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Abstract

It is shown that if a matrix with real components maps any vector with
“non—zerc-) non-negative m-th difference” to a vector with the “positive m-
th difference,” the matrix has a ‘characteristic vector with the “positive
m-th difference.” The corresponding characteristic value is positive, and
is equal to or larger than the m-th largest modulus of the characteristic
values of the matrix. If m= 2 and the matrix is non-negative, it is just
the second largest characteristic value. A simple sufficient condition for

this property is also given.
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1 Introduction

Let A = (ajk) 'be an n X n matrix with real components. Let us call a character-
istic value )\ the m-th characteristic value of A if |A| is the m-th largest among
the moduli of the characteristic values of A. In the analysis of the asymptotic
behavior of A™ as n — oo, the first characteristic value plays the main role.

In the case of stochastic matrix, i.e., ifajr > 0 (j,k =1,...n)and 3 }_, 6jx =
1(j =1,2,...n) hold, the first characteristic value ); is always 1, and the corre-
sponding left characteristic vector 1/:'11‘ = (%11, ¥12,- - . , ¥1n) becomes the station-
ary distribution of the finite state Markov chain with the transition probability
matrix A if E;;l 915 is normalized to one. Here, T indicates the transposition
of a vector. In this case our next concern will be the second characteristic value
A2, which characterizes the rate of convergence to P, T if |A2] # A1. So long
as the author knows, however, not enough efforts have been made at getting
necessary or sufficient conditions for A;.

This note gives, in Proposition 2, a simple sufficient condition for finding Az
for a non-negative matrix. We will prove it as a corollary to a more general
proposition (Proposition 3) for which neither m = 2 nor non-negativity of A
is assumed. We will also give an illustrutive example (Propostion 4) in which

Proposition 2 is conveniently used.

2 Results

The results of this note are based on the Perron-Frobenius theorem (cf., e.g.,

(1, p.53)):



Lemma 1 (Perron-Frobenius) An irreducible non-negative matriz A = (ajx)
always has a positive characteristic value p that is a simple root of the char-
acteristic equation. The moduli of all the other characteristic values do not
exceed p. To the mazimal characteristic value p there corresponds a character-
istic vector with positive coordinates. Moreover, if A has h characteristic values
A1 = p,A2,. .., Ay of modulus p, then these numbers are all distinct ad are roots

of the equation
M ph =0 (1)

More generally: The whole spectrum A1, Az,...,An of A, regarded as a system
of points in the complex A-plane, goes over into itself under a rotation of the
plane by the angle %{'— If h > 1, then A can be put by means of a permutation

into the following ‘cyclic’ form:

[ o A2 O ... O )
O O Ay ... O
A=| .. . o ] (2)
o 0 o0 .. An-1h
\Am O O ... 0

where there are square blocks along the main diagonal.

For two vectors u = (u;,u2,...,u,)T and v = (v1,v2,... ,vn)T (# u) with real
components, we write u > v ifu; > v; (j = 1,2,... ,n) hold. We say that A is
a non-negative (resp. positive) matriz if all components of A are non-negative
(resp. positive). Let us call a vector u a horizontal vector (resp. a non-horizontal
vector) if uy = Ug = ... = u, hold (resp. do not hold). We say that a vector u

with real components is monotone non-decreasing (resp. monotone increasing)



vector if i > j implies u; > u; (resp. if i > j implies u; > u}).

The following proposition is a simplest useful form of our results:

Proposition 2 Let A be a non-negative matriz. Suppose that there ezists a nat-
ural number r such that A™ maps any non-horizontal monotone non-decreasing
vector to a monotone increasing vector. Then, there exist a positive number p
and a stochastic matriz S such that A = pS. The matriz A has a monotone
increasing right characteristic vector ¢a, and its corresponding characteristic

value A2 satisfies the following relation:
pEA1>)\2>|A3|Z...Z|AnI, (3)

where )\ is the characteristic value corresponding to a positive horizontal right

characteristic vector.

Notice that the irreducibility of A is nof assumed. This note proves this
proposition as a corollary to a more general proposition. From here on, we
always deal with right characteristic vectors when we consider characteristic
vectors, so that we simply say “characteristic vectors,” suppressing right.

Let us call a linear map A a difference map if A maps an n-dimensional
vector u to (n —1)— dimensional vector v = (v1,v2,. .., vn_1)T = (ug—ug,uz—
Uy ..., Un—Un_1). If weapply A m times (m < n), we have A™, which maps an
n-dimensional vector to an (n — m)— dimensional vector. We have the following

proposition:

Proposition 3 Suppose that there is an integer m for which a matriz A satisfies

the following conditions:



1. A™u > 0 implies A™(Au) > 0.

2. Suppose that A™u # 0 holds. Then, for any j (j = 1,2,...,n), there
is a natural number r (depending on j) such that the j-th component of

A™(A™u) is positive.
Then, the characteristic values of A are composed of the Jollowing three types:

1. m characteristic values A\j (j = 1,2,...,m), any vector u in the corre-

Spondinj root subspaces of which satisfies A™u = 0.

2. h characteristic values \; = exp (2wit",:—‘—l)Am+1 (G=m+l,m+2,..., m+
h), where Apm41 > O and the characteristic vector A™,. .1 corresponding

to Am41 satisfies A™¢,, ., > 0.
3. n—m—h characteristic values A; (j = 7ﬁ+h+l,m+h+2, ...,n), which

satisfy |Aj] < Am+1-

Proof. Define a matrix P by

(1 0 .o i 0

o 0



Since we have

\1

1

1

1

1

0

,

P is non-singular. Notice that u > 0 implies A™(Au) > 0 if and only if A is of

the form:
A=(P"Yy"BP™, 4)
where
( b bim | bim41 bin
bml bmm bm,m+1 bmn éll é12
B = = (5)
0 0 | bmt1,m41 bm+1,n Oa | Bx
\ 0 “es 0 bn'm+1 bﬂn )

bix 20 (yk=m+1,m+2,...,n). (6)

Clearly, A and B have the same characteristic values.

The characteristic values of B are the union of the characteristic values

of B;; and those of Bay. Vectors 4-’1: = (¢k1,¢k2,...,¢km,0,0,...,O)T (k =

1,2,...,m) form root subspaces of Bg, corresponding to Ay, Az, ..., Am. Since

Bss is an irreducible non-negative matrix from the second assumption of in the

theorem under consideration, Lemma 1 assures the required results. 0O



Proposition 2 directly follows from Proposition 3, because A1 > |Ax| (k > 2)
follow from Lemma 1 when m = 1.

The following proposition is a typical application of Proposition 2:

Proposition 4 Let (ajx) be an n x n stochastic matriz. Suppose thetr < m

implies

k k
Zaj,SZa_.,-m, k=1,2,...,n. (N

j=1 j=1

Then, (ajx) has an monotone increasing characteristic vector, and its corre-

sponding characteristic values is the second characteristic value.

The following example shows that (7) in Proposition 4 is not a necessary con-

dition:

Example 5 The matriz

101 1 1 1
5 S 5 5 5
3 13 13 3 4
20 60 60 20 15
F=| 1 72 1 1 19
60 30 6 6 60
1 u u un oz
10 60 60 60 20
1 1 1 1
5 5 5 30 }

L
\ 30
maps any non-horizontal monotone non-decreasing vector to a monotone in-
creasing vector, and (—6,—3, —1, 2,4)T is the characteristic vector correspond-

ing to the characteristic value %. We see that it is the second largest among the

characteristic values 1, %, 33%, —316, —‘3/—05. However, (7) does not hold.



3 Conclusion

We have given a sufficient condition for the second maximality of the charac-
teristic value ;.)f a non-negative matrix (Proposition 2), which we have proved
as a corollary to a more general probosition (Proposition 3). Shown was an
illustrative example how to use it in an actual matrix (Proposition 4).

We would like to remark that we can generalize this result to those in more
abstract spaces by similar but slightly more careful reasoning. It will be dis-

cussed it in anoter paper with application to a special type of time series model.
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