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Unbiased Tests for location and Scale Parameters

———Case of Cauchy Distribution———

By Yoshiko Nogami

Abstract.
In this paper we deal with Cauchy distribution with the density
E(xif, &)= tx " '{E2+ (x- 0)?}7L, for -mx«om

where —w<f<«w and {>0.

We first consider {=1. Based on a random sample of size n from F(xl8,1)
we consider the problem of testing the null hypothesis H,:)=f, versus the
alternative H, :§#4, for some constant §,. We propose -t_he test with the
acceptance region derived from inverting the shortest confidence interval
(C. I.) for §, and check if this test is unbiased. '

We .secondly consider §=0. This time we consider the problem of testing
Hp : =t 0. versus H, :f#f, fo::_' some constant {,. We again propose the test with
acceptance region derived from inverting the C. I. for f{, and check if this
test is unbiased.



§l. Introduction.

In this paper we deal with Cauchy distribution whose density is given as

follows:
(1) £i(x|0,8) = ¢z~ {2 + (x-0)2}7! For —m<x<m
provided that —w<f<o and {>0.

Let < be the defining property. We first consider the density f{x{f§)=
F(xig,1). Iet X,, ...,X%X, be a random sample of size n taken from the density
£(xl8). We find in Section 2 the confidence interval(C. I.} for the location
parameter ¢ with the shortest length using Lagrange’ s method. In Section 3 we
consider the problem of testing the mull hypothesis K, :0=¢, versus the
alternative hypothesis H, :4#§, for some constant §,. We propose the test with
the acceptance region derived from inverting the shortest C. I. for f,. Let a
be a real number such that Q<¢<l. When n=2n+1 with m & nonnegative integer, we
show that our test is unbiased and of size g. But, when n=2m, because we use
conventional method to get the C. I. for #, we cannot show unbiasedness of our
test. (However, for large m our test becomes almost unbiased as the test in

case of n=2m+1 shows. )

In the second half We consider the density £(x|t)=f(x|0,{). Based on a
random sample of size n from the density £ (.xlg) we find in Section 4 the C. I.
for the scale parameter {. In Section 5 we consider the problem of testing
H,:f=t, versus H,:{+f{, for some constant {,. Again we propose the test with
acceptance region derived from inverting the C. I. for f,. When n=2m+l, we
show that our test is unbiased and of size ¢. But, in the same reason as that
for § our test is not unbiased when n=2m. (However, for large m our test

becomes almost unbiased as the test in case of n=2m+l shows. )



§2. The Interval Estimation for §.

in this section we deal with the density
(2) F(x|0)EE(x10, L)=m " {1+(x-§)2}"}, for —m<x<we
where —w<f<w. We find the shortest C. I. for § using Lagrange’s method.

Let n=2m+] with m a nonnegative integer, until (15). Iet X, be the i-th
smallest observation of X,, ... ,X,. We estimate | by ¥Y=X(n+1,. To get the
shortest C. I. for § we first find the density of ¥. Let F(x|f) be the
cumilative distribution function(ec.d.f.) of X. Then, by (2) we get

(3) F(x)=F(x|f§)=m "‘tan™'(x-§) +27¢, for —m<x<m,

Hence, the density of ¥ is of form

{4) gy (v]18)=k(F(y) )= (1-F{y))"E(¥|0 ), for —w<ey<w
where
{5) k= F{2m+2) /([ (m+1)}2.

Tet a be a real number such that 0<g<l. Tet r; and r; be real numbers such
that r;<r,. To find the shortest C. I. for { at confidence coefficient 1-¢
we want to minimize r,-r, under the condition that

(6) Pg[rl £ Y_B < 1’."2] = l_ﬂo

But, it follows by a variable transformation W=F(Y) that

the left hand side of (6)=P,[r +§ <¥< ry+i]
(7) =P, [F(r,+0) W< F{rp+§)l=1-¢.



Hence, we want to minimize r,-r, under the condition (7). To do so we use

Lagrange’ s méthod. ILet | be a real number and define
Flry+0)

(8) LAL(r,, £z 04 )=Try=x; =L {] hy({w) dw -1+ @}
F(r,+0)

where hy(w) is the density of W given by

(9) hy (W) =kw={l-w)3, for Q«w«<l

where k is given by (5). The right hand side of (9) is the probability density

function (p.d.f.) of Beta distribution Beta(mt+l,mt+l) with (m+l,m+l) degrees of

freedom. Then, by Lagrange’ s method we have that

AL/ r;y = —l+ihyw(F(x,+§))E(x,+0[0)=0

(10)

i

dL/d Xy 1- by (F(r,+0 ) )E(x,+0]10) = 0

By (10) we get

(11) hy (F(x, +0 ) )E(x,+0 |0 )=hy (F(xs+0 ) YE(To 4§ 18) (=171),
Taking
(12) F(r,+0)=p(a/2) and F(r;+§)=1-f{(a/2)

where f{a¢/2) is given by
B{a/2)

(13) f hy (w) Qw=a/2
0

we obtain by (3) that r,=-1r, =-r where

(14) r=F~ (1-§{(e/2))—0 = tan[(2"'-§(e/2))x].

vo.



We also have that hg (F(-x+0))=hg(F(x+§)) and £(-r+8 |§)}=£(x+i [#) with r given
by (14). Thus, (11) and (7) are satisfied for r,=-r,=-r with r given by (14).
Therefore, the shortest C. I. for | at confidence coefficient 1-q¢ is given by

(15} (Y-r, Y+r)= (Y-tan[(2"*—f(e/2))z], Yt+tan[{(27'-f(a/2))x]).

Let n=2m. This time we estimate § by ¥Y=X(, . In the similar way to the
above we get the density of Y as follows:

(16) gy (v10)=k, (F(y))= ' {1-F(y))"E(¥li), for —w<y«m
where
(17) k=T (2m+1) /{T (m)[' (m+l)}.

Putting W2F(Y) we minimize r,-r, under the condition (7). However, since the

density of W is now of form
(18) h, (w)=k,w=" ! (1-w)®, for O«w<l

which is the p.d.f. of the Beta(m,m+l) distribution with k; defined by (17},
it is difficult to get exact values for F(r,+f),i=1, 2 which satisfy

{19) h, {F(x, +b )D)f(r1+ﬂ |8 Y=h (F({xr,+0})E(x,+0108)-.

Hence, we use conventional values for F(r;+f#),i=l, 2. Those are

(20) F(ri40)=fn. ws+1 (€/2) and F(r,+§)=1—- funsy, «(0/2)

where fp. m+1(0/2) and fn+;. n(0/2) are respectively determined by
fr. m+1(2/2) Bro+1, m(0/2)

(21) f h, (w) dw =q/2=( kywo{l-w)=~! dw.
0 0



Thus, by (3) r, and r, are respectively given by

T =F " (B, mea (2/2) )0 = — tan{ (27 —fq. neo (2 /2))1],
(22)
ro=F ' (1-fae1. me/2))-0 = tan {27 ' —fosy, n(e/2})n].
Therefore, the C. I. for § at confidence coefficient l-¢ is
(23) (¥-T, Y-1, )E(Y-tanl (27 ~Buus. w (/2))8], YHAN[(27 ' ~fn nei(2/2))5]).
In the next section we check if the tests with the acceptance regions

derived from inverting the C. I.'s (15) for n=2m+l and (23) for n=2m are

unbiased and of size ¢.

§3. Two-Sided Test for §.

In this section we consider the problem of testing the null hypothesis
Hq 0=, versus the alternétive hypothesis H, :{#f, for some constant f,. We
propose the two-sided tests with the acceptance regions derived from inverting
the (shortest) C. I.’s for #, cobtained in Section 2. When n=2m+l, we show that
our test is unbiased and of size ¢. When n=2m, our tesi is not unbiased
because of usage of conventional method for comstructing the C. I. for ¢.
Let n=2m+l. As in Section 2 we define ¥=X,..,,. By inverting the shortest
C. I. (15) for #, our test is to reject Hy if Ye(-w,d,~xril[f,+T,+w) and to
accept By, if ¥e(fo,—r, )o+r) where r is given by (14). Now, we show that this
test is unbiased and of size g¢.
Let v,° and y,? be real numbers depending on ¢, such that y,°«y.°. Define
P (§) by
vz *
(24) () = P[Yey,® or y,°¥) =1-1{ gav(yld) &y
v,°

where ay(y!0) is defined by (4).
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To get unbiased size—¢ test with the acceptance region (v1",v:%) we choose

v,? and y,° which satisfy
(25) P (hed=1 ‘“Pno {¥.:%<¥<y,; %3 =a
and minimize % (0) at 0=0,; namely

(26) dz (0)/ds = gy (Y2 180)-gv(v: %10, )=0,
Bzﬂo

We consider the test with the acceptance region (do—T,0p+r). Since from the
construction the equality (11) with r,=-r, r,=r and §=§, is satisfied, it
follows from (4) and (9) that gy(lo—Tl0o)=gy(o+rlf,); (26) is satisfied for v,
and vy, ° replaced by §,-r and fo+r, respectively. (25} with y,° and y,° replaced hy
fo—r and ),+r, respectively is the same as (6) except for 4, r; and r, replaced
by #,, —r and r, respectively. Therefore, our test with the acceptance region
(8o-1, fo+r) is unbiased and of size g. .

Let n=2m. As in Section 2 we define Y2X(, . Again, by inverting the C. I.
(23) for §, our test is to reject H, if Ye(—o, o+, JU{fo+xry, +0) and to accept H,
if Ye(fo+r,,fo+r,) where r, and r, are given by (22). In this case our test
depends on the conventional values for F(r,+f), i=1, 2. Hence, we have that
gy (8o+Try [8e)#gy(fo+r2 |8, ). Furthermore, (25) with y:1? and y,° replaced by f§,+r;
and f,+r,, respectively is the same as (6) except for ¢ replaced by §,. Thus,
our test is of size ¢, but is not unbiased. However, for large m our test
becomes almost unbiased as the test in the case of n=2m+l shows.

In the next iwo sections we deal with the scale parameter {. In Section 4
we obtain the C. I. for { and in Section 5 we check if two-sided test with

acceptance region derived from inverting the C. I. for ty is unbiased.

§4. The Tnterval Estimation for ¢.

In this section we consider the demnsity (1) with §=0;

(27) E(x1§)=£(x]0, £)=tr~1{t24x2}"!, for —w<x<w

provided that {»0.
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let X,, ... ,X, be a random sample of size n taken from the population with
density £(x|{). Again, we first consider the case of n=2m+1 with m a

nonnegative integer and secondly the case of n=2m. Putting ¢{*2In ¢ we have
* *
f(x|£)=u“1e'—5 {1+eztlnlxl - £7) }—‘1’ for —-o<xcm,

Thus, letting Z=1ln|X| and Z(,, be the i-th smallest cbservation of Z,, ... ,Z
we estimate {* by Y22 y.+;, when n=2m+l and by Y=Z (v when n=2m, respectively.
We find the C. I.’s for { according to these estimates.

We beforehand derive the distribution of Z. Since x=e®* for x>0; x=-e* for
x<0; z=—0 for x=0, by a variable transformation Z=In|X| the density of Z is

obtained as follows:
qz (2)3qz (z¢)=E(e* 1§) |der /dz] + £(-e* |¢)|d(-e*)/dz]
e ¢t
(28) =2~ ——————, —W <20
1+e2 (z-‘é*)

where —w<t*<ow. Since qz(2*-z)=q;(2), 4d;(z) is symmetric about z={* and the
unimodal function with the mode f*.

Now, we let n=2m+l until (37). We estimate {* by Y=Z(g.;) . Letting Qg (z)
be the c.d.f. of Z we obtain by (28) that
(29) 0,(2)%0; (z|t)= 21~ ! tan~*(e*~+"), for —wc<z<am.

The p.d. £. gy (yl$) of Y is derived as follows:

(30) gy (¥ 18)=k(0Qz (¥))™(1-Q: (¥))"qz (¥), £for —wcy«o.
Let ¢ be a real number such that O<p<l. Let r, and r; be real numbers such
that O<r,«<r,. To find the C. I. for ¢ at confidence coefficient 1-¢ we want

to find r, and r, under the condition that

(31) P, [r,e¥¢ { <«rye’] = l-q.



But, it follows by a variable transformation W=Q,(Y) that

the left hand side of (31)=P.[~-1In ry¢ Y-{* <-In r,}
(32) =P, [Qz {t*-1n ry) W< Q(¢{*-In x,)]=1-1.

Hence, we want to find r, and r, which minimize Q;({*-1ln r,)-Q, ({*-1n r,) under
the condition (32). To do so we use Lagrange’ s method. Let ] be a real
number and define

LEL(Qy (¢ —1n ), Qz (§*—1n Xy ) ;1)
Q{t*-1n ,)
(33) 20, (¢*~1In r,; )-Qz (¢*—1n ry)-1{] hy(w) dw -1 +¢}
Q(¢*-1n x,)

where hy{w) is defined by (9). Then, by Lagrange’ s method we have that

i

dL/3Q(¢*1In r, ) 1-1 hg(Q:(¢{*-1n x,)=0
(34) {

[l

dL/3Q(i"-1n xry) = -1+ hw(Qz.(E*-ln T, )=0
By (34) we get
(35) he(Qx (¢*-In 1) )=he(Qz ({*-1n 13)) (S171), vé.
Taking

Q (t"-1In ry)=f(e/2) and Q. (¢{*-In r,)=1-4{0/2)
where §(2/2) is given by (13), we obtain by {(29) that

ri=[tan{2 ' r(1-§ (¢/2)}}]17}
(36) {

r.=[tan{2 ‘xf(e/2)}1°!}
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and furthermore (35) and (32) are satisfied for r, and r, given by (36).

Therefore, the C. I. for { is given by
(37) (r,e¥, r,e¥)=([tan{2 'z (1-B(1/2)}}]1 te¥, [tan{27'xf(a/2)}]1 'e¥).

We now consider the case of n=2m. In this case we estimate {* by Y=Z () -

Then, the p.d.f. of Y is given by

(38) gy (18 )=k, (Qz(¥) )™ 1 (1-Qz (¥) }"qz (¥), For —w<cy<w

vwhere k, is given by (17). To find the C. I. for { at confidence coefficient 1—g

we want to find r, and r, with 0«<r;«<r, under the condition that
(39) P, [rye¥ <t «re¥]=1l-1.
But, it follows by a variable transformation W=Q; (Y¥) that
the left hand sidel of (39)=P;[-1n r,<«¥-{*<—1ln r,]
(40) =P, [Q,(¢*-1n 1)< W < Q;(t*—1n xr;)]=1-1.
Hence, we want to find r, and r, which minimize Q; (t*-1n r; )—Qz({*~1n r;} under
the condition (40). Going through the similar process to (33) through (35),

we get

(41) hy (Q (§*-1n x,))=h, (Qz (§*-1n x3}) (=A1), V¢

where h, (w) is the density of W given by (18). However, again it is difficult
to get exact values of Q;({*-1n r,), i=l, 2 which satisfy (41) (and furthermore
q(¢*-1n r, )=z ({*-1n r; ) ). Hence, we use conventional values for Q;({*-ln x;),

i=1, 2. Those are

(42) Q; (¢*—1n Tp)=Pn, me:(e/2) and Q({*-1In r)=l-fns1, m(2/2)
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where fm. ms+1 (0/2) and fq..,. n(2/2) are respectively determined by (21).
Thus, by (29) we obtain

ri=[tan{2 g (1-fne1. u (¢ /2))}]174,
(43}

r2=[tan{2_lﬁﬂm. m+ L (ﬂ/z)}]_l-
Therefore, the C. I. for ¢ is
(44) (r,e¥, r,e’)

where r, and r, are given by (43).

§5. Two-Sided Test for §.

In this section we consider the problem of testing the hypothesis H, tf=f,
versus the alternaiive hypothesis H, :{#{, for some constant {,. We propose
the test with the acceptance region . derived from inverting the C. T. for
to. Let n be the size of the random sample X;, ...,X,. When n=2m+l withm a
nonnegative integer, we show that this test is unbiased and of size 1. When
n=2m, our test is of size @, but cannct be unbiased because we use the
conventional device to determine the C. I. for ¢{. However, it will be almost
unbiased for large m.

Let n=2m+l. As in Section 4 we let Z=Iln|X| and Z,, be the i-th smallest
observation of Z;, ...,Z,. Let {,*=1n [, and define Y=Z ,.,,. By inverting the
C. I. (37) for {, our test is to reject Hy if Ye(-u,{,*-1In r, IU[¢{o*~-1n r,, +0)
and to accept H, if ¥e({o,*-1ln r., to,*-1In r;) where r, and r, are given by (36).
Now, we show that this test is unbiased and of size g.

Let y,9 and v,° be real numbers depending on {, such that y,°«y,?. Define
P (E) by

P (§)=P. [Yy;° or y,°<Y]

Yzo
(45) =1-1 gy (ylE) dy

¥e°
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where gy (yl{) is given by (30). To get unbiased size—¢ test with acceptance

region (y,°,y.%) we choose y,° and y,° which satisfy
(46) P (o= 1 ~— P, [¥:1°<¥< ¥:°] = ¢
and minimize % (¢} at f=f,; namely

(47) dw (¢)/dt =to " lgy{¥2® lEo) o~ 0y (¥, % [£0)=0
E=t,

Let y,*=t*-ln r, and y,*={,*-1n r,. Then, since q,(y.* [Eo)=x"'sin{zf(a/2}}
=t~ 'sin{n (1-f(a/2))}=a; (y:*t,), and since, from construction and (35),
by (Qz (¥:17))=hw (Qz (y: %)), we obtain by (30) and (9) that gy (y:*[£0)=gy(¥2*1t0)-
Therefore, (y,;*, y.*) satisfies (47). On the other hand, (46) with y,° and y,°
replaced by v,* and v.*, respectively is the same as ?(40) except for ¢ replaced
by ¢, Therefore, our test with the acceptance regic‘m (v,*,¥:") is unbiased
and of size ¢.

Let n=2m. As in Section 4 we define Y22, . Again, by inverting the C. I.
(44) for ¢, our test is to reject H, if Ye(-w, ¢,*-1In r,]U(¢c*-1n r;,+0) and
to accept Hy, if Ye({,*-1In r,, {,*-1n r,) where r, and r, are determined by (43).
In this case our test depends on the conventional values for Q, (¢*-1ln r;), i=1, 2.
So, we have gy({e*-1n 1, |{,)#gy(¢o*~In r,|{,). Furthermore, (46) with v.:°% and
y:° replaced by {,*-1n r, and {,*-1n r,, respectively is the same as (40) except.
for { replaced by {,. Thus, our test is still of size-¢, but is not unbiased.
However, for large m our test becomes almost unbiased as the test in case of

n=2m+1 shows.



