No. 857

Unbiased Test for a Location Parameter -Case of Logistic Distribution-

by

Yoshiko Nogami

April 2000

Unbiased Test for a Location Parameter (2).
---Case of Logistic Distribution---

By Yoshiko Nogami

Abstract.

In this paper we deal with the Logistic distribution with density

where $-\infty < \emptyset < \infty$. Based on a random sample X_1, \ldots, X_n of size n from the density $f(x|\emptyset)$ we consider the problem of the testing the null hypothesis $H_0: \emptyset = \emptyset_0$ versus the alternative hypothesis $H_1: \emptyset \neq \emptyset_0$ for some constant \emptyset_0 . We propose the test with the acceptance region derived from inverting the shortest confidence interval for \emptyset_0 and check if this test is unbiased.

\$1. Introduction.

In this paper we deal with Logistic distribution whose density is given as follows:

(1)
$$f(x|\theta) = -----, \quad \text{for } -\infty < x < \infty$$

$$\{1 + e^{-(x-\theta)}\}^{2}$$

provided that $-\infty < \theta < \infty$. Let X_1, \ldots, X_n be a random sample of size n taken from the density $f(x|\theta)$. We find in Section 2 the confidence interval (C. I.) for θ with the shortest length using — Lagrange's method. In Section 3 we consider the problem of testing the null hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ for some constant θ_0 . We propose the test with acceptance region derived from inverting the shortest C. I. for θ_0 . Let θ be a real number such that $0 < \theta < 1$. When n=2m+1 with m a nonnegative integer, we show that our test is unbiased and of size θ . But, when n=2m, because we use conventional device to get the C. I. for θ , we cannot show unbiasedness of our test. However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows.

Let = be the defining property.

§2. The Interval Estimation for θ .

Let X_1, \ldots, X_n be a random sample of size n taken from the population with the density (1). We find the shortest C. I. for θ using Lagrange's method.

Let n=2m+1 with m a nonnegative integer, until (14). Let $X_{(1)}$ be the i-th smallest observation of X_1, \ldots, X_n . We estimate ℓ by $Y=X_{(m+1)}$. To get the shortest C. I. for ℓ we first find the density of Y. Let $F(x|\ell)$ be the cumulative distribution function (c.d.f.) of X. Then, by (1) we get

(2)
$$F(x) = F(x|\theta) = \{1 + e^{-(x-\theta)}\}^{-1}, \text{ for } -\infty < x < \infty.$$

Hence, the density of Y is of form

(3)
$$g_{y}(y|\theta)=k(F(y))^{m}(1-F(y))^{m}f(y|\theta)$$
, for $-\infty < y < \infty$.

where

(4)
$$k=[(2m+2)/[[(m+1)]^2]$$

Let $\mathfrak q$ be a real number such that $0<\mathfrak q<1$. Let r_1 and r_2 be real numbers such that $r_1< r_2$. To find the shortest C. I. for θ at confidence coefficient $1-\mathfrak q$ we want to minimize r_2-r_1 under the condition that

(5)
$$P_{\theta}[r_1 < Y - \theta < r_2] = 1 - \epsilon.$$

But, it follows by a variable transformation W=F(Y) that

(6) the left hand side of (5) = $P_{\theta}[r_1 + \theta < Y < r_2 + \theta]$

$$=P_o[F(r_1+\theta)] < W < F(r_2+\theta)] = 1-\alpha$$
.

Hence, we want to minimize r_2-r_1 under the condition (6). To do so we use Lagrange's method. Let λ be a real number and define

 $F(r_2+\theta)$

(7)
$$\underset{\Gamma}{\text{L}=L(r_1, r_2; \lambda) = r_2 - r_1 - \lambda \{ \} }{\text{hw}(w) dw - 1 + \alpha }$$

$$F(r_1 + \beta)$$

where $h_w(w)$ is the density of W given by

(8)
$$h_w(w) = kw^m (1-w)^m$$
, for $0 < w < 1$

where k is given by (4). The right hand side of (8) is the probability density function(p.d.f.) of Beta distribution Beta(m+1, m+1) with (m+1, m+1)degrees of freedom. Then, by Lagrange's method we have that

(9)
$$\begin{cases} \partial L/\partial r_1 = -1 + \lambda h_w (F(r_1 + \theta)) f(r_1 + \theta \mid \theta) = 0 \\ \partial L/\partial r_2 = 1 - \lambda h_w (F(r_2 + \theta)) f(r_2 + \theta \mid \theta) = 0 \end{cases}$$

By (9) we get that

(10)
$$h_{w}(F(r_{1}+\theta))f(r_{1}+\theta|\theta)=h_{w}(F(r_{2}+\theta))f(r_{2}+\theta|\theta) (=\lambda^{-1}), \quad \forall \theta.$$

Taking

(11)
$$F(r_1+\theta)=\beta(\alpha/2) \text{ and } F(r_2+\theta)=1-\beta(\alpha/2)$$

where $\beta(\pi/2)$ is given by

$$\beta (\alpha/2)$$
(12)
$$\int h_w(w) dw = \alpha/2,$$

we obtain by (2) that $r_1 = -r_2 = -r$ where

(13)
$$r = F^{-1}(1-\beta(\alpha/2)) - \theta = \ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)].$$

We also have $h_w(F(-r+\theta))=h_w(F(r+\theta))$ and $f(-r+\theta|\theta)=f(r+\theta|\theta)$ with r given by (13). Thus, (10) and (6) are satisfied for $r_1=-r_2=-r$ with r given by (13). Therefore, the shortest C. I. for θ at confidence coefficient $1-\theta$ is given by

(14)
$$(Y-r, Y+r) = (Y-\ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)], Y+\ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)]).$$

Let n=2m. This time we estimate θ by Y=X_(m). In the similar way to the above we get the density of Y

(15)
$$g_{Y}(y|\theta)=k_{1}(F(y))^{m-1}(1-F(y))^{m}f(y|\theta), \text{ for } -\infty < y < \infty$$

where

(16)
$$k_1 = \Gamma(2m+1)/\{\Gamma(m)\Gamma(m+1)\}.$$

Putting W=F(Y) we minimize r_2-r_1 under the condition (6). However, since the density of W is now of form

(17)
$$h_i(w)=k_iw^{m-1}(1-w)^m$$
, for $0 < w < 1$

which is the p.d.f. of the Beta(m,m+1) distribution with k_1 defined by (16), it is difficult to get exact values for $F(r_1+\theta)$, i=1,2 which satisfy

(18)
$$h_1(F(r_1+\theta))f(r_1+\theta|\theta)=h_1(F(r_2+\theta))f(r_2+\theta|\theta).$$

Hence, we use conventional values for $F(r_1+\emptyset)$, i=1, 2. Those are

(19)
$$F(r_1+\theta)=\beta_{m,m+1}(\alpha/2)$$
 and $F(r_2+\theta)=1-\beta_{m+1,m}(\alpha/2)$

where $\beta_{m,m+1}(\mathfrak{g}/2)$ and $\beta_{m+1,m}(\mathfrak{g}/2)$ are respectively determined by

$$\beta_{m, m+1}(\alpha/2) \qquad \beta_{m+1, m}(\alpha/2)$$
(20)
$$\beta_{m+1, m}(\alpha/2) \qquad k_1 w^m (1-w)^{m-1} dw.$$
0 0

Thus, r_1 and r_2 are respectively given by

$$\begin{cases} x_1 = F^{-1}(\beta_{m, m+1}(\alpha/2)) - \theta = -\ln[\{1 - \beta_{m, m+1}(\alpha/2)\}/\beta_{m, m+1}(\alpha/2)] \\ x_2 = F^{-1}(\beta_{m+1, m}(\alpha/2)) - \theta = \ln[\{1 - \beta_{m+1, m}(\alpha/2)\}/\beta_{m+1, m}(\alpha/2)] \end{cases}$$

Threfore, the C. I. for θ at confidence coefficient $1-\alpha$ is

(22)
$$(Y-r_2, Y-r_1),$$

where r_1 and r_2 are determined by (21).

In the next section we check if the tests with the acceptance regions derived from inverting the C. I.'s (14) for n=2m+1 and (22) for n=2m, respectively are unbiased and of size a.

§3. Two-Sided Test for θ .

In this section we consider the problem of testing the null hypothesis H_0 : $\theta=\theta_0$ versus the alternative hypothesis $H_1:\theta\neq\theta_0$ for some constant θ_0 . We propose the two-sided test with the acceptance region derived from inverting the shortest C. I. for θ_0 . When n=2m+1 we show that our test is unbiased and of size θ . When n=2m our test is not unbiased because of usage of conventional method for constructing the C. I. for θ .

Let n=2m+1. As in Section 2 we define $Y=X_{(m+1)}$. By inverting the shortest C. I. (14) for θ_0 our test is to reject $Y\in (-\infty,\theta_0-r]\cup [\theta_0+r,+\infty)$ and to accept H_0 if $Y\in (\theta_0-r,\theta_0+r)$ where r is given by (13). Now, we show that this test is unbiased and of size θ .

Let y_1^0 and y_2^0 be real numbers depending on θ_0 such that $y_1^0 < y_2^0$. Define $\psi(\theta)$ by

(23)
$$\psi (\theta) = P_{\theta} [Y \langle y_{1}^{0} \text{ or } y_{2}^{0} \langle Y]]$$

$$Y_{2}^{0}$$

$$= 1 - \begin{cases} g_{Y}(y | \theta) dy \end{cases}$$

where $g_Y(y|\theta)$ is defined by (3). To get unbiased size- θ test with the acceptance region (y_1^0, y_2^0) we choose y_1^0 and y_2^0 which satisfy

(24)
$$\psi (\theta_0) = 1 - P_{\theta_0} [y_i^0 < Y < y_2^0] = q$$

and minimize $\psi(\theta)$ at $\theta = \theta_0$; namely

(25)
$$d\psi (\theta)/d\theta \bigg|_{\theta=\theta_0} = g_Y(y_2^0 | \theta_0) - g_Y(y_1^0 | \theta_0) = 0.$$

We consider the test with the acceptance region (θ_0-r,θ_0+r) . Since from the construction the equality (10) with $r_1=-r$, $r_2=r$ and $\theta=\theta_0$ is satisfied, we obtain by (3) and (8) that $g_Y(\theta_0-r|\theta_0)=g_Y(\theta_0+r|\theta_0)$; (25) is satisfied for y_1^0 and y_2^0 replaced by θ_0-r and θ_0+r , respectively. (24) with y_1^0 and y_2^0 replaced by θ_0-r and θ_0+r , respectively is the same as (5) except for θ , r_1 and r_2 replaced by θ_0 , -r and r_1 respectively. Therefore, our test with the acceptance region (θ_0-r,θ_0+r) is unbiased and of size θ .

Let n=2m. As in Section 2 we define $Y=X_{(m)}$. Again, by inverting the C. I. (22) for θ_0 our test is to reject H_0 if $Y\in (-\infty,\theta_0+r_1]\cup [\theta_0+r_2,+\infty)$ and to accept H_0 if $Y\in (\theta_0+r_1,\theta_0+r_2)$ where r_1 and r_2 are given by (21). In this case our test depends on the conventional values for $F(r_1+\theta)$, i=1,2. Hence, we have that $g_Y(\theta_0+r_1|\theta_0)+g_Y(\theta_0+r_2|\theta_0)$. Furthermore, (24) with y_1^0 and y_2^0 replaced by θ_0+r_1 and θ_0+r_2 , respectively is the same as (5) except for θ replaced by θ_0 . Therefore, our test is still of size θ , but not unbiased. However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows.