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Unbiased Test for a Location Parameter (2).

———Case of Logistic Distribution——

By Yoshiko Nogami

Abstract.

In this paper we deal with the Logistic distribution with density
e (x-0)
f(xl0)y= ——m————, for —wx<w

{1l+e- (x-9) }2

where —w<j<n, Based on a random sample X,, ...,X, of size n from the density
£f(x|1) we consider the problem of the testing the null hypothesis Hy:0=0,
versus the alternative hypothesis H, :##¢, for some constant §,. We propose
the test with the acceptance region derived from inverting the shortest

confidence interval for ¢, and check if this test is unbiased.



§l. Introduction.

In this paper we deal with Logistic distribution whose density is given

as follows:

o= (x-0)

{1) E(xit)= , for -m<x<w

{1+ e" (x=10) }2

provided that -w<f«w. TLet X;, ... ,X, be a random sample of size n taken from
the density f(x|¢). We find in Section 2 the confidence interval (C. I.) for §
with the shortest length using © Lagrange’ s method. 1In Section 3 we consider
the problem of testing the null hypothesis H,:0=(), versus the alternative
hypothesis H, :8+#0, for some constant #,. We propose the test with acceptance
region derived from inverting the shortest C. I. for 4,. Let ¢ be a real
number such that 0<g<l. When n=2m+l with m a nonnegative integer, we show that
our test is unbiased and of size s. But, when n=2m, because we use conventional
device to get the C, I, for §, we cannot show unbiasedness of our test.
‘However, for large m our test becomes almost unbiased as the test in case of
n=2m+l1 shows.

Let = be the defining property.

§2. The Interval Estimation for §.

Let ¥X;, ... ,X, be a random sample of size n taken from the population
with the density (1). We find the shortest C. I. for § using Lagrange’s
method.

Let n=2m+] with m a nonnegative integer, until (14). Xet X, be the
i-th smallest observation of X,, ... ,X,. We estimate § by Y<X (u.sy) -

To get the shortest C. I. for § we first find the density of Y. Iet F(x|f#) be
the cumulative distribution function (c.d.f.) of X. Then, by (1) we get

(2) F(X)=F(x[f)= {1+ e~ ‘*~® }~}  For -w<x<on.



Hence, the density of Y is of form

(3) gy (¥10)=k(F(y) )= {1-F(y) )"E(yvIit ), for —wey<o.
where
(4) k=[ (2m+2) /{7 (m+1) }*.

Let ¢ be a real number such that O«<r<l. ILet r, and r, be real numbers such that
r,<r,. 'To find the shortest C. I. for ¢ at confidence coefficient 1-g¢ we want
to minimize r,-r, under the condition that
(5) Pg [I.'l (Y_ﬂ (rz:l:l'_[!-
But, it follows by a variable transformation W=F(Y)} that
(6) the left hand side of (5) = Py[r,+) <Yer,+4]
=Pa [F(rl ""B ) (W(F(r2+ﬂ )]=l_ﬂ.
Hence, we want to minimize r,-r; under the condition (6). To do so we use
Lagrange’ s method. Let ) be a real number and define
F(r,+§)
(7) LAL(ry, Tz ;A )5 —r—h{ | hy (w) dw —1+g}
F{xr, +1)
where hy(w) is the density of W given by
(8) hy (w)=kw® (1-w)", Ffor 0«w«l
where k is given by (4). 'The right hand side of (8) is the probability density

function(p. d. £. ) of Beta distribution Beta(mt+l,m+l) with (m+l,m+l)degrees of
freedom. Then, by Lagrange’ s method we have that



dL/dr;= -1 + \hy(F(r,+0))E(x, +0[8)=0 -

(9)
dL/dry=1 - lhw(F(r2+9))f(r2+B [ §)=0

By (9) we get that

(10) Dy (Fx,+0))E(x +8 |8 )=he (F{xa+8))E(x,+0 18) (=271), V.
Taking
(11) F(r,+0)=f(a/2) and F(xr;+0)=1-f(2/2)

where j(e/2) is given by
Bla/2)
(12) f he (W) dw =1a/2,
0
we obtain by (2) that r,=-r,=-r where
(13) r=F ' (1-p(a/2))—0 = Inl{1-f(e/2)}/$(a/2}].
We also have hw(F(—r+ﬂ)}=hw(ﬁ(r+ﬂ)) and F{-r+§ |0)=F(xr+0 |8} with r given by (13}.
Thus, (10} and (6) are satisfied for r,=-x,=-r with r given by {13). Therefore,
the shortest C. I. for § at confidence coefficient l—¢ is given by

(14) (Y—r, Y+r)=(Y-In[{1-§ {0 /2)}/§ (e /2) ], Y+In{ {1~ (¢/2)}/B (¢ /2)]).

Let n=2m, This time we estimate § by ¥=X(, . In the similar way to the
above we get the density of ¥

(15) gy (v18)=k; (F(¥) )= ' {1-F(y))=£(yl¢), for -mcy«w



where

(16) k=T (2m+1)/{T (m)T (m+1)}.

Putting W=F(Y) we minimize r,-r, under the condition {(6). However, since the

density of W is now of form

(17) h; (w)=k,wo~!(1-w)=, for COeow<l

which is the p.d.f. of the Beta(m,m+l) distribution with k, defined by (16},
it is difficult to get exect values for F(r,+#), i=l, 2 which satisfy

(18) hy (F(r +8 ) E(x +8 [8)=h, (F(x+0))E(x,+010).
Hence, we use conventional values for F(r,+{), i=1,2. Those are
(19) F(r,+80)=fn. o+1(0/2) and F(r,+0)=1-f54+,. nle/2)
where f,, n+)(0/2) and o+, n(1/2) are respectively determined by
B, me1(2/2) Bu+1, m(a/2)
(20) f h)(w) éw =¢/2 = § kywe (1-w)==! dw.

H 0

Thus, r, and r; are respectively given by

‘r1=F_1(ﬂm.m+1(ﬂ/2))_3 _ln[{l"ﬂm.m+1(ﬂ/2)}/ﬂm.m+1(ﬂ/2)]

(21)

Y=F ' (fns+y. m{2/2))-0 In{{l-fn+s. ue/2)} / Bust. m(2/2)]
Threfore, the C. I. for § at confidence coefficient 1-g is

(22) (Y“'IZIY_rl )r

where r, and r, are determined by (21).



6.
In the next section we check if the tests with the acceptance regions
derived from inverting the C. I.'s (14) for n=2mtl and (22) for n=2m,

respectively are unbiased and of size .

§3. Two-Sided Test for §.

In this section we consider the problem of testing the null hypothesis Hg:
=0, versus the alternative hypothesis H, :§#(, for some constant f§,. We
propose the two-sided test with the acceptance region derived from inverting
the shortest C. I. for f{,. When n=2m+l we show that our test is unbiased and
of size g. When n=2m our test is not unbiased because of usage of conventional
method for constructing the C. I. for §.

Iet n=2m+l. As in Section 2 we define Y=X(y.,,. By inverting the shortest
C. IT. (14) for ¢, our test is to. reject Ye(—w, §,—xrllU[dq+r, +n} and to accept Hy
if Ye{f,—x, fotr) where r is given by (13). Now, we show that this test is
unbiased and of size ¢.

Let v;? and y,° be real numbers depending on §, such that v, %<y,° Define
P (8) by

(23} P (0)=P, [Yy,° or y,%«]
YZD

=1-{ gy(ylt) dy
v,°

where gy (yl|8) is defined by (3). To get unbiased size-¢ test with the acceptance

region (v,°,v¥:°) we choose y,° and y,? which satisfy
(24) P (8o )=1_Poo [vi®<¥<y,®]=¢
and minimize 1 (#) at #=f,; namely

(25) dp (8) /48 = gy (V2 100)-gv (¥,:% 8, }=0.
5=ﬂo



We consider the test with the acceptance region (d,-r,f,+r). Since from
the construction the equality (10) with r;=-r, r,=r and =0, is satisfied, we
cbtain by (3) and (8) that gy (0o-X|l0s)=gv{foirify); (25) is satisfied for vy,°
and y,° replaced by §,-r and {,+r, respectively. (24) with y,° and y,° replaced by
fo—1r and 0,+r, respectively is the same as (5} except for ¢, r, and r, replaced
by 8., -r and r, respectively. Therefore, our test with the acceptance region
{(0o—1x,0s+xr) is unbiased and of size ¢.

Iet n=2m. As in Section 2 we define ¥Y=X(, . Again, by inverting the C. I.
(22) for 0, our test is to reject Hy if Ye(~w, f4+r, JU[f,+1;, +0) and to accept
Hy if Ye{fdy+r,,0o+r;) where r, and r, are given by (21). In this case our test
depends on the conventional values for F(r,+§), i=1,2. Hence, we have that
gy (Bo+r, [80)#9y (fo+rs|8,). Furthermore, (24) with y,° and y,° replaced by
fo+r, and f4+r,, respectively is the same as (5) except for | replaced by ;.
Therefore, our test is still of -size ¢, but not unbiased. However, for large m

our test becomes almost unbiased as the test in case of n=2m+l shows.



