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Abstract
This paper proposes a stochastic volatility model for panel data, and estimation
methods of its persistence parameter, in the case of large number of individuals and
small number of time periods, (presumably) for the first time. In this paper, two types of
the estimators for this model are presented, in accordance with frameworks of the
dynamic panel data model and the generalised method of moments. To examine and
compare the two types of the estimators, Monte Carlo experiments are carried out.
Furthermore, an empirical application to data of stock r;aturns is implemented using

these estimators mentioned above.
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I. INTRODUCTION

Today, the sfochastic volatility model (the SV model) proposed by Clark (1973) is
attracting interests of many financial econometricians. This is one of approaches
capturing the time-varying volatility in financial time series, such as ARCH by Engle
(1982), GARCH by Bollerslev (1986), and EGARCH by Nelson (1991), etc.

In many literatures, a great deal of estimation methods of the SV model is
developed, discussed, and applied to financial data in the framework of time series
analyses (Melino and Turnbull 1990; Jacquier et al. 1994; Harvey et al. 1994; Andersen
and Serensen 1996, etc). What seems to be lacking is, however, that the SV model is
talked about in the context of panel data analyses.

In this paper, the panel data version SV model is created (presumably) for the
first time, and techniques of estimating the persistence parameter in this model are
propounded, using panel data with large number of individuals over small (fixed)
number of time series. The advantage of using this model and these techniques for this
type of panel data model is that these aliows us to observe short-run movements of the
volatility in the whole stock market. ! These techniques incorporate a series of ideas on
estimation methods of dynamic panel data models, recently developed and discussed in
Holtz-Eakin et al (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano
and Bover (1995), and Blundell and Bond (1998). These techniques embrace two kinds
of estimators; One is based on Holtz-Eakin et al. (1988) and Arellano and Bond (199 1),
and the other based on Arellano and Bover (1995). It is conjectured that the latter
estimators are superior to the former since using more information. Therefore, to
examine performances of two kincis of estimators and corroborate the superiority of the

latter estimators, Monte Carlo experiments are carried out. Finally, an empirical



application of the techniques is put into operation, using the panel data composed of the
daytime stock returns listed on the first and second sections of the 7bkyo Stock
Exchangein 1998,

The paper is organised as follows: the section 2 presents the stochastic
volatility model for the panel data with large number of individuals and small (fixed)
number of time series. Here, we also lock into the estimation methods for the model. In
section 3, we investigate the small sample performances of the estimators by carrying
out the Monte Carlo experiments. In section 4, the application of the estimators to the

data of the stock returns is implemented. Section 5 concludes.



II. MODEL

In this section, a stochastic volatility model' for panel data is delineated and then
estimation methods of its persistence parameter are proffered. We will call the model as
the panel data stochastic volatility (PDSV) model.

In this model, subseripts i (i=1,...,N)and ¢ ( t=1,...,T) respectively imply
the individual (stock issue, etc) and the time period with large N and small (fixed) T,
and there is a series of observable variables {y,} whose structure we assume as:

Vi =OC4E,, for t=1,...,T, (Observable Variables) 1)

g, ~ iidN(0,1), ' (2

where the log-volatility (log 0'3 ) of y, is unobservable (latent) and has the following

driving process of the PDSV model:

logo? = T% +v,, (Initial Condition) @)

logoy =glogo},  +g,+V,, for t=2,...,T, @
where g; is the individual specific fixed effect, and v, is the disturbance with zero
mean which is not correlated serially, cross-gectionally, anﬁ with g;. In this situation,
we incorporate the notion that the (persistence) parameter ¢ (|¢|<1) is common
through all individuals and the individual effect g, controls for the individual

heterogeneity of the log-volatility, according to the prevalent panel data model. Due to
the initial condition (3}, ‘log 0'3 is mean-stationary with mean g,/(1-¢) at any time

period.

In this paper, we are only interested in estimating ¢. For this purpose, we

make the reduced form of the SV model using (1), (2), (3), and (4), according to Harvey et



al, (1994):

(log y2 +1.27) = Tgi?,? + @y, (Initial Condition) ®)
(log y2 +1.27) = ¢(log Vi +1l2D) +g, +a,,  for t=2,...T. (6)

where @, =v,+&, and @, =v,+& ¢, with & ~iid0, 7°/2).2 See

APPENDIX for deriving this reduced form. Originated from the initial condition (5),

this is a form of the mean-stationary dynamic panel data model, in which the variable
log y,.f +1.27 driving the process composed of (5) and (6) is observable. Allowing for the

fixed effect g, and the first order serial correlation of the disturbance w, for
t=2,..,T, two types of the moment restrictions prepared for estimating ¢
consistently are described in frameworks of the generalised method of moments (GMM)
and the dynamic panel data analysis when asymptotics rely on the assumption N — oo
under T fixed.?

Firstly, the type of the moment restrictions proposed in Holtz-Eakin et al.
(1988} and Arellano and bond (1991) is presented:

E[(Alog y; - ¢ Alogy;, ,)(log y;, +1.27)]=0, @

for t=4,...,.T;s=1,...,t-3,

where A is the first-differencing operator. The moment restrictions (7) imply that for
the purpose of estimating ¢ we use the third and higher lags of level dependent
variables as instruments for first-differenced equations of (6). From this point on, these
are called as the standard moment restrictions. These moment restrictions do not use
the information on the initial condition (5). Therefore, the estimators based on these

moment restrictions may not be efficient when the initial condition (5) is specified. *



Next, looking at (5) and (6), the reduced form is written in a form of the

dynamic panel data model, in which the mean-stationarity through time with respect to

(log y; +1.27) is satisfied. In order to estimate ¢ under the efficient information on
g Vi

this mean-stationarity, this paper intensively adopts the idea on the mean-stationarity
moment restrictions proposed in Arellano and Bover (1995) and discussed in Ahn and

Schmidt (1995) and Blundell and Bond (1998). That is:
E[{(log y;; +1.27) - ¢(log y;,; +1.27)}Alog y2] =0, ®

for t=4,...,T;s=2,...,t-2.

The moment restrictions (8) imply that for the purpose of estimating ¢ we use the
second and higher lags of first-differenced dependent variables as instruments for level
equations of (6). From this point on, these are éaﬂed as the stationarity moment
restrictions. The estimators using (8) may be superior to using (7) in the sense that the
information on the mean-stationarity is incorporated in the estimators using (8). ©

The two types of the GMM estimators can be constructed using the standard
moment restrictions (7) and the stationarity moment restrictions (8), respectively.
Hereafter, we call the GMM estimators using the former moment restrictions as the
STD-GMM estimators, and using the latter the S74-GMM estimators.

The (consistent) STD-GMM estimators are described as below:

35D (Z:ZIAYI":(—I) Z)A™ (2£lZfAK )
¥ ’ N ’ »
(Z"=1 AY'-'H) Z, )A:T ? (Ei=l Z; AY;‘.(-I) )

©)
where fixed are the (T'—~3)X1 vectors of AY,=[AlogyZ, Alogy2, ..., Alogy2 T

and AY, , =[Alogy}, Alogyy;, ... ,Alogy?;,T , and the (T—-3)xm block

diagonal matrix:



(logy3 +1.27) 0 0 0 0
0 (logys +1.27) (logys +1.27) .- 0 0 ,

0 0 0 o (logyf +1.27) - (logyi,, +1.27)

with m = (T -3)(T -2)/2. The (non-optimal) I-step, (efficient) 2-step, and iterated

STD-GMM estimators (6,“" , Azm), and qﬁfr P} are defined, choosing as AP (mxm

-1 -1
weighting matrix) A" =[K1r-2:ilz,-' Z,-] , AP =[—§;2:12,-' Al Adt,, Z,-] , and

-1
1 ’ T ) A . g e -
AT -—-[FZ‘N:I Z[Ad, ) Aty Z,.:I , respectively. In addition, the realised I-step, 2-

step, and iterated STD-GMM estimates are noted down as 451"0*, Az“"‘m‘, and é‘}.rm*'

respectively. In this case, Aﬁ,.m is the vector of the (consistent) I-step residuals so that

Al =AY, ~ éfm' AY; . Furthermore, since the iterated estimator is obtained by
updating the weighting matrix until the estimate of ¢ converges starting from Afr °,
Al ;, is the vector of iterated residuals so that A, =AY, - é\,‘m‘ AY, .

The (consistent) STA-GMM estimators are described as below:

N ., N ,
ASTA - _(..Z'ﬂ I,'fo("l) AZI' )AIIHA ( =] Az,' I’f )

¢n ’ ’ ] (10)
Qo i AZ) A (Y0 AZ]Y, )
where fixed are the (T -3)yx1 vectors of
Y, =[(log y, +1.27), (log y5 +1.27), ..., (log y2. +1.27)] and

Yy =[(ogy; +1.27), (logy’; +1.27), ...,(og y2rpy +1.27)T,  and  the

(T = 3)xXm block diagonal matrix:



[Alogy:, 0 0 o 0 0|
Az = 0 Alo‘-gyl?2 Alo?,: 3 0 0 ’
o 0 0 - Alogy, - Alogyly, |

with m=(T -3)(T —2)/2. The (non-optimal) I-step, (efficient) 2-step, and iterated

STA-GMM estimators (ﬁl‘m , Az"m, and @fm) are defined, choosing as A"‘m (mxm

~1 -1
weighting matrix) A™ =l:% LAZ:’ AZ:‘] A =l:%2?—_’1AZ: By iy AZ:-] .

-1
1 ~ .Y L3 L -
and Afw‘ = [ﬁ ::1 AZ,' By Wi AZ,] respectively. In addition, the realised I-step,

2-step, and iterated STA-GMM estimates are noted down as gﬁlm', Azm', and 5,“““

3

respectively. In this case, iZ,,, is the vector of the (consistent) I-step residuals so that

iy =Iﬂ—5F”“ Y.y, and @, is the vector of the iterated residuals so that

~ - 2 STA*
ULy =Y, —0;" ¥ .



III. MONTE CARLO

With the intention of investigating the limited sample performances of the S7D-GMM
and STA-GMM estimators for the PDSV model in previous section and corroborating
the superiority of the S74-GMM estimators, Monte Carlo experiments are carried out. 8

A design of the data generating process (DGP) for the PDSV model is described

as below:

Yiu =0y, for t=1..,T, - (Obgervable Variables)

&, ~ HdAN(0,]),

logo? =8 4 Zn (Initial Condition)

+ ,
1=¢ Ji-¢’
logo} =¢logo},  +g,+w,, for t=2,..,T, (DrivingProcess)
g; ~iidN(0,1),
w, ~iidN(@©,1), for t=1L..,T,
where i=1,...,N . The parameter values ¢ =0.0, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98 are

used in the experiments. The combinations of the sample sizes are
N =100, 500, 1000 and T = 8. The number of replications is set to NR =500.

In the experiments, the estimations of ¢ are carried out by the I-step, 2-step,
and fterated STD-GMM estimators (9), and the I-step, 2-step, and iterated STA-GMM
estimators (10) in previous section.

The results are shown in the Table 1A, Table 1B, and Table I1C for N =100,
N =500, and N =1000, respectively. We can recognise that the STD-GMM estimators
for ¢ are substantially downwé..rd-biased, while the S74-GMM estimators for ¢ are

fairly precise in all cases, judging from the Monte Carlo means (MCM) for the



estimators of ¢ and the root mean squared errors (RMSE) for the estimators of ¢. The
behaviours of the S7TA-GMAM estimators are markedly good in precision. From these
Monte Carlo results, it is corroborated that the STA-GMM estimators are superior to
the STD-GMM estimators in finite sample size, and are probably practical estimators
for empirical researches of the PDSV model, as long as the mean-stationarity of the
log-volatility is satisfied.’

After this, we shall concentrate on the behaviours of the S74-GMM estimators
(the right-hand sides of Table 1A, Table 1B, and Table 1C), with such a reason. From the
tables, we can see the Monte Carlo fact that the I -step and 2-step estimators perform
better than the ijterated estimator in all cases, comparing their MCM and EMSE. It is
remarkable for the high values (0.9, 0.95, and 0.98) of ¢. For the moderate values
(0.2, 0.5, and 0.8) of ¢, the larger the sample size (from N =100, N =500 to
N =1000), the better the performances of the estimators. Comparing the MCSD with
the MCSE for the I-step, 2-step, and Iterated estimators reveals that inferences on the
estimates of ¢ are problematic when we use the estimates of the jferated standard
errors, as these are nontrivially downward-biased. Note that the MCSD and the MCSE
are the Monte Carlo standard deviation for the estimators of ¢ and the Monte Carlo
mean of the est:'marted standard errors for the estimators of @, respectively. The means
of Sargan tests (SARGAN) do not reject the validity of the stationarity moment

restrictions used for estimating ¢ at the significant level 5% throughout. This test

statistic is asymptotically chi-square-distributed with degree of freedom DF.



IV. EMPIRICAL APPLICATION

The estimators for the PDSV model discussed in previous sections are applied to the
data of the stock returns in this section, with the aim of investigating the estimated
values of the persistence parameter in particular short-run time spans. In the
application, the simple PDSVmodel composed of (1), (2), (3), and (4) is assumed. 8

| Time series analyses on the SV model estimate the model by using the long-run
time series with large sample size and a particular stock issue or option to get high
(near to unity) values of the persistence parameter. In contrast, panel data analyses on
the PDSV model in this paper estimate the model to grasp the short-run movement of
the volatility in the whole stock market by using the short-run time series with small
sample size and the stock issues with large sample size.

Data used is a panel data set of the daytime stock returns (DTSR) 'composed of
the stock issues listed on the ﬁrét and second sections of the Tokyo Stock Exchange
(7SE) from February 18 to December 4 in 1998 except for holidays. The size of this
panel data set is 1839 (number of stock issues) by 200 (number of time periods). The
data source is Stock Price Chart CD-ROM Published In New Year 1999 (Kabuka Chart
CD-ROM 1999 Nen Shinshun Gou, in Japanese) published by Tbyo Keizai Inc. (Thyo
Keizai Shinpou Sha, in Japanese).

The definition of the DTSR y, of ith issue at period £ is

Yy =log CF, —1ogOF,,

where CF, and OP,

% are respectively the closing price and opening price at period ¢.

As a preparation for estimating the PDSV model, we select sub-panel data sets
without serial correlations in the panel data set above, since assuming (1) and (2). The

numbers of time periods in the sub-panel data sets are set up at eight through this

10



application, allowing for the number of time periods used in the Monte Carlo
experiments in previous section.

Firstly we single out the 192 distinct sub-panel data sets with the sequential
eight time periods and the 1839 stock issues from this panel data set, by establishing
the starting time period of each sub-panel data set with each time period in the original
panel data set. Secondly, we eliminate the stock issues inappropriate for the data
analyses in the sub-panel data sets. These inappropriate issues are comprised of both
issues whose transactions are not implemented ‘at one day in the eight time periods and
whose stock returns are zero at one day in the eight time periods.

We obtain the balanced 192 sub-panel data sets trimmed in above way at this
stage, with distinet numbers of the stock issues. From these sub-panel data sets, we opt
for the sub-panel data sets without the serial correlation of kth order in y,, where
t=1,...,T and k=1,...,T~1 with T =8 in this case. In this process, the statistic

testing the null hypothesis that y, and y,,, are not correlated:

Z_ %
lm_ = ~ N(Osl):
(=k) ?SZI’L'
is used, where Z=(1/7)Y, YaYiy and s*=[UAT-D]Y" [V yip - AP with

T=NT -k}, Y= [yn’}’fz’_--- 1 Yirk I', and Yir =UYikats Yigsaserrs ¥ I'e ° This

statistic is based on the second order serial correlation test proposed in Arellano and

Bond (1991). 10

Using the lm(_k) tests, we obtain seven sub-panel data sets without serial

correlations. Hereafter, the application of the PDSV model is presented, using proper

five sub-panel data sets picked out of these seven sub-panel data sets.!! Itemisations of

11



these five sub-panel data sets are depicted in Table 2. The results of the Im,_,, tests in

these five sub-panel data sets are indicated in Table 3. The cross-sectional sample size
(number of stock issues) used for the estimation is roughly 500 in each sub-panel data
set.

Using these five sub-panel data sets, estimations of the persistence parameter
in the PDSVmodel are implemented.

Looking at Table 4, we can recognise that all the STD-GMM estimates of the
persistence parameter '¢ are negative. These are similar to the result of the Monte
Carlo experiments in similar sample size N = S(jO shown in previous section. These
results would be unreliable. On the other hand, the S74-GMM estimates of ¢ are
positive and significant, and the Sargan test statistics pronounce that the used moment
restrictions are valid at the significant level 5%, We consider that these results would be
reliable, taking into consideration the small sample performances of the STA-GMM
estimators in the Monte Carlo experiments. Therefore, we set the discussion forward,
focusing on the STA-GMM estimates of ¢ from now on.!?

In Table 4, the I-step, 2-step, and iterated STA-GMM estimates of ¢ at both
spans from June 12 to June 23 (0.853, 0.984, and 0.987) and from June 16 to June 25
(0.806, 0.929, and 0.939) are considerably higher than those at the other spans.
Especially seeing the 2-step and iterated estimates in all spans, we can find that in the
above two spans the extremely high (close to unity) estimates of the persistence

parameter ¢ are estimated significantly (see £-valuesin Table 4).
In the above two spans that double, both the Federal Bank of New York (Fed)
and the Bank of Japan (BOJ) held the joint intervention into the foreign exchange

market at June 17. Just before the intervention, the sharp fall of yen against US dollar

12



occurred and it was likely that the volatility of the yen-dollar exchange rate get higher,
reflecting the exacerbation of the Japanese fundamentals. There was an apprehensive
scenario that the fall would probably give rise to the global recession triggered by the
possible devaluation of Chinese yuan. The Fed and BO.Jembarked on the intervention
with the aim of breaking such a situation. By nature, the intervention sends to the
market participants the signal that the Japanese government shall ameliorate the
Japanese future fundamentals to support the strong and stable yen by prompting the
resolution of thé bad loan in the banking system and the implementation of the
permanent tax reduction. ¥ It is pointed out, however, that the market participants do
not believe the signal positively. In fact, Dominguez (1998a) obtains the result that
intervention operations generally increase exchange rate volatility against the central
banks’ intentions of decreasing it, using the dollar-mark and dollar-yen daily exchange
rate data. Accordingly it can be considered that in the period before and after the
intervention the successive high volatility (volatility clustering) of the exchange rate is
provoked in foreign exchange market.

Further, Dominguez (1998b) finds the empirical fact that many Japanese |
companies are exposed to the yen-dollar exchange rate risk, and states that it is because
their imports and exports are invoiced in dollar and they do not fully hedge against the
exchange risk. Taking account of this fact, it seems reasonable to considef that the
strong volatility clustering in the exchange market propagates to the stock market in
the 7'SE, by bringing out the uncertainty of the speculators.

By the aid of a series of the explanations above, it is no wonder that the much’

higher (close to unity) persistent parameters ¢ are estimated in the above two spans

including the date of the joint intervention than in other comparatively tranquil spans.

13



Thus, it is shown that the values of the persistence parameter of the SV model
probably differ in spans, when we allow for the movement in the whole stock market.
Looking at the SVmodel from a different angle by using panel data specification instead
of time series, we found a new fact that there are both types of the spans with the high

persistence of the volatility and with the moderate persistence.
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V. CONCLUSION

This paper has advanced the panel data version stochastic volatility model, and the
techniques for estimating its persistence parameter, using panel data with large
number of individuals over fixed number of time series. The procedure of this technique
converts this stochastic volatiiity model into the dynamic panel data model, and then
implements the I-step, 2-step, and iterated GMM estimations using the pertinent
moment restrictions. The two kinds of the GMM estimators were presented: those using
the standard moment restrictions and those using the stationarity moment restrictions.

In order to examine the small sample performances of the estimators and
corroborate the superiority of the estimators using the stationarity moment restrictions
in precision, the limited Monte Carlo experiments were performed for the sample sizes
100, 500, and 1000. Results indicate that the estimators using the standard moment
restrictions have considerable downward-biases while the estimators using the
stationarity moment restrictions are highly precise.

Furthermore, the empirical application of the estimators to the daytime stock
returns’ data of the issues listed on the Tbkyo Stock Exchangein 1998 has implemented.
In the application, the five spans composed of eight periods without the serial
correlations were singled out, and then the estimations were carried out using the five
spans. The estimates using the standard moment restrictions are negative and
considerably low, which coincide with the results of the Monte Carlo experiments. On
the other hand, the estimates using the stationarity moment restrictions show different
high values between zero and unity in the five spans. Those in mid June, in which term
the joint intervention into yen-dollar exchange market was done, exhibit the values

extremely close to unity. It can be reckoned that the persistence parameters in the

15



whole stock market vary in terms. It is envisaged that further empirical researches

using the techniques in this paper will exhume unknown facts in many stock markets.

16



' APPENDIX: Derivation of (5) and (6)

Squaring both sides of (1) and then taking its logarithm, we get

log y2 =loga? +loge?. (Ai)
From (2), loge? ~ iid(-1.27, z_z:2 /2) holds, according to Abramowitz and Stegan (1970).
Therefore,

logo? =log y2 +1.27-£,. (A2)

Introducing (A2) into (3) and (4), we obtain (5) and (6).

17
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ENDNOTES

1. Author hopes that readers recognise handling the SV model by using short-run panel
data is a variety of ideas for seizing the structure of financial data from a different angle,

without negating it unsparingly.

2. Stricter value of 1.27 is 1.27036284546:--. The stricter value is used in Monte Carlo

experiments and empirical application that are put into effect in later sections.
3. The GMMis advocated in Hansen (1982).

4. In the context of the AR(Z) dynamic panel data model, Holtz-Eakin et al. (1988) and
Arellano and Bond (1991) take up as a representative example the first-differenced GMAM
estimators of the AR(Z) coefficient under the serially uncorrelated disturbance, which are
constructed on the basis of the standard moment restrictions using the second and higher
lags of level dependent variables as instruments for first-differenced equations. Blundell
and Bond (1998), however, show in their Monte Carlo experiments that the first-differenced
GMM estimators perform poorly in small sample when the AR(Z) coefficient is high (near to'

unity).

5. In the context of the mean-stationary AR(Z) dynamic panel data model, Arellano and
Bover (1995) contrive the system GMBAS estimators using jointly the mean-stationarity
moment restrictions and the standard moment restrictions. Blundell and Bond ( 1998) make

sure in their Monte Carlo experiments that under the serially uncorrelated disturbance,
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the system GMM estimators perform much better than the first-differenced GMM
estimators in small sample, even when the AR(1) coefficient is high (near to unity). Under
the serially uncorrelated disturbance, the system GMM estimators are constructed based
on the standard moment restrictions using the second and higher lags of level dependent
variables as instruments for first-differenced equations and the mean-stationary moment
restrictions using the first lags of first-differenced dependent variables as instruments for

level equations.
6. The econometrics software TSP £:4 (Hall et al., 1997) is used for the experiments.

7. Improvement of the behaviour of the STD-GMM estimators requires very large cross- ’

sectional size, e.g. N =25000.
8. The econometrics software 7:9P 4.4 is used for the empirical application.

9. The DTSE y, may include the additional fixed effect f, so that we may come up with

the structure y, = f; +0,¢,. The statistic Im,_,, also tests absence of the fixed effect f;.

10. The TSP procedure of carrying out the Im_,, and Im_,, tests is provided by 7I9P
International. On the basis of this procedure, the procedure of carrying out Im,_,, test is

designed.

11. The applications using the two remaining sub-panel data sets are not presented in this

20



paper, because the moment restrictions in these cases are not valid often when we use the

STA-GMM estimators.

12. Some people may point out cross-sectional correlations of the disturbances in (5) and (6)
when we deal with actual stock returns’ data. If it is the case, both the STD-GMM and

STA-GMM estimators are less efficient but still consistent.

13. The Japanese central bank, BOJ, is not independent of the government tolerably in this
time, Therefore, it is not denied that the intention of the government is in line with that of

the BCO.Jin many respects.
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Table 1A. Monte Carlo results for the estimators of ¢ in the PDSVmodel [1]
N=100, T=8, NR=500

STD-GMM STA-GMM
True  I-step 2-step Iterated I-step Z2-step iterated
MCM 0.0 -0.477 -0.452 -0.380 0.123 0.117 0.076
RMSE 0.519 0.531 0.578 0.311 0.407 0.618
MCSD 0.203 0.278 0.436 0.286 0.390 0.613
MCSE 0.249 0.204 0.205 0.263 0.212 0.201
SARGAN (DF=14) 1466 1433 13.92 1471 1426 18.44
MCM 0.2 -0.455 -0.427 -0.351 0.201 0.191 0.142
RMSE 0.685 0.684 0.699 0.286 0.392 0.616
MCSD 0.201 0275 0.430 0.286 0.391 0.614
MCSE 0.248 0.204 0.205 0.259 0206 0.193
SARGAN (DF=14) 1479 1445 14,01 1464 14,14 13.86
MCM 0.5 0414 -0.367 -0.273 0401 0.388 0.290
EMSE 0.937 0914 0.892 0.285 0.385 0.641
MCSD 0.206 0.287 0.445 0.267 0.369 0.605
MCSE 0.246 0.202 0.203 0.237 0.185 0.172
SARGAN (DF=14) 1542 1499 14.43 14.61 14.14 13.56
MCM 0.8 -0.409 -0.360 -0.255 07717 0779 0.660
EMSE . 1.227 1198 1.158 0.172 0247 0.548
MCSD 0.208 0.298 0.478 0.171 0.246 0.530
MCSE 0.246 0.204 0.205 0.155 0119 (.112
SARGAN (DF=14) 15,60 15.14 14.43 1465 14.13 13.52
MCM 0.9 -0.424 -0.387 -0.302 0926 0933 0.827
REMSE 1339 1.320 1.290 0091 0.122 0.437
MCSD 0,205 0.292 0.467 0.087 0.118 0.431
MCSE 0.247 0.206 0.207 0.082 0.067 0.070
SARGAN (DF=14) 15.18 14.78 14.15 1445 14.01 13.56
MCM 0.95 -0.430 -0.401 -0.323 0.980 0,984 0941
EMSE 1.395 1.381 1.353 0.050 0.060 0.279
MCSD 0.203 0.289 0.458 0.041 0.050 0.279
MCSE 0.248 0.206 0.208 0.040 0.032 0.037
SARGAN (DF=14) 1495 1457 14.00 1432 13.97 13.70
MCM 0.98 -0.431 -0.400 -0.321 0995 0.996 0.971
RMSE 1426 1411 1.381 0.024 0.025 0.210
MCSD 0.210 0.293 0.463 0.018 0.019 0.210
MCSE 0.250 0.206 0.206 0.020 0.016 0.019
SARGAN (DF=14) 1475 1439 1394 14,29 13.94 13.70

Notes:

(i) The Trueimplies the true value of ¢ in the Monte Carlo.

(i) When the true value of ¢ is 0.98, the numbers of individuals N fluctuate ranging
from 84 to 99 with their mean 91.30 in the experiments, due to our elimination of the
data with numeric errors. :



Table 1B. Monte Carlo Results for the estimators of ¢ in the PDSVmodel [2]
N=5600, T=8, NR=500

STD-GMM STA-GMM
True  1-step 2-step iterated I-step Z2-step Iterated
MCM 0.0 -0.486 -0.467 -0.421 0.128 0.127 0.114
RMSE 0.524 0.543 0.565 0.300 0.421 0.584
MCSD 0.196 0.278 0.378 0.271 0.401 0.573
MCSE 0.256 0.234 0.234 0.270 0.245 0.234
SARGAN (DF=14) 14.10 13.71 13.39 1415 13.65 12,91
MCM 0.2 -0.437 -0.403 -0.346 0.211 0.205 0.162
RMSE 0.669 0.666 0.665 0.256 0.372 0.547
MCSD 0.204 0.283 0.379 0.256 0.372 0.546
MCSE 0.251 0.229 0.229 0.257 0231 0.221
SARGAN (DF=14) 1471 1430 13.88 1422 13.79 13.14
MCM 0.5 -0.309 -0.187 -0.047 0.442 0449 0410
REMSE 0.838 0.755 0.684 0.216 0.289 0.445
MCSD 0.221 0.323 0.410 0.208 0.285 0.436
MCSE 0.239 0.214 0.212 0.202 0.182 0.176
SARGAN (DF=14) 17.57 16.41 15.17 1424 1395 13.68
MCM 0.8 -0.310 -0.155 0.089 0.793 0.805 0.749
RMSE 1.134 1.019 0.863 0.134 0.200 0.387
MCSD 0.231 0.355 0.489 0.134 0.199 0.384
MCSE 0.245 0.220 0.215 0.123 0.108 0.106
SARGAN (DF=14) 19.00 17.64 15.53 1411 13.72 18.55
MCM 0.9 -0.380 .0.288 -0.130 0.926 0.933 0.881
RMSE 1.299 1238 1.149 0.085 0.133 0.337
MCSD 0.225 0.348 0.510 0.081 0.128 0.336
MCSE 0.261 0.229 0.227 0.076 0.068 0.066
SARGAN (DF=14) 16.63 1597 14.93 1384 1346 13.33
MCM 0.95 -0.417 -0.364 -0.267 0.980 0.983 0.950
RMSE 1.384 1.354 1.303 0.049 0.088 0.244
MCSD 0.219 0.326 0.464 0.039 0.060 0.244
MCSE .0.255 0.234 0.233 0.039 0.036 0.037
SARGAN (DF=14) 15.09 14.67 14.16 13.55 13.32 13.23
MCM 0.98 -0431 -0.394 -0.325 0.996 0.997 0.975
RMSE 1427 1407 1.374 0.024 0.029 0.200
MCSD 0.214 0.305 0.429 0.018 0.023 0.200
MCSE 0.259 0.238 0.236 0.020 0.019 0.020
SARGAN (DF=14) 1439 1400 13.55 13.45 13.24 18.14

Notes:

(i) The Trueimplies the true value of ¢ in the Monte Carlo.

(i) When the true values of ¢ are 0.9 and 0.98, the numbers of individuals N fluctuate
ranging from 498 to 500 with their mean 499.98 and from 436 to 470 with 455.08 in the
experiments, respectively, due to our elimination of the data with numeric errors.



Table 1C. Monte Carlo Results for the estimators of ¢ in the PDSVmodel [3]
N=1000, T=8, NR=500

STD-GMM STA-GMM
True  I-step 2-step iterated I-step 2-step Iterated
MCM 0.0 -0.493 -0.461 -0.414 0.128 0.122 0.112
BEMSE 0.5631 0.541 0.556 0.300 0.424 0.582
MCSD 0.197 0.282 0.871 0.271 0406 0.571
MCSE 0.256 (.237 0.237 0.270 0.248 . 0.238
SARGAN (DF=14) 1404 13.71 1341 1391 13.36 12.64
MCM 0.2 -0.408 -0.346 -0.276 0.211 0204 0.183
RMSE 0.642 0616 0.604 0.245 0.355 0.501
MCSD 0.205 0.284 0.372 0.245 0.355 0.501
MCSE 0.245 0.226 0.227 0242 0224 0215
SARGAN (DF=14) 1495 1448 14.02 14.01 13.67 13.25
MOM 0.5 -0.201 -0.013 0.139 0.456 0467 0.455
EMSE . 0.734 0.590 0.486 0.178 0.227 0.309
MCSD 0.219 0291 0.325 0.173 0.225 0.306
MCSE 0.225 0.196 0.193 0.169 0.158 0.155
SARGAN (DF=14) 19.21 16.81 15.17 14.08 13.93 13.88
MCM 0.8 -0.206 0.045 0.322 0.795 0.809 0.795
RMSE 1.033 0834 0.630 0.108 0.144 0.227
MCSD 0.236 0.355 0.410 0.108 0.143 0.227
MCSE 0.237 0.206 0.197 0.099 0.090 0.090
SARGAN (DF=14) 22.02 1887 15.77 1403 13.84 13.88
MCyM 0.9 -0.331 -0.183 0.031 0.919 0926 0.893
REMSE 1.252 1.141 1.009 0.075 0.108 0.260
MCOSD 0.226 0.359 0.513 0.073 0.105 0.260
MCSE 0.251 0.230 0.225 0.066 0.060 0.080
SARGAN (DF=14) 18.04 1691 15.19 13.86 13.67 13.64
MCM 0.95 -0.402 -0.330 -0.206 0.975 0980 0.948
RMSE 1.368 1.321 1.250 0.045 0.058 0.234
MCSD 0.212 0.325 0.477 0.037 0.049 0.234
MCSE 0.257 0.240 0.239 0.037 0.035 0.036
SARGAN (DF=14) 15.25 14.76 14.02 13.61 1342 13.35
MCM 0.98 -0.427 -0.384 -0.306 0.995 0.995 0.975
RMSE 1424 1401 1.356 0.024 0.031 0.183
MCSD 0.220 0.317 0.431 0.020 0.027 0.183
MCSE 0.261 0.244 0.242 0.020 0.019 0.021
SARGAN (DF=14) 1420 13,80 13.38 1342 13.32 18.30

Notes:

(i) The Trueimplies the true value of ¢ in the Monte Carlo.

(ii) When the true values of ¢ are 0.9 and 0.98, the numbers of individuals N fluctuate
ranging from 999 to 1000 with their mean 999.97.and from 888 to 937 with 911.99 in the
experiments, respectively, due to our elimination of the data with numeric errors.



Table 2. Itemisations of the selected sub-panel data sets

T8

May 15 June;12 June 16 July 28 Nov 13

~May 26 ~ June 23 ~June 25 ~August 6 ~ Nov 25
N 442 (100} 420 f100] 434 [100] 408 {100} 492 [f100]
FMC 36 [7.99] 38 f9.05} 36 [8.29] 32 [7.84} 36 [7.32]
F 23 f5.201 22 f5.24] 24 [65.68] 24 [5.88] 28 [6.69]
TPP 12 [2.71} 14 /3.83] 19 f4.38] 17 f417] 18 f3.66]
COR 59 [13.55] B9 [14.05] 50 f11.52] 66 [13.48] 59 [/11.99]
GC 10 [2.26] 12 /2.86] 11 [2.58] 7 {172} 15 f3.05]
INM 28 [6.33] 21 f6.00} 26 /5.99] 19 /4.66] 29 [5.85]
M 42 f2.50) 36 /8.57] 34 [7.83] 28 f6.86] 39 [7.93]
EM 48 [10.86] 50 [11.90] 49 (11.29} 60 f14.71} 70 f14.23]
TPO 49 [11.09} 49 f11.67] 58 [13.36] 44 [10.78] 48 [9.76]
c 36 /8.14] 42 [10.00] 44 [10.14] 40 [9.80] 64 [10.95]
BIR b4 [12.22] 41 /9.75] 40 /9.22) 47 f11.52] 47 [8.55]
TS 46 [10.41} 36 [8.57] 43 [/9.91] 35 [8.58] 49 /8.96]
Notes:

() The year is 1998, The “Nov” implies November.

(ii) The T'and Nare the number of time periods and the number of the selected stock issues,
respectively.

(iii) Stock issues are classified into the following industry groups with their codes in
brackets. (The small numbers of issues are, however, classified into inappropriate groups):
FMC: Fishery, Mining and Construction (1300-1999). F: Foods (2000-2999),

TPP: Textiles and Pulp & Paper (3000-3999), COR: Chemicals, Oil & Coal Products, and
" Rubber Products (4000-5199). GC: Glass & Ceramics (5200-5399). INM: Iron &
Steel, Non-ferrous Metals, and Metal Products (5400-5999).

M: Machinery (6000-6499), EM: Electrical Machinery (6500-6999).

TPO: Transport Equipment, Precision Instruments, and Other Products (7000-7999).

C: Commerce (8000-8299). BIR: Banking & Insurance and Real Estate (8300-8999).

TS: Land Transport, Maritime Transport, Air Transport, Warehousing, Communication,
Electricity & Gas, and Services (9000-9999).

(iv) The numbers of stock issues used for the estimations per the industry groups and their

percentages in the selected spans are depicted in columns. The percentages are in brackets.



Table 3. Results of the serial correlation tests in the sub-panel data sets

T=8

May 15 Junel2 June 16 July 28 Nov 13

~May 26 ~ June 23 ~ June 25 ~August 6 ~ Nov 26
N 442 420 434 408 492
Im_,, -0.475 -0.089 1.178 -0.011 0.894
Im_q -0.294 0.424 - -0.302 -0.701 -0.697
Im_5, -1.164 0.963 -0.221 1.771 -0.573
Im_, -0.872 -0.683 0726 0.186 -0.255
Im_ g, 0.810 -0.267 -0.160 0.572 1.106
Im_s 0.346 0.798 1.080 0.678 0.060
Im,_, -1.299 1.155 0.649 -0.767 1.953
Notes:

(i) The year is 1998, The “Nov” implies November.
(11) The T'and N are the number of time periods and the number of stock issues used for

estimations, respectively.

(i) The Im,_,, is the test of serial correlation of & th order, where k=1,...,T ~1.
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Table 4. Estimates of the persistence parameter ¢ in the PDSVmodel

STD-GMM STA-GMM

I-step 2-step iterated 1-step Z2-step Iiterated
May 15 -0.514 -0.610 -0.855 0.580 0.617 0.624
~ May 26 (-4.13) (-5.41) (-8.48) (5.67) (6.21) (6.33)
[T=8 N=442, df=14] [42.37] [41.40] [36.39] [10.63] [10.42] [10.38]
June 12 -0.614 -0.637 -0.647 0.853 0,984 0.987
~ June 23 (-4.82) (-5.41) (-5.51) (7.17)  (9.39) (9.45)
[T=8 N=420, df=14] [32.76] [32.53] [32.45] [17.61] [14.12] [14.07]
June 16 -0.578 -0.588 -0.588 0.806 0.929 0.939
~ June 25 (-3.36) (-3.56) (-3.56) (7.13) (11.63) (11.90)
[T=8 N=454, df=14] [17.67] [17.63] [17.63] [19.68] [16.12] [15.98]
July 28 0.214 -0.177 -0.174 0.629 0.739 0.800
~ August 6 (-0.72) (-0.66) (-0.65) (3.41) (56.13) (6.15)
[7=8, N=408, df=14] [17.35] [17.15] [17.13} [9.68] [8.89] [8.55]
November 13 -0.374 -0.343 -0.241 0.589 0.569 0.552
~ November 25 (-1.67) (-1.59) (-1.11) (4.21) (4.12) (3.95)
[T=8, N=492, df=i4] [23.65] [23.63] [23.28] [14.79] [14.79] [15.12]

Notes:
(i) The year is 1998.

(ii) The 7'and Nare the number of time periods and the number of stock issues used for

estimations, respectively.

(iii) The ¢-values of estimates are reported in parentheses below estimates.

(iv) The Sargan test statistics of over-identifying restrictions are reported in brackets

below ¢-values. These are asymptotically chi-square-distributed with degree of freedom

df



