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The N-part Partition of Risks

.1. Introductory Example

Let us suppose rather artificial situation that an investor is offered

two optioms, I and II, of investment plans like:

Plan I;

Plan TII;

asset = estate
investment = 300 (in some monetary units)

A= 90

net gain

-

B = 60

net loss

probability of gain = p = 0.65

assets = estate, bond, stocks
investments ='100 (eaéh)

net gains = ¢ = 30 (each)

net losses = B‘= 20 (each)

probabilities of gains = p = 0.65 (each)

(3 assets are assumed to be stochastically independent)

His finanecial status quo is, say, X, = 1000. The Plan IT is the "diversifi-

cation" of the Plan I, usually intended to be the aversion of risks. The

example is introduced here for us to discuss generally on this paper whether the



"partition of risky decisions" (or "risks" in short) brings about the improve-
ment in terms of expected utility.
Thus we calculate the expected utilities, ey and eyy, associated with the

Plan T and Plan II respectively. His possible financial states would be the set
o () = {m, m+30} (1)

for the Plan I with a current understanding that

o=a+8=>50, m=x, -5 = 940, (2)
and the lattice set
LAII) = {m, mt5, m+20, mt3o} (3)

for the Plan II, which consists of 3~equi-partitional points of the interval
(940, 1090), corresponding to o (I). States of two plans are distributed over

J(I) nand [J.(ITI) as

It

Bi(l, p): %5 = (1-p, p) (4)

¢ @a-p)3, 3p-m?, 3p7-p), B (5)

I

Bi(3, )t Fpq



ey ~ € = p-p)ol(14p) { u'(y,) ~ u'(y)}

+(2p) {u'(y) - w'(y)}> 0, (D)

and hence

i1 I’ (12)
provided u{:) satisfies the "diminishing marginal utility"” hypothesis,

which implies that

u'(Yl) > u'(Yz) > U‘(X3) ' (13)

Thus it seems that, given the parametric specification of investment plans,

the assumption on the marginal utility, and not the comcrete form of the
utility function, is all that we need. In other words, given this assumption
to be valid, parameters of investment plans are only sufficient information
for such a comparison, and the comparison is thus utility-free in this context,

which serves us the nice applicability '

2. N-equi-partition (General Case)

f

This section is for the more general N-equi-partitional case with 411

not necessarily being binomial distribution. In order that wider class of
problems be covered, the term "investment plan" is extended to a more theoretical

term "a lottery."



Let us now consider feollowing two lotteries:

Lottery I has two states

P

a net gain = A > Q,

a net loss = -B < 0
with

the prob. of gain = p,

the prob. of loss =1 - p.

Lottery II consists of N identical, but not necessarily stochastically
independent, sub-~lotteries each of which has two states

a net gain = A/N= a ,

a net logss = -B/N= - 3
with

the prob. of i gains = a5 i=0,1, ..., N.

> = -

For both lotteries, the gambler's financial status quo is represented by X -

The state space of the Lottery I is then
LA = {x -B, x +A} (14)
The outcome of Lottery IT is represented by N-vector

d = (dy, dyy veny d) (15)

N



with di =1 or 0 accordingly as the i-th sub-lottery ends up with a gain
or a loess (1 =0, 1, ..., N). As the i-th sub-lottery gives the gambler

(aﬁ-B)di - 8, the Lottery II gives him in sum, when the outcome is d,

~

N

ot I (@t ;- 8)

s(d)

N,
x + (0 +8) I at - B
i=1

(x_ - B) +o'n(d), (16)
where ¢ is the "range" of the sub-lottery
oc=0a+R (17

and n{(d) is the number of gains ("success count") among the outcome d

of N sub-lotteries of the Lottery II

N
n(d) = I 4, (18)
~ s i
i=1
Noting that
n{d) = 0, 1, , N (19)

we have as the state space of the Lottery II



OZ(II) = {Iﬂ + 10; i-= 0, 1’ erey N} (20)
where m, M are the extremal states
m=x -B, M=x +A(=m-+ Ng). (21)

This and (14) correspond to (1), (2) and (3).

Now to compare
7 = ap, 0, ..., 0, D (22)
on i:(I) (with the understood notation) and

?II = (g Gy ooos Gy gr 9 (23)

on.,Z(II), we calculate their expected utilities

er = pu{m + No) + (i - pufm),
N
= I p(Au)n + u(m) (24)
n=o
and
N
erp = z qnu(m +.no)
n=o
N n
= L q (2 (Au), +um), (25)

n=o0 i=o



where (Au)i are marginal utilities defined by

(fw); = vlm + i0) ~ u(m + (i-)g}, 1 =1, ..., N
(Au) =0 (26)
Therefore, er and g are compatred by

N N
e;p ~°p T 2 {(_E qy — ) (Aw)_}

=0 1=1n
N N 5
= nzl [iEn (:L—n+1)qi - (¥~ntl)p 1 (A u)n 27)

.
A 1) . Au " Au). s 1 = l, . aq IQ.

Throughout this paper, we confine ourselves to the family u of utility

functions with the diminishing marginal utility ;
2 .
(A u)i £0, i=2, ..., N, (28)

for any g:(II) set of the form (20). Incidentally note that the differenti-
ability is not assumed here and that (Azu)l > 0, independently of the above
assumption. Thus from the expression (27) we arrive at the main theorem of

the paper:



fTheorem 1] In order that err ke e for any utility function with the

diminishing marginal utility (28), it is necessary and sufficient that the

following condition on ﬁi and 921 hold;

N
2, M = % N
l.—
N
I (i-L)qy £ @-1)p >
=2
\
.. . b V\-‘n
(29-2)
f
Wyt 2o =7 1‘
}

The theorem provides the criterion stated essentially utility-free for an
equi-partitioned lottery to be better than the original one. It is re-stated

equivalently in a more probability-theoretic form:

[Theorem 2] Let n* be the random variable to denote the '"success count"

introduced in (17) with the probability distribution
P(n* = 1i) =q., 1i=90,1, ..., N. (30)

Then in order that e . > a

IT for any utility function with the diminishing

I

marginal utility (28), it is necessary and sufficient that the following

condition on n* hold;
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E(n*) > Np (31-1)
. F . .
E(n* - j) < (N-3)p, J =1, ..., N, (31-2)
+
where x = x (x}; 0}, =0 (x <0) and E(*) denote the expectation in
terms of the probability distribution %;I.

The left side of (31-2) is in the well-known form of "the shortage

function'" of a random variable, X, defined by
+ oo
6N =E (X -0 =/ &-N dF ), (32)
which is interesting in itself, but we do not discuss the implication here,.

The right hand side Np of (31-1) is the expected success count during

N-repetition of sub-lotteries as if under the probability distribution .?I

on { 0, 1} . Thus the (30-1) is the assertion to the effect that we expect

than under the N~repeated 52.

(20-2) and (31-2) correspond with (28) and are called the "convexity

larger number of success under EII
parts'" or the "non-linearity parts' of the theorems, while (29-1) and
(31-1) are called their "linearity parts” since they should hold even when
u(+) is linear.

The convexity part of the Theorem seems simple but still rather hard to
check for given probability distributions. More tractable conditions are to

be sought and the following corollary would provide one of them:
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[Corallary 1] In order that err 2 ey for any utility function with the

diminishing marginal utility (28), it is sufficient that the following condition

on —?I and gII hold:

N
¥ d4q, > Np, (33-1)
. i=
i=1
q, *9; 21 -p (33-2)
{Proof] (33-2) implies
q2+q3+'..+q'Nip (34)
and henqe
N
L q. 20, n=2,3, ..., N. (35)
i=n -

Adding up inequalities in (35) with n=N, N-1, ..., N-h yields the

(N-1) - b -th (from the «top') inequality of (29-3).

3. N-equi-partition (Binomial Case etc.)

To check the intorudctory example, where sub-lotteries of of Lottery II
(Plan II) are identical and independent, we try the result of the preceeding

. . . ot , .
section 2 for the binomial case. Let ?H? 1T be Bi(l, Bl) and 3Bi(N, 92).

Since
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q, = (i) 62 (1 - 82) , 1=0,1, ..., N (36)

NG, > Ne, (37-1)
N N-1
(1 - 92) + N92(1 - 82) > 1- 61 (37-2)
Therefore ery ;:eI when (81, 82) belongs to the 2-dim. domain represented

by inequalities (37-1) and (37-2). At least one possibility satisfies them.
That is the case of 81 = 92, where it is easy to check the > gign on
(37~2). Thus the introductory example of the binomial case generally holds
true with other parameter values also,

The most general case is that the outcomes g = (dl’ d2’ veuy dN) of

N sub-lotteries of the Lottery II are neither identically nor indpendently

» d..) then yeilds

distributed. The probability distribution My, dy, oeny dyg

the Gos Qys o+ By through (30) like

g, = & Tm(d,, d,, ..., d.), (38)
i D(1) 1 2 N
where the summation 1s over
N
D(i) = {d; I d = 1} (39)
~ r
r=1
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with respect to d = (d], vees dN)’ (i=0,1, ..., N). The random variable

d.* to denote di has the marginal distribution
i

. (i)
Td) = Iy, dys e, ) (40)

where the summation E(l) extends over all d's with di fixed, and for

short
ﬂi(l) =T ﬂi(O) =l-m (i=1,2,..,N. (41)

To apply the sufficient condition in the Corollary 1, we only have to have

for (33-1)

™M=

ig, = E(n%*)
N
=E( I 4d.,%)
i=1 *
N
= I E(d. %)
i=1 *
N .
= I T, (42)
i=1 *

i=1

and for (33-2)

W(O, 0, $oey O)s

a
it

=%, 0, ..., 0) + w0, 1, 0, ..., 0)

+ ...+ 7m0, ..., 0, 1) (43)
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In case of independence, one has

and

ﬂ(dl, dz, cens dN) = ﬂl(dl) ...WN(dN)

N
I,
i=1 *

d

n

i (1 - ﬁi)l—di (44)

4, = {1~ WJ)(I - ﬂz) eee (1 - ﬂN),

N N :
g, = Z {m, I (1-m))}, (45)
ogm Ty R

corresponding to (43)

4. Generalizations

There would be a wide possibility of generalizations to be discussed

to this model:

i)

ii)

idii)

iv)

Non-equi-partitional case that N gub-lotteries are all distinct
with different gains, losses and probabilities,

Comparison of any two lotteries I and IT such that one is the
partition of the other,

Normal approximations to criteria by Theorems 1, 2,

Continuous lotteries, i.e., with continuous states on the real

line,
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v) Possible applications to the real problem of risk assessments

through the numerical illustrations, etc.

These problems suggested above would be all answered affirmatively,

but not dealt with in this paper.



Errata to "The N-Part Partition of
Risks" by N. Matsubara

Page 12, 2. 7, 8:

Add "to hold at least for 0 = 9, < 1/ (N-1)"

to "the > sign on (37-2)."

Page 12, 2.8:

"Thus the introductory example ..." should read "Thus it is

suggested that the introductory example ..."

Page 12, 2.9:
Add "In fact, (29-2) hold for ¥ = 3 and 4. It would need

some task to check (29-2) for general N, however."



