No. 856

Unbiased Tests for Location and Scale Parameters
-Case of Cauchy Distribution-

by

Yoshiko Nogami

April 2000

Unbiased Tests for Location and Scale Parameters ----Case of Cauchy Distribution----

By Yoshiko Nogami

Abstract.

In this paper we deal with Cauchy distribution with the density

$$f(x|\theta,\xi) = \xi \pi^{-1} \{\xi^2 + (x-\theta)^2\}^{-1}, \text{ for } -\infty < x < \infty$$

where $-\infty < \theta < \infty$ and $\xi > 0$.

We first consider $\xi=1$. Based on a random sample of size n from $f(x|\theta,1)$ we consider the problem of testing the null hypothesis $H_0: \theta=\theta_0$ versus the alternative $H_1: \theta\neq\theta_0$ for some constant θ_0 . We propose the test with the acceptance region derived from inverting the shortest confidence interval (C. I.) for θ_0 and check if this test is unbiased.

We secondly consider $\theta=0$. This time we consider the problem of testing $H_0: \xi=\xi_0$ versus $H_1: \xi\neq\xi_0$ for some constant ξ_0 . We again propose the test with acceptance region derived from inverting the C. I. for ξ_0 and check if this test is unbiased.

§1. Introduction.

In this paper we deal with Cauchy distribution whose density is given as follows:

(1)
$$f(x|\theta,\xi) = \xi \pi^{-1} \{\xi^2 + (x-\theta)^2\}^{-1}$$
 for $-\infty < x < \infty$

provided that $-\infty < \emptyset < \infty$ and $\{>0$.

Let $\mathring{=}$ be the defining property. We first consider the density $f(x|\theta)\mathring{=}$ $f(x|\theta,1)$. Let X_1,\ldots,X_n be a random sample of size n taken from the density $f(x|\theta)$. We find in Section 2 the confidence interval(C. I.) for the location parameter θ with the shortest length using Lagrange's method. In Section 3 we consider the problem of testing the null hypothesis $H_0:\theta=\theta_0$ versus the alternative hypothesis $H_1:\theta\neq\theta_0$ for some constant θ_0 . We propose the test with the acceptance region derived from inverting the shortest C. I. for θ_0 . Let θ be a real number such that $0<\theta<1$. When θ is a nonnegative integer, we show that our test is unbiased and of size θ . But, when θ because we use conventional method to get the C. I. for θ , we cannot show unbiasedness of our test. (However, for large m our test becomes almost unbiased as the test in case of θ n=2m+1 shows.)

In the second half We consider the density $f(x|\xi) = f(x|0,\xi)$. Based on a random sample of size n from the density $f(x|\xi)$ we find in Section 4 the C. I. for the scale parameter ξ . In Section 5 we consider the problem of testing $H_0: \xi = \xi_0$ versus $H_1: \xi \neq \xi_0$ for some constant ξ_0 . Again we propose the test with acceptance region derived from inverting the C. I. for ξ_0 . When n=2m+1, we show that our test is unbiased and of size ℓ . But, in the same reason as that for ℓ our test is not unbiased when n=2m. (However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows.)

§2. The Interval Estimation for 0.

In this section we deal with the density

(2)
$$f(x|\theta) = f(x|\theta, 1) = \pi^{-1} \{1 + (x - \theta)^2\}^{-1}$$
, for $-\infty < x < \infty$

where $-\infty < \theta < \infty$. We find the shortest C. I. for θ using Lagrange's method. Let n=2m+1 with m a nonnegative integer, until (15). Let $X_{(1)}$ be the i-th smallest observation of X_1, \ldots, X_n . We estimate θ by $Y=X_{(m+1)}$. To get the shortest C. I. for θ we first find the density of Y. Let $F(x|\theta)$ be the cumulative distribution function(c.d.f.) of X. Then, by (2) we get

(3)
$$F(x) = F(x|\theta) = \pi^{-1} \tan^{-1}(x-\theta) + 2^{-1}$$
, for $-\infty < x < \infty$.

Hence, the density of Y is of form

(4)
$$g_{Y}(y|\theta)=k(F(y))^{m}(1-F(y))^{m}f(y|\theta)$$
, for $-\infty \langle y \langle \infty \rangle$

where

(5)
$$k = \lceil (2m+2)/(\lceil (m+1))^2$$
.

Let α be a real number such that $0 < \alpha < 1$. Let r_1 and r_2 be real numbers such that $r_1 < r_2$. To find the shortest C. I. for ℓ at confidence coefficient $1-\alpha$ we want to minimize r_2-r_1 under the condition that

(6)
$$P_{\theta}[r_1 < Y - \theta < r_2] = 1 - \alpha$$
.

But, it follows by a variable transformation W=F(Y) that

the left hand side of (6)=
$$P_{\theta}[r_1+\theta < Y < r_2+\theta]$$

(7) = $P_{\theta}[F(r_1+\theta) < W < F(r_2+\theta)]=1-\alpha$.

Hence, we want to minimize r_2-r_1 under the condition (7). To do so we use Lagrange's method. Let λ be a real number and define

$$F(r_2+\theta)$$

(8)
$$L=L(r_1, r_2; \lambda) = r_2 - r_1 - \lambda \{ \}$$
 $h_w(w) dw - l + \alpha \}$ $F(r_1 + \theta)$

where $h_w(w)$ is the density of W given by

(9)
$$h_w(w) = kw^m (1-w)^m$$
, for $0 < w < 1$

where k is given by (5). The right hand side of (9) is the probability density function (p.d.f.) of Beta distribution Beta(m+1,m+1) with (m+1,m+1) degrees of freedom. Then, by Lagrange's method we have that

(10)
$$\begin{cases} \partial L/\partial r_1 = -1 + \lambda h_W (F(r_1 + \theta)) f(r_1 + \theta | \theta) = 0 \\ \\ \partial L/\partial r_2 = 1 - \lambda h_W (F(r_2 + \theta)) f(r_2 + \theta | \theta) = 0 \end{cases}$$

By (10) we get

(11)
$$h_{w}(F(x_{1}+\theta))f(x_{1}+\theta|\theta)=h_{w}(F(x_{2}+\theta))f(x_{2}+\theta|\theta)(=\lambda^{-1}), \quad \forall \theta.$$

Taking

(12)
$$F(r_1+\theta)=\beta(\alpha/2)$$
 and $F(r_2+\theta)=1-\beta(\alpha/2)$

where $\beta(a/2)$ is given by

$$\beta (a/2)$$
(13)
$$\int h_w(w) dw = a/2$$
0

we obtain by (3) that $r_1 = -r_2 \stackrel{\bullet}{=} -r$ where

(14)
$$r=F^{-1}(1-\beta(\alpha/2))-\theta = \tan[(2^{-1}-\beta(\alpha/2))\pi].$$

We also have that $h_w(F(-r+\ell))=h_w(F(r+\ell))$ and $f(-r+\ell|\ell)=f(r+\ell|\ell)$ with r given by (14). Thus, (11) and (7) are satisfied for $r_1=-r_2=-r$ with r given by (14). Therefore, the shortest C. I. for ℓ at confidence coefficient $1-\ell$ is given by

(15)
$$(Y-r, Y+r) = (Y-\tan[(2^{-1}-\beta(\alpha/2))\pi], Y+\tan[(2^{-1}-\beta(\alpha/2))\pi]).$$

Let n=2m. This time we estimate \emptyset by $Y\stackrel{*}{=}X_{(m)}$. In the similar way to the above we get the density of Y as follows:

(16)
$$g_{Y}(y|\theta)=k_{1}(F(y))^{m-1}(1-F(y))^{m}f(y|\theta)$$
, for $-\omega < y < \infty$

where

(17)
$$k_1 = \Gamma(2m+1)/\{\Gamma(m)\Gamma(m+1)\}.$$

Putting W=F(Y) we minimize r_2-r_1 under the condition (7). However, since the density of W is now of form

(18)
$$h_1(w)=k_1w^{m-1}(1-w)^m$$
, for $0 < w < 1$

which is the p.d.f. of the Beta(m,m+1) distribution with k_1 defined by (17), it is difficult to get exact values for $F(r_1+\theta)$, i=1, 2 which satisfy

(19)
$$h_1(F(r_1+\theta))f(r_1+\theta|\theta)=h_1(F(r_2+\theta))f(r_2+\theta|\theta).$$

Hence, we use conventional values for $F(r_i+\emptyset)$, i=1, 2. Those are

(20)
$$F(r_1+\theta)=\beta_{m,m+1}(\alpha/2)$$
 and $F(r_2+\theta)=1-\beta_{m+1,m}(\alpha/2)$

where $\beta_{m,m+1}(\alpha/2)$ and $\beta_{m+1,m}(\alpha/2)$ are respectively determined by

$$\beta_{m, m+1}(\alpha/2) \qquad \beta_{m+1, m}(\alpha/2)$$
(21)
$$\beta_{m+1, m}(\alpha/2) \qquad k_1 w^m (1-w)^{m-1} dw.$$
0 0

Thus, by (3) r_1 and r_2 are respectively given by

$$\begin{cases} r_1 = F^{-1}(\beta_{m, m+1}(\alpha/2)) - \theta = -\tan[(2^{-1} - \beta_{m, m+1}(\alpha/2))\pi], \\ \\ r_2 = F^{-1}(1 - \beta_{m+1, m}(\alpha/2)) - \theta = \tan[(2^{-1} - \beta_{m+1, m}(\alpha/2))\pi]. \end{cases}$$

Therefore, the C. I. for \emptyset at confidence coefficient $1-\emptyset$ is

(23)
$$(Y-r_2, Y-r_1) \stackrel{*}{=} (Y-tan[(2^{-1}-\beta_{m+1, m}(\alpha/2))\pi], Y+tan[(2^{-1}-\beta_{m, m+1}(\alpha/2))\pi]).$$

In the next section we check if the tests with the acceptance regions derived from inverting the C. I.'s (15) for n=2m+1 and (23) for n=2m are unbiased and of size α .

§3. Two-Sided Test for ℓ.

In this section we consider the problem of testing the null hypothesis $H_0: \theta=\theta_0$ versus the alternative hypothesis $H_1: \theta\neq\theta_0$ for some constant θ_0 . We propose the two-sided tests with the acceptance regions derived from inverting the (shortest) C. I.'s for θ_0 obtained in Section 2. When n=2m+1, we show that our test is unbiased and of size θ . When n=2m, our test is not unbiased because of usage of conventional method for constructing the C. I. for θ .

Let n=2m+1. As in Section 2 we define $Y = X_{(m+1)}$. By inverting the shortest C. I. (15) for θ_0 our test is to reject H_0 if $Y \in (-\infty, \theta_0 - r) \cup [\theta_0 + r, +\infty)$ and to accept H_0 if $Y \in (\theta_0 - r, \theta_0 + r)$ where r is given by (14). Now, we show that this test is unbiased and of size α .

Let y_1^0 and y_2^0 be real numbers depending on θ_0 such that $y_1^0 < y_2^0$. Define ψ (θ) by

(24)
$$\psi(\theta) \stackrel{!}{=} P_{\theta}[Y < y_{1}^{0} \text{ or } y_{2}^{0} < Y] = 1 - \begin{cases} g_{Y}(y | \theta) dy \\ y_{1}^{0} \end{cases}$$

where $g_{Y}(y|\theta)$ is defined by (4).

To get unbiased size- α test with the acceptance region (y_1^0, y_2^0) we choose y_1^0 and y_2^0 which satisfy

(25)
$$\psi (\theta_0) = 1 - P_{\theta_A} [y_1^0 < Y < y_2^0] = a$$

and minimize $\psi(\theta)$ at $\theta=\theta_0$; namely

(26)
$$d\psi (\theta)/d\theta \bigg|_{\theta=\theta_0} = g_Y(y_2^{\circ}|\theta_0)-g_Y(y_1^{\circ}|\theta_0)=0.$$

We consider the test with the acceptance region (θ_0-r,θ_0+r) . Since from the construction the equality (11) with $r_1=-r$, $r_2=r$ and $\theta=\theta_0$ is satisfied, it follows from (4) and (9) that $g_Y(\theta_0-r|\theta_0)=g_Y(\theta_0+r|\theta_0)$; (26) is satisfied for y_1^0 and y_2^0 replaced by θ_0-r and θ_0+r , respectively. (25) with y_1^0 and y_2^0 replaced by θ_0-r and θ_0+r , respectively is the same as (6) except for θ , r_1 and r_2 replaced by θ_0 , -r and r_1 respectively. Therefore, our test with the acceptance region (θ_0-r,θ_0+r) is unbiased and of size θ .

Let n=2m. As in Section 2 we define $Y\stackrel{!}{=}X_{(m)}$. Again, by inverting the C. I. (23) for θ_0 our test is to reject H_0 if $Y\in (-\infty, \theta_0+r_1]\cup [\theta_0+r_2, +\infty)$ and to accept H_0 if $Y\in (\theta_0+r_1, \theta_0+r_2)$ where r_1 and r_2 are given by (22). In this case our test depends on the conventional values for $F(r_1+\theta)$, i=1,2. Hence, we have that $g_Y(\theta_0+r_1|\theta_0)+g_Y(\theta_0+r_2|\theta_0)$. Furthermore, (25) with y_1^0 and y_2^0 replaced by θ_0+r_1 and θ_0+r_2 , respectively is the same as (6) except for θ replaced by θ_0 . Thus, our test is of size θ , but is not unbiased. However, for large m our test becomes almost unbiased as the test in the case of n=2m+1 shows.

In the next two sections we deal with the scale parameter ξ . In Section 4 we obtain the C. I. for ξ and in Section 5 we check if two-sided test with acceptance region derived from inverting the C. I. for ξ_0 is unbiased.

§4. The Interval Estimation for {.

In this section we consider the density (1) with $\theta=0$;

(27)
$$f(x|\xi)=f(x|0,\xi)=\xi \pi^{-1}\{\xi^2+x^2\}^{-1}$$
, for $-\infty < x < \infty$

provided that {>0.

Let X_1, \ldots, X_n be a random sample of size n taken from the population with density $f(x|\xi)$. Again, we first consider the case of n=2m+1 with m a nonnegative integer and secondly the case of n=2m. Putting $\xi^*=\ln \xi$ we have

$$f(x|\xi) = \pi^{-1}e^{-\xi^*} \{1 + e^{2(\ln |x| - \xi^*)}\}^{-1}$$
, for $-\infty < x < \infty$.

Thus, letting $Z \doteq \ln |X|$ and $Z_{(i)}$ be the i-th smallest observation of Z_1, \ldots, Z_n we estimate ξ^* by $Y \doteq Z_{(m+1)}$ when n=2m+1 and by $Y \doteq Z_{(m)}$ when n=2m, respectively. We find the C. I.'s for ξ according to these estimates.

We beforehand derive the distribution of Z. Since $x=e^z$ for x>0; $x=-e^z$ for x<0; $z=-\infty$ for x=0, by a variable transformation $Z=\ln |X|$ the density of Z is obtained as follows:

$$q_z(z) = q_z(z|\xi) = f(e^z|\xi)|de^z/dz| + f(-e^z|\xi)|d(-e^z)/dz|$$

(28)
$$e^{z-\xi^{*}}$$

$$= 2\pi^{-1} - - - - - - - - - - - - - - \infty < z < \infty$$

$$1 + e^{2(z-\xi^{*})}$$

where $-\infty < \xi^* < \infty$. Since $q_z(2\xi^*-z)=q_z(z)$, $q_z(z)$ is symmetric about $z=\xi^*$ and the unimodal function with the mode ξ^* .

Now, we let n=2m+1 until (37). We estimate ξ^* by Y=Z_(m+1). Letting Q_Z(z) be the c.d.f. of Z we obtain by (28) that

(29)
$$Q_z(z) \doteq Q_z(z|\xi) = 2\pi^{-1} \tan^{-1}(e^{z-\xi^*}), \text{ for } -\infty < z < \infty.$$

The p.d.f. $g_Y(y|\xi)$ of Y is derived as follows:

(30)
$$g_{Y}(y|\xi)=k(Q_{Z}(y))^{m}(1-Q_{Z}(y))^{m}q_{Z}(y)$$
, for $-\omega \langle y \langle \omega \rangle$.

Let $\mathfrak g$ be a real number such that $0<\mathfrak g<1$. Let r_1 and r_2 be real numbers such that $0<\mathfrak r_1<\mathfrak r_2$. To find the C. I. for $\mathfrak f$ at confidence coefficient $1-\mathfrak g$ we want to find r_1 and r_2 under the condition that

(31)
$$P_{\varepsilon}[r_1e^{\gamma} \langle \xi \langle r_2e^{\gamma}] = 1-\alpha.$$

But, it follows by a variable transformation $W=Q_Z(Y)$ that

the left hand side of (31)=
$$P_{\xi}[-\ln r_2 < Y-\xi^* < -\ln r_1]$$

(32) = $P_{\xi}[Q_Z(\xi^*-\ln r_2) < W < Q_Z(\xi^*-\ln r_1)]=1-\alpha$.

Hence, we want to find r_1 and r_2 which minimize $Q_Z(\xi^*-\ln r_1)-Q_Z(\xi^*-\ln r_2)$ under the condition (32). To do so we use Lagrange's method. Let λ be a real number and define

(33)
$$L \stackrel{:}{=} L(Q_{z}(\xi^{*}-\ln r_{1}), Q_{z}(\xi^{*}-\ln r_{2}); \lambda)$$

$$Q_{z}(\xi^{*}-\ln r_{1})$$

$$\stackrel{:}{=} Q_{z}(\xi^{*}-\ln r_{1})-Q_{z}(\xi^{*}-\ln r_{2})-\lambda\{\{\}\}$$

$$Q_{z}(\xi^{*}-\ln r_{2})$$

where $h_w(w)$ is defined by (9). Then, by Lagrange's method we have that

(34)
$$\begin{cases} \partial L/\partial Q_{z} (\xi^{*}-\ln r_{1}) = 1-\lambda h_{w}(Q_{z}(\xi^{*}-\ln r_{1})=0 \\ \\ \partial L/\partial Q_{z}(\xi^{*}-\ln r_{2}) = -1+\lambda h_{w}(Q_{z}(\xi^{*}-\ln r_{2})=0 \end{cases}$$

By (34) we get

(35)
$$h_w(Q_z(\xi^*-\ln r_1))=h_w(Q_z(\xi^*-\ln r_2)) (=\lambda^{-1}), \quad \forall \xi.$$

Taking

$$Q_z(\xi^*-\ln r_2)=\beta(\alpha/2)$$
 and $Q_z(\xi^*-\ln r_1)=1-\beta(\alpha/2)$

where $\beta(\pi/2)$ is given by (13), we obtain by (29) that

(36)
$$\begin{cases} r_i = [\tan\{2^{-1}\pi(1-\beta(\alpha/2))\}]^{-1} \\ r_2 = [\tan\{2^{-1}\pi\beta(\alpha/2)\}]^{-1} \end{cases}$$

and furthermore (35) and (32) are satisfied for r_1 and r_2 given by (36). Therefore, the C. I. for ξ is given by

(37)
$$(r_1 e^Y, r_2 e^Y) \doteq ([\tan\{2^{-1}\pi(1-\beta(\alpha/2))\}]^{-1}e^Y, [\tan\{2^{-1}\pi\beta(\alpha/2)\}]^{-1}e^Y).$$

We now consider the case of n=2m. In this case we estimate ξ^* by Y=Z_(m). Then, the p.d.f. of Y is given by

(38)
$$q_{Y}(y|\xi)=k_{1}(Q_{z}(y))^{m-1}(1-Q_{z}(y))^{m}q_{z}(y)$$
, for $-\infty < y < \infty$

where k_1 is given by (17). To find the C. I. for ξ at confidence coefficient 1-a we want to find r_1 and r_2 with $0 < r_1 < r_2$ under the condition that

(39)
$$P_{\xi}[r_1e^{Y} < \xi < r_2e^{Y}] = 1-\alpha$$
.

But, it follows by a variable transformation $W=Q_Z(Y)$ that

the left hand side of $(39)=P_{\xi}[-\ln r_2 < Y-\xi^* < -\ln r_1]$

(40)
$$= P_{\xi} [Q_{z}(\xi^{*}-\ln r_{2}) < W < Q_{z}(\xi^{*}-\ln r_{1})] = 1-\alpha.$$

Hence, we want to find r_1 and r_2 which minimize $Q_z(\xi^*-\ln r_1)-Q_z(\xi^*-\ln r_2)$ under the condition (40). Going through the similar process to (33) through (35), we get

(41)
$$h_1(Q_z(\xi^*-\ln r_1))=h_1(Q_z(\xi^*-\ln r_2)) (=\lambda^{-1}), \quad \forall \xi$$

where $h_1(w)$ is the density of W given by (18). However, again it is difficult to get exact values of $Q_Z(\xi^*-\ln r_1)$, i=1,2 which satisfy (41) (and furthermore $q_Z(\xi^*-\ln r_1)=q_Z(\xi^*-\ln r_2)$). Hence, we use conventional values for $Q_Z(\xi^*-\ln r_1)$, i=1,2. Those are

(42)
$$Q_z(\xi^*-\ln r_2)=\beta_{m,m+1}(e/2)$$
 and $Q_z(\xi^*-\ln r_1)=1-\beta_{m+1,m}(e/2)$

where $\beta_{m,m+1}(\alpha/2)$ and $\beta_{m+1,m}(\alpha/2)$ are respectively determined by (21). Thus, by (29) we obtain

(43)
$$\begin{cases} r_1 = [\tan\{2^{-1}\pi(1-\beta_{m+1, m}(\alpha/2))\}]^{-1}, \\ \\ r_2 = [\tan\{2^{-1}\pi\beta_{m, m+1}(\alpha/2)\}]^{-1}. \end{cases}$$

Therefore, the C. I. for { is

$$(44)$$
 (r_1e^Y, r_2e^Y)

where r_1 and r_2 are given by (43).

§5. Two-Sided Test for {.

In this section we consider the problem of testing the hypothesis $H_0: \xi = \xi_0$ versus the alternative hypothesis $H_1: \xi \neq \xi_0$ for some constant ξ_0 . We propose the test with the acceptance region derived from inverting the C. I. for ξ_0 . Let n be the size of the random sample X_1, \ldots, X_n . When n=2m+1 with m a nonnegative integer, we show that this test is unbiased and of size \mathfrak{g} . When n=2m, our test is of size \mathfrak{g} , but cannot be unbiased because we use the conventional device to determine the C. I. for ξ . However, it will be almost unbiased for large \mathfrak{m} .

Let n=2m+1. As in Section 4 we let $Z=\ln|X|$ and $Z_{(1)}$ be the i-th smallest observation of Z_1 , ..., Z_n . Let $\xi_0*=\ln \xi_0$ and define $Y=Z_{(m+1)}$. By inverting the C. I. (37) for ξ_0 our test is to reject H_0 if $Y\in (-\infty, \xi_0*-\ln r_2) \cup [\xi_0*-\ln r_1, +\infty)$ and to accept H_0 if $Y\in (\xi_0*-\ln r_2, \xi_0*-\ln r_1)$ where r_1 and r_2 are given by (36). Now, we show that this test is unbiased and of size \mathfrak{g} .

Let y_1^0 and y_2^0 be real numbers depending on ξ_0 such that $y_1^0 < y_2^0$. Define $\psi(\xi)$ by

$$\psi$$
 (ξ)=P _{ξ} [Y1° or y₂°

where $g_Y(y|\xi)$ is given by (30). To get unbiased size-g test with acceptance region (y_1^0, y_2^0) we choose y_1^0 and y_2^0 which satisfy

(46)
$$\psi(\xi_0) = 1 - P_{\xi_0}[y_1^0 < Y < y_2^0] = a$$

and minimize $\psi(\xi)$ at $\xi=\xi_0$; namely

(47)
$$d\psi(\xi)/d\xi \bigg|_{\xi=\xi_0} = \xi_0^{-1}g_Y(y_2^0|\xi_0) - \xi_0^{-1}g_Y(y_1^0|\xi_0) = 0$$

Let $y_1^*=\xi_0^*-\ln r_2$ and $y_2^*=\xi_0^*-\ln r_1$. Then, since $q_z(y_1^*|\xi_0)=\pi^{-1}\sin\{\pi\beta(\pi/2)\}$ = $\pi^{-1}\sin\{\pi(1-\beta(\pi/2))\}=q_z(y_2^*|\xi_0)$, and since, from construction and (35), $h_w(Q_z(y_1^*))=h_w(Q_z(y_2^*))$, we obtain by (30) and (9) that $g_y(y_1^*|\xi_0)=g_y(y_2^*|\xi_0)$. Therefore, (y_1^*,y_2^*) satisfies (47). On the other hand, (46) with y_1^0 and y_2^0 replaced by y_1^* and y_2^* , respectively is the same as (40) except for ξ replaced by ξ_0 . Therefore, our test with the acceptance region (y_1^*,y_2^*) is unbiased and of size g.

Let n=2m. As in Section 4 we define $Y\stackrel{!}{=}Z_{(m)}$. Again, by inverting the C. I. (44) for ξ_0 our test is to reject H_0 if $Y\in (-\infty, \xi_0^*-\ln r_2)\cup (\xi_0^*-\ln r_1, +\infty)$ and to accept H_0 if $Y\in (\xi_0^*-\ln r_2, \xi_0^*-\ln r_1)$ where r_1 and r_2 are determined by (43). In this case our test depends on the conventional values for $Q_Z(\xi^*-\ln r_1)$, i=1,2. So, we have $g_Y(\xi_0^*-\ln r_2|\xi_0) \neq g_Y(\xi_0^*-\ln r_1|\xi_0)$. Furthermore, (46) with y_1^0 and y_2^0 replaced by $\xi_0^*-\ln r_2$ and $\xi_0^*-\ln r_1$, respectively is the same as (40) except for ξ replaced by ξ_0 . Thus, our test is still of size- ℓ , but is not unbiased. However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows.