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Abstract

This paper develops a new estimation technique which obtains con- -
sistgnt and asymptotically efficient estimators of means and variances
of the random coefficient model. 1In addition, a kind of "mixed estimat{on'
technique is introduced in order to further increase efficiency. Some

results from Monte Carlo experiments are also reported.



In this paper, I shall develep a new estimation techmnique which

obtains consistent and asymptotically efficient estimators of means

and variances of a random coefficient model:

K
() Ve = P Biexe tugs
i=1
(t=1, 2, ..., T)
2) Bie = 8 T Ve
where V.= the dependent variable and X, .= nonstochastic explanatory

variables; and U and v, are mutually and serially independent

: 2
random variables with means zero and variances qﬁ and g , respectively.
i
Theil and Mennes [7] and Hildreth and Houck [3] have proposed an

estimation technique which obtains consistent and asymptotically

efficient estimators of (31), and (Ué' H Ui)‘ With their approach,

means (Bi) and variances (Gé;; di) :re estimated in separate regression
equations and, consequently, thz entire estimation method comprises four

sequences of regressions.gj The new approach I shall propose differs
from the above in that means and variances are estimated simultaneously
in the same regression equation. Consequently, it require; only three
sequences of regressions to obtain the same properties of estimators -

2 2
(Bi) and (o Uu). Moreover, I shall propose a kind of "mixed estima-

B;

tion" technique of Theil and Goldberger [6] which increases efficiency
of the estimators. Section I develops new estimation technique and
Section 2 reports some results from Monte Carlo experiments. Concluding

remarks will follow in the last section.



l. New Estimation Technique

Two equations (1) and (2) together can be written as

) K
(3 Ve T L Bi¥ie tep
i=1
where
K
(4) ep = I (Byym Bylxg, Fou.
i=1
By assumption, E(st)=0 and
T
I 02 x?t + 62 for t =s
i=1 B4 u
(5) . E{e e ) =
£s 0 for t # s.

The ordinary least squares (0LS) residuals of (3) are given as

where dtj denotes the (t, j)-th element of the idembotent matrix
D=1~ x(x‘x)_lx',

where X consists of K explanatory variables. Multiplying both sides

of (3) by Et’ one obtains

(6) vy e =



where it is easy to get

E(etet)

Now, (6) is rewritten as

K
! Ve = I (ByXgese ¥ B, “ttit et” w " Ot

where

2
Equation (7) includes both means (Bi) and variances (02 5 Gﬁ) as

By

i
estimable coefficients in a single equation. However, the direct use

of OLS on (7) appears to present two problems. One is the nature of
the variance-covariance matrix of the nt's and the other is possible
correlation between the new explanatory variables and n, - By OLS,
the first problem causes inefficiency and the second problem causes
bias and inconsistency. Let me examine these problems in more detail.
First, I shall examine the nature of random disturbance ne of

(7). By construction, E(nt)=0 and

(8) E(n.)

ht~1

VAR(etst) =

2
; dthAR(stej)

1
I

_ 2 22 2 2
j#t dtjE(staj) + dttVAR(Et),



as E(etsj)=0 for j#t. Assuming henceforth that-'et is normally

distributed with mean zero and variance (5), I obtain

(EO’ZX2+0')(EO'2X?,+O'2) for
(=1 B. .. B.7ij u
9 2 i= i i=1l i
(9 E(e e)) =
£ 3
Ky 2.2
3(.2 OB,xit + ou) for
i=1 i
so that (8) is rewritten as
K ' K
2 2 2 2 2
(10) E(n) = (X o x.+c)[2d(202<+o)
t LU BL T =1 B
i=1 %t i=]
K
2 .
+2d (ZUBXZ +02)],
u
i=1 i
because, using (9) for t=j:
2 4 2 ) 2.2
VAR(Et) =EE, ) -EE])=2(2 ¢ x,_+a)".
t t it u
i=1 Bj
Similarly, for t#s, I obtain
. n ) Koy
E(ntns) = E(E:tesatas) - dttdss( Loy x, F cr)( I op

i=1 Py IF i=1 i

X,
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But

so that

(1D

T T
Eeeec)=Elee (2d.ed(xd.e)]
Lt’s ts t’s i=1 3737 Lo tk7k
T T
= 5§ ©d .d Elee e.g)
j=1 k=1 ti tk "TtTs ik
K . K
2 2 2 2 2 2 2
= d  +
(dtt ss dts)(.f UB.Xit-l-ou)(.f 0B.Xis-]-cu)’
i=l "4 i=1 "1
K K
_ 2 2 2 2 2.2 2
E(ntns) dts(.§ Op Xiy + Uu)(.E UB.xiS4-cu).
i=1 i i=l "1

Equations (10) and (11) indicate that the variance-covariance matrix

of the random disturbance of (7) is not diagonal.

This means that OLS

yields inefficient estimators and Aitken's generalized least squares

(GLS) should be used to obtain efficient coefficient estimators of {(n.

As for the second problem of correlation between the explanatory

variables of (7) and n

because ¢

implying

e I observe
E(x, £n.) = x, Ele. o2 - & E(c.8)]
1% T Fipole 8 T ghleE,
T 2
= E =
X ¢ [Et(jildtjsj) ] 0,

are independently normally distributed with means zero,

E(ste§)=0 for all t and j including the case t=j.
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i 3 d and and are
Moreover, obviously, dttxit an nt, g3l dtt n nt re uncorrelated

v

2
because d x
cau -

n are non hastic.
ir and dtt stoc c

Therefore, all the explanatory variables and n, are uncorrelated

in (7). Although this seems to ensure the unbiasedness of the OLS

estimators of (7), this is not so because they are not independent of
each other. However, obviously, the consistency of the OLS estimators
is ensured in such a case.

So far, I have shown that (7) will be consistently and efficiently
estimated by GLS by taking into account (10) and (11). 1In practice,

the variances are not known and one ought to use the estimated

(aé ) 32) by the OLS of (7) in computing (10) and (11) for the application
-3

i

of GLS. Since (cé H Gi) by OLS are consistent as has been mentioned

i
above, the GLS estimators of the coefficients of (7) are asymptotically

efficient.éj Here, note that, in order to get asymptotically efficient
estimators by GLS, any consistent estimator of the variance—covariance
matrix will yield the same asymptotic properties. Then, one can use

instead of (10) and (11)

K
(p)1lim E(nz) =2(z 02 x% + 02)2,
t . . it u
Tyco i=1 "1

(p)lim E(ntns) =0,
Teo

respectively, because (p)lim D=1 so that (p)lim d =0 for t#s and
Toroo Toroo ts:
{(p)lim dtt=l'

T

This implies that, one needs only to correct for heteroscedasticity



by dividing both sides of (7) byﬁ/

K

A2 2 ~2
(12) ‘Edtt(.f Oy Xip ¥ 00
i=1 "1
or
K
(13) S 6 K+ 8.
208 e T %

After the correction for heteroscedasticity, the estimated (Bi) and

(cé ; Ui) will be consistent and asymptotically efficient.
i

The story does not end here, Additional information can be put to
use to increase efficiency. Equation (3), corrected again for the

heteroscedasticity of ¢_ by dividing both sides of (3) by

t
14
N <2
(14) z 02 X?t + 0
i=1 it “

—— which is the square root of (p)lim,VAR(si) with the true variances

being replaced by their consistent z::imators——should yield the same

(or sufficiently close) estimators of Bi as those Bi estimated by (7).
Thus, one can apply the "mixed estimation" technique of Theil and

Goldberger [6] by doubling the number of sample observations. The

mixed regression equation can be written
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(15)

1?{ (ytet)*
- N
By
™ . 7
xft s eaas Xﬁt , 0 s sees 0 , O éK Ei
= . y —— . - o e e s e g e s e, + —_—
. . 2 2 0%
* ! & %, d% %
(rpped®s wons Geed¥, (@ xg )%, ceny (%)%, dttJ 1 N
- . g
02
B

where an "asterisk' denotes the correction for heteroscedasticity by the
factors (l4) and (12) or (13), respectively, for the first and the second
T sample gbservations. Since, by construction, both eg and n? now
have zero means and unit variances, the estimated standard error of the

regression (SER) of (15) by OLS should be unity.éj
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2, Some Results from Monte Carlo Experiments

In this section, I shall report some results from Monte Carle
experiments. The experiments were intended to check, firstly, the
absolute performances of the new estimation technique develdped in the
previous section and, secondly, its relative performances as compared to
the traditional technique proposed by Theil and Mennes [7] and Hildreth and
Houck [3] (hereafter TMHH). Forty-four cases were examined in total by varying

the values of means (Bi) and variances (02 R Ui) and also by altering

i
the sample data xit's. The number of regressors, K, was three including

the constant term in all the experiments. Four different sample numbers

were tried: T=15, 30, 50, and 100.9/
The overall absolute performances turned out to be reasonably

satisfactory. As for the relative performances, it first appears

hard to credit ome technique and discredit the other. For both tech~

niques simultaneously yielded satisfactory results in some cases

and unsatisfactory ones in others. However, it must be noted that

these results are certainly in favor of the new estimation ' technique

because it requires less amount of computation or less sequences of

regressions than the TMHH in obtaining the same properties of estimators.
As for means (éi), both approaches yielded apparently unbiased

estimates in all the cases; and the standard errors decreased as the

sample size increased. TIn almost all cases, more efficiency was definite-

ly obtained by applying either technique as compared to employing the

standard OLS. This was true irrespectively of the sample size.

. 2 ~2
As for variances {5 gu), however, the results were not always
i .
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satisfactory. The estimates turned out to be negative in some cases by
both techniques. {(In such cases, the standard errors were generally
large.) As compared to the estimates of means, those of variances did
not-appear to exhibit unbiasedness. Although it was an anticipated
result (as the estimators are only consistent), the overall results did
not necessarily show the improvement of performances as the number of
sample increased.

Tables 1 to 4 (in ascending order by sample number) report one
of the most satisfactory results obtained among 44 experiments. In each
table, the top row {(a) indicatés true values of means and variances.
Row (b) gives the estimates of means by applying standard OLS or equation
(3) that is the first-step regression for both approaches.

The next three rows are: (c) the second-step (consistent variances);
(d) the third-step (consistent and asymptotically efficient variances);
and (e) the fourth-step (consistent and asymptotically efficient means)
regression equations of the TMHH approach. By this approach the alternative
R2 (computed on the basis of moments around zero rather than around the
mean) of the second- and third-step regressions must theoretically equal

7/

1 . qs . .
3 and this property can be utilized in checking the performance of the
8/
TMHH approach.—
The next four rows summarize the results by the new estimation
technique. Row (f) is the second-step regression or equation (7) and
it should give consistent means and variances. The variance estimates

are to be compared on theoretically the same ground with those of the

second-step regression or row (c) of the TMHH approach. Row (g) reports



Table 1 ({(T=15)

13

2 2 2 2 2
Const. Bl BZ dBl 032 Uu R AR SER
@ True 1359 2 1 09 .04 1.69
Values
{(b) 0OLS 97.2 2.11 -.42 .876
or lst| (47.6) (8.58) (1.50)
H (c) 2nd .09 .01 2.17 022 .529
= (1.40)  (.12) (.72)
==
2 {(d) 3xd .10 .02 2.15 .002 .522 841
° (1.29) (.32) (.85)
o]
8 |(e) 4th | 97.2 2,10 ~.41 915 2.542
(47.4) (8.50) (1.44)
(£) 2nd 97.4 2.13 -.43 .09 0L 2.18 .999
(45.6) (7.19) (1.59) (1.15) {(.08) (.55)
% {g) 3xd 98.2 2.26 -.73 .10 -.03 3.30 .999 888
g (51.1) (7.47) (2.74) (1..13) (.33) (.99
o=
% (h) means 98.7 1.97 -.61 .988 1.007%
S (48.8) (7.65) (2.07)
(23
= n
(i) mixed 98.6 2.07 -.64 .12 .00 2.18 .999 L911%
regres— | (74.8)(11.4) (3.43) (1.34) (.02) (.7&)
sion

a/ The numbers in parentheses are t-statistics in absolute value.

b/ An asterisk "*" indicates that the square of SER lies within 95%

confidence interval of xz distribution with proper degrees of freedom.

¢/ The sample means and variances are:

— — 2
X, = 4,73, x, = 4.80; and s~ = 5,81, 52 = 4.41
1 2 X X

1 2
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Table 2 (T=30)
2 2 2 2 2
Const. Bl B, UBl UBZ 9, R AR SER
{a) True
Voleas| 100 2 -1 09 .04 1.69
(b) OLS 98.6 2.06 ~.80 .895
or lst! (84.7)(13.5) (5.07)
5 1€e) 2nd .07 .07 -.14 | .110 .362
= (1.54) (1.42) (.07)
ﬂ: .
2 (@) 3xd, .08 .05 .71 |.033 .381 1.171%
o (1.68) (.94) (.76)
o]
B |(e) 4en | 98.4 2.09 -.80 .972 2.240%
(77.9)(13.2) . (5.03) -
(£) 2nd | 96.0 2.49 -i61 .04 .04 1.82-) .999
(63.5)(12.3) (2.77) (.82) (.78) (.86)
Z | (g) 3rd | 98.0 " 2.23 -.70 04 04 1,42 | ,999 .968%
. (71.5)(20.7).(3.25) - (.97) (.92) " (.87) :
e ‘ - . .
o
S | (h) means | 99.2 1.98 -.84 .984 L9725
o (92.7)(13.3) (5.22) :
2]
o
] (@) mixed | 98.6 2.08 -.77 .04 .05 1.26 | .999 .963%
regres- (117) (17.5) (6.05) (L1.03) (1.01) (.80) .
sion

a/ The numbers in parentheses are t-statistics in absolute value.

b/ An asterisk "#" indicates that the square of SER lies within 95%

. . . U2 . . ; .
confidence interval of X~ distributionwith proper degrees of freedon.

c/ The sample means and variances are:

X

1 > Xy

= 4.77

= 4.73; and 52

*1

= 5.64, s

2
)

= 5.26
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Table 3 (T=50)
2 2 2 2 2
Coqst. Bl 62 GBl 082 cu R AR SER
(a) True |49 2 -1 .09 4
Values * -0 1.69
(b) OLS 99.5 2.06 -1.03 .856
or lst| (98.7)(15.0) (7.57)
5 1€e) 2nd .10 .16 -2.06 | .291  .504
= (2.17) (3.80) (1.00) | '
m .
£ |(d) 3rd, J10 .10 -.01 | .415  .53&  1.231 .
S (2.87) (1.96) (.01)
o
£ |(e) 4th | 99.0 2.13 -1.02 .988 2.845
(94.2) (14.8) (7.38) :
(£) 2nd |100.6 2.16 -1.31 .11 .14 =2.09]| .999
(63.5) (12.4) (7.10) (2.45) (3.25) (.98)
2 | (g) 3rd 99.8 2,11 -1.03 .01 .11 —.47 | .999. 1,104%
g (117) (12.6). (5.78) (2.56) (2.46) (.73) :
jezd ; .
T | (1) means | 100.2  2.05 -1.10 .999 1.156%
o ' (149) (16.1) (7.83)
0
o
(i) mixed [100.1 2.07 ~1.08 .10 .11 —.42 | .999 1.115%
regres— [(194) (20.8) (9.96) (2.56) (2.49) (.69)
sion

a/ The numbers in parentheses are t-statistics in absolute value.

b/ An asterisk "#" indicates that the square of SER lies within 95%

' . . D2, , .
confidence interval of X~ distributionwith proper degrees of freedom.

¢/ The sample means and variances are:

*1

= 4.84, %,

= 5.02; and &*
X

1 )

= 6.05, 5> =6.22
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Table 4 (T=100)
2 2 2 2 2
Const. Bl Bz cBl 082 Y2 R AR SER
(a) True _ .
Values| 100 2 1. .09 .04 1.69
(b) OLS 99.5 2.02 ~1.00 .821
or 1st(136) (19.5) (9.82)
| (€) 2nd .08 .11 .51 |.106  .332
= (1.90) (2.66) (.25) | -
m .
2 {(d) 3xa, .08 .02 2.58 |.073 .298 1.384 .
o (1.90) (.45) (3.23) '
Q
2 |(e) 4th | 99.7 2.03 -1.05 .981 3.329
(107) (18.0) (9.24) '
(£) 2nd  |101.6 2.35 -1.48 .10 .10  .48-| .999
(80.1)(15.0) (10.4) (2.47) (2.55) (.26)
2 1(g) 3rd | 99.2 "2.47 ~-1.19 .10 .03 2.22 | .999. 1.264
< (169) (15.2): (8.36) (2.23) (.61) (3.07) -
og ‘ ‘ )
J
5 | (h) means | 99,3 2,06 -.99 .997 1.058%
9 (204)  (21.3) (9.96) o
0
=2
(1) mixed | 99.5 2,19 -1.09 .09 .03 2.32 | .999 1.181
regres- 1(263) (24.9) (13.1) (2.31) (.66) (3.46)
sion

2/ The numbers in parentheses are t-statistics in absolute value.

b/ An asterisk "*" indicates that the square of SER lies within 95%

. P2, . . ,
confidence interval of X~ distributionwith proper degrees of freedom.

¢/ The sample means and variances are:

%y = 4.91,

= 5.03: and s°
2 X

2

= 6.06., s
%

1

2

= 6.19
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the third-step regression. Consistent and asymptotically efficient means
and variances are estimated in a single equation and it replaces the

third- and fourth-step regressions, i.e., rows (d) and (e), of the TMHH
app?oach. Row (h) corresponds to row (d) and it is reported for reference
purpose as it alone does not provide any additional informatiom. The

last row (i) is the mixed-regression or equation (15) and it utilizes

all the data used for rows (g) and (h). It should increase the efficiency
of the estimates as compared to the third-step regression or row (g) of the
new estimation technique.

The intrinsie heteroscedasticity is corrected for following (12),
father than (13), in running the third-step regression (g) and the
mixed-regression (i). Similarly, row (h) and the first half samples of
the mixed-regression are corrected for their heteroscedasticities by
(14).2/

From those TaBles, one can see typical results summarized earlier.
The estimates of means are almost exactly equal to the true values with
high t-statistics. The estimated wariances are reasonably close to the
true values., Otherwise, their t-values are very small. The standard
errors of regression for GLS equations are reasonably close to unity

for rows (g), (h), and (i), as it should be so.lg/

3. Coneluding Remarks

Several observations follow. TFirst, the present estimation technique

is easily applied for testing the presence of heteroscedasticity along
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the line of the Glejser test [2]. Second, as has been in fact raised

by Monte Carlo experiments, the estimated variances are not guaranteéd to
be positive. This may be especially so when the number of sample
observations is small. Although one can impose constraints that they

are nonnegative, as suggested by Hildreth and Houck for their own
estimation technique, it is a computationally burdensome procedure.

Third, the present estimation technique does not carry through when the
random variable u, of (1) is serially correlated, Typically, the serial
eorrelation of uL will decrease efficiency although, as is easily

seen, consistency is,maintained.é;j Unfortunately, standard methods épplied

for correcting serial correlations cannot apply here because the

coefficients are also stochastic.
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Footnotes

1/.

A part of the present paper originates from my Ph.D. dissertation

[1] presented to the Faculty of the Graduate School of Yale University.
i owe Y. Homma for his help in conducting much of Monte Carlo
experiments.

See also Theil [5], pp.622-28, from which I only come to know of

[7]; and Maddala [4], pp.392-3, for the description of this approach.
See, for example, Theil [5], theorem 8.4, p.399.

Whether (12) or (13) is better can be judged by the standard error

of the regression — which is.the square root of the sum of squared
residuals divided by the degree of freedom (T-2K-1)~— which should be
unity after the correction for heteroscedasticity.

This characteristic may help check the specification error of origimal
models,

The random terms are standard normal generated by RANNRML command
programed in PEC (Program for Econometric Computation) of Yale
University.

See Theil [5], p.626.

2
‘One can see that this alternative R is in fact near l-when T=30

3
and 100.

Similar formulae are used for the TMHH approach.

In this regard, the new estimation technigue performed better than
the TMHH approach in all the 44 cases, irrespectively of the sample
size. In particular the fourth-step regression or row (e) of the

TMHH approach performed very poorly as is reported, for example, in



Tables 1 to 4.

11/. This is so because (p)limE(nt)=0 even with serial correlation
T2

although E(nt)#o for small samples.
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