, note that Proposition 2 holds for the N-period PDS in
question. That is, if a pair of z € Zy_; and e € Ey_; satisfies the relation z = g(e),
then '

C(z) = C*(e),

for the N-period PDS. Hence, by the construction of the hypothetical (N — 1)-period
PDS, this equality implies that the hypothetical (VN — 1)-period PDS satisfies iv) of
Assumption 6. To sum up, the hypothetical (N — 1)-period PDS satisfies all the
conditions in Assumption 6. Hence, by the hypothesis of mathematical induction,
Proposition 3 applies to this (N — 1)-period PDS, which implies that Proposition 3
- holds for the N-period PDS in question. ‘

32



D. Proof of Proposition 4

The ET method requires computation of the PDS price at each ET node. At time
n, there are n + 1 values the underlying state variable i, may take on, and for each
pair of (n,%) where ¢ denotes a particular value of i,, there are at most A values the
4*1 supplementary variable 3% may take on. Hence, the number of ET nodes at time

n is bounded above by
(n+1) H A9,
Jj=1

Therefore, the number of ET nodes for all n =0,..., N has an upper bound of

N m
Y (n+1) H RU)
i=1

n=0

" This expression reduces to (55).
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Figure 1. Path Tree. This is a path tree when N = 3. Each node of the tree rep-
resents a sequence of realizations of an underlying state variable, i.e. e, = (ig,%1,.--,%n).
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Figure 2. Extended Tree. This is an extended tree where N =3 and m = 1 for
n = 1,2, 3. The state space of the supplementary variable A, is {0,1,2} for all n = 1,2, 3.
Each node at time 1, 2 and 3 of the tree represents the value of the triplet (n, i, hx).




