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Abstract

This article is devoted to the problem of locating a facility within a bounded polygon in contin-
uous space with the objectives of maximizing the Euclidean distance to the nearest population
center and minimizing the Euclidean distance to the farthest demand. An Olkmnlog kmn)
algorithm for finding the analytical expressions of the efficient set and the trade-off curve
for the bicriteria model, based on the nearest- and farthest-point Voronoi diagrams, is given,
where m, n and k are the numbers of the population centers, the demands and the edges
of the polygon, respectively. Some geometrical features of the efficient set and the trade-off
curve are also presented.
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1. INTRODUCTION

In the last two decades, many articles have been devoted to the study of single facility
bicriteria planar location models, For example, McGinnis and White(1978), Hansen and
Thisse(1981), Hansen et al.(1981), Hamacher and Nickel(1996), Ohsawa(1998) analyzed the
models associated with the minisum and minimax criteria, and Current et 2l.(1990) wrote a
survey paper on multiobjective location models. In their formulations, the facility may be
considered as desirable. On the other hand, some facilities have both desirable and unde-
sirable characteristics, as indicated by Hansen and Thisse(1981), Erkut and Neuman(1989),
Daskin{1995). Typical examples of these facilities are airports. An airport is desirable in
the sense that inhabitants want to increase their accessibility to the airport. However, it is
undesirable in the sense that the planners want it to be as far as possible from any inhabitant .
because of the noise. Another example is the radar base. The radar bases are desirable in
the sense that the power required by the station is minimized such that all the points within
a region can be monitored by the station. However, they are undesirable in the sense that
these bases need to be located far from their neighborhood to maintain secrecy and to be well-
defended. Fire stations, police stations and hospitals can also be considered as such facilities
because they contribute to heavy traffic jam with much noise. Thus the planners locating
these facilities frequently face the trade-off between minimizing the distance to the farthest
inhabitant and maximizing the distance to the nearest inhabitant. Hansen and Thisse(1981)
formulated a single facility bicriteria model associated with maximin and minisum eriteria in
Euclidean space and proposed the Big Square-Small Square method for ﬁndiﬁg the efficient
set.

We are concerned with a single facility bicriteria model associated with masimin and
minimax criteria in Euclidean space. The purpose of this paper is to present a procedure
for generating the analytical expressions of the efficient set and the trade-off curve between
the conflicting goals, and to characterize the efficient set and the trade-offs. It will be shown
that the efficient set can be analytically expressed with the help of the nearest- and farthest-
point Voronoi diagrams. Indeed the planners would be interested in the efficient set and the
trade-off curve because by finding all the efficient locations, they can reduce the number of
alternatives. The trade-off curve enables them to compare these alternatives graphically in
terms of these two criteria. -

When dealing with the bicriteria models associated with the minisum and minimax criteria
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in Euclidean space, the corresponding objective functions of these criteria are both convex.
Accordingly, the efficient set is given by the set of minimizers of the convex combinations of
these two criteria: see Geoffrion(1968). Hansen et al.(1981), Ohsawa(1998). On the other
hand, the main difficulty here in finding the efficient set for our formulation arises from
the fact that the objective function corresponding to the maximin criterion is neither quasi-
convex nor quasi-concave. Therefore, the standard mathematical programming approach and
the Geoffrion’s result are useless for deriving the efficient set for our formulation.

The numerical solutions such as the straightforward modification of the Big Square-Small
Square method and the method by Drezner and Wesolowsky(1980) may generate efficient
locations for our model. However, as compared to the numerical methods, the analytical
expression has at least two advantages. First,. we will show that in general, the efficient
set of our bieriteria model 6ften consists of some discontinuous segments. This means that
it is difficult to interpolate the efficient set based on the efficient locations generated by
the numerical methods. Thus, only the analytic approaches enable us to find the efficient
set, which considers the trade-offs between two criteria of resulting from the alternative
locations. Second, analytical expressions will also enable the planner to carry out some
sensitivity analyses both on the location of the facility in geographical space and on the
corresponding cost in criterion space. Nevertheless, no analytical approaches to the subject
have been reported in the literature. |

The organization of this paper is as follows. The formulation and the solution of two sin-
gle objective location models and the two types of Voronei diagrams are presented in Section
2. Section 3 describes the analytical procedures for identifying the efficient set and the trade-
off curve, based entirely on the geometrical analyses. Finally, we present our conclusions in

Section 4.

2. LOCATION MODELS
Single Objective Models
Let 2 be a bounded, non-empty polygon in R2. Let py,--- , Pm represent the locations of m
population centers on a plane. In the maximin model, a facility is established within € in

order to maximize the Euclidean distance from the facility to its nearest population center:



see Hansen and Thisse(1983). Mathematically, this is

max Pﬁd=mgg%ﬂm—pm- (1)

The minimizer, denoted by a*, is called an anti-center. Let di,---,dn represent the locations
of n demand points on the plane. In the minimax model, a facility is set up in order to
minimize the farthest Eﬁclidean distances from the facility to these demand points: see
Hansen and Thisse(1983). Mathematically, this is |

min mw=mﬁﬁym*%w [%
The minimizer of G(x), denoted by c*, is called a center. The center is unique.

The location models (1) and (2) are called the largest empty circle problem and the
smallest enclosing circle problem, respectively in Computational Geometry: see Shamos and
Hoey(1975), Okabe and Suzuki(1997). For a specified value ), the corresponding level set
Lr(2) (resp. Lg())) is defined as the set {x|F(x) < A} (resp. {x[G(x) < A}). 1t is evident
from the definition that the level set Lp()) (vesp. Lg()\)) is the union (resp. intersection)
of the region inside the disks around the population centers with a radius of . Thus, the
level set Ly (A} is neither convex nor concave for VA > 0, and the level set La(X) is convex

for VA > 0: see Hansen and Thisse(1983). We denote their boundaries by Lz (A} and ALg(A).

Voronoi Diagrams
In basic Voronoi diagram literature, for the set of population centers py,- -, pm (resp. de-
mands qi,- - -,dy), the nearest-point (resp. farthest-point) Voronoi polygon associated with

the ith population center (resp. jth demand) is denoted by V; (resp. W;) and is defined as

follows: ]
Vi = 1 {xllx—pill < [Ix - pell}, (3)

kE{l,---,m}\{i} .
W; = N {xllx~a;) = x— axf}- (4}

ke{l,-n\ {7}
It is evident from these definitions that both Vi and W; are closed and convex. We denote
their boundaries by 8V; and 8W;, respectively. The union of Vi, - -, Vi, (resp. Wy,---, Wh)
is called a nearest-point (resp. farthest-point) Voronoi diagram: see Shamos and Hoey(1975).
The edges and vertices of these diagrams are called the nearest-point (resp. farthest-point)

Voronoi edges and the nearest-point (resp. faléthest—point) Voronoi vertices, respectively.



When the feasible region € is the convex hull of py, - - -, Prm, the maximin model (1) can be
solved in O(mlogm) time geometrically with the help of the neafesbpoint Voronoi diagram:
see Shamos and Hoey(1975). Indeed, the anti-center a* is defined either by a nearest-point
Voronoj vertex or by the intersection of a nearest-point Voronoi edge and the boundary of that
convex hull. On the other hand, when the feasible region §) is the entire plane, ie., Q@ = R2,
the minimax model (2) can also be solved in O(nlogn) time geometrically with the help of
the farthest-point Voronoi diagram: see Shamos and Hoey(_1975). Indeed, the center c* is
defined either by a farthest-point Voronoi vertex, or by the intersection of a farthest-point
Voronoi edge and the line segment connecting the two points generating this edge. Ohsawa
and Imai(1997) analyzed the near-optimality of the minimax model by use of a farthest-point
Voronoi diagram. Thus, these two location models can be dealt with as discrete optimization
problems. An example of the nearest- and farthest-point Voronoi diagrams on the squared
feasible region is shown in Figure 1, where m = n = 5, pi =q;fori=1,---,5. In this figure,
the edges of the nearest- and farthest-point Voronoi edges are indicated by the faintest and
the second faintest segments respectively, and the anti-center a* and the center ¢* are plotted

by asterisks.

Dominance and Efficiency

For x,y € Q, we say x dominates y and define x = y if and only if F(y) € F(x) and

G(y) 2 G(x), with strict inequality for at least one inequality. The point x is efficient

(Pareto-optimal) if and only if there does not exist some v(€ 2\ x) such that v > x. Let us
call the set of all efficient points the efficient set and denote it by S*. Since ¢* optimizes the

minisum model (2) uniquely, c* € §*. When we use actual data, they are located in general

positions, so that a* is unique. In this case, a* € §*.

3. BICRITERIA MODEL
Properties for Constructing the Efficient Set
Suppose that the feasible region 2 consists of k edges. Before stating the method for generat-
ing the efficient set, two properties will be described to justify the procedure for constructing
S*.
First, for a fixed A, consider a constrained minimax model in which the objective is to

minimize G(x) subject to the constraint x € 2\ Lg(}). The minimizer of this constrained
4



minimax model is denoted by s*(A). Clearly, as A increases, the region Q \ Lp(\) will
shrink, and will disappear for A > F(a*). Since G(x) is convex, s*(\) € 8Lp()), ie,
s*(A) = argminyeyy ,)G(x). As implicitly shown by Hansen et al.(1981), S* = {s*(\)|\ €
[F(c*), F(a*)]}.

Second, for F(c*) < VA < F(a*), s*(\) lies on a nearest-point Voronoi edge associated
with p1,- -+, Pm or on a farthest-point Voronoi edge assoclated with q,---, q, or on an edge
within Q. Thus, we see that unless s*()\) lies on 99, it is equidistant from either two pop-
ulation cenf;ers or two demands. Let us show this important property. Divide the feasible
region {2 into mn subregions ViNW;NQ (i =1,---,m;j = 1,--,m). ForVx e uNnW;ng,
define the point x' as a minimizer of G(y) with y € VinW;NQ and F(y) = F(x). It follows
from tﬂe definition of V; and W; in (3) and (4) that x < x/, and x’ lies on the intersection
point of the circle around p; with a radius of F(x) and either 8(V; N W; N Q) or the line
segment connecting p; and q;. These situations are illustrated in Figure 2. Unless x’ lies
on HV;NW;NQ), x < x/, so x < z, where z is an intersection pbint of the line segment

connecting p; and qj, and d(V; N W; N Q). This completes the proof.

Method for Constructing the Efficient Set

Let I be the set consisting of all the nearest-Voronoi edges associated with py,---, pm and
all the farthest-point Voronoti edge associated q, - - - s Gn, and all the edges of Q. As we have-.-
seen, our problem is reduced to finding the efficient set from E. For e a(V: N W;), let pl
and q}- denote the foot of the perpendicular from p; and d; to e, respectively. For ¥x € e,
three cases must be considered separately: Case I: p; is between q} and x; Case 2: x is
between pj and qf; Case 3: qj is between pf and x. These sjtuation are given in Figure 3.
From this Figure, we can obtain the following relationship between F(x) and G(x) based on

the Pythagorean theorem:

2
G(x)? = (\/F(}e:)2 —a? + 'r) + 6% if pl is between q; and x, (5)
2
Gx)? = (1/F(x)2 —a? - 7) + 4% otherwise. (6)

“where @ = |lp; — pill, 8 =1{lq; — a;l| and v = |Ip} — 4|l Thus, for Ve € E, the relationship
between F(x) and G(x) for all the points within e can be expressed analytically by both or

either of (5) and (6). This enables us to compare the alternatives analytically in criterion

space.
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Figure 4 shows the graph of (F(x), G(x)) for all the points within E, with the horizontal
and vertical axes measuring the values of F(x) and G(x), respectively.. In this Figure, as in
the case of Figure 1, the edges of the nearest- and farthest-point Voronoi edges are indicated
by the faintest and the second faintest segments, respectively. As we moves along a edge,
F(x) and G(x) changes continuously, so this graph in criterion space has the same network
structure as the graph consisting of nearest- and farthest-point Voronoi edges and the edges
of 0 in geographical space. In this figure, an efficient poin£ has no alternatives northwest of
it. In addition, 5* = {s*(A)|A € [F(c*), F(a*)]} as we have seen, and G(s*(A)) is increasing
with respect to A for F(c*) < A < F(a*). This is because as ) increases, the region 2\ Lp())
will shrink, and s*(\) lies on 8Lp()), as we have noted. To avoid misunderstanding, we
call the set of the point (F(x),G(x)) for all x € $* the trade-off curve. Therefore, we see
that the trade-off curve coincides with the lower envelope of the collection of these curves for
F(c*) € P(x) < F(a*).

The algorithm to find the efficient set and the trade-off curve can be stated in a compact

form as follows:

1. In geographical space, construct the nearest-point Voronoi diagram associated with
P1, -+, Pm, and the farthest-point Voronoi diagram associated with q1,' ', qn on the

entire plane.
2. Let E be the set of the nearest- and farthest-point Voronoi edges and the edges of 1.

3. In criterion space, plot the curves (5) and (6) corresponding to all the edges within &

for F(c*) € F(x) < F(a*)..
4. Find the lower envelope of these curves.

5. Let 5* be the set of edges or subedges (which are obtained by splitting up a edge within

E) corresponding to the curves on the lower envelope. -

The efficient set S* is shown in Figure 5 as the thick segments. As shown in this Figure,
the efficient set consists of four parts which are numbered according to the increasing order
of the maximin value, i.e., F(x). Thus, s*()) moves from ¢* to us through u; along two
Voronoi edges, then jumps to uz and moves to uy along a Voronoi edge, then jumps to ug
and moves to uy through ug along a Voronoi edge and an edge of 8%, and then jumps to ug

and moves to a* along an edge of 802. Let us now study the complexity of this method. Step



1 can be done in O(mlogm) + O(nlogn) time by means of a divide-and-conquer technique:
see Shamos and Hoey(1975). Since there are O(m) nearest-point Voronoi edges and O(n)
farthest-point Voronoi edges in the entire plane, respectively: see Shamos and Hoey(1975),
the cardinality of the set B is O(kmn). So, Steps 2 and 3 requires O(kmn) operations.
Elementary manipulations show that for two edges within &, their corresponding curves (5)
or (6) intersect each other at most two times. This means that the lower envelope consists of
O(kmn) curves, thus Step 4 requires O(kmn logkmn) time in the worst case with a divide-
and-conquer method: see Boissonnat and Yvinec(1998). Since the number of the curves on
the lower envelope is O(kmn), Step 5 can be carried out in O(kmn) time. Therefore, the
total time complexity is O(kmn log kmn).

"The following remarks should now be stated. First, when the feasible region  is convex
with O(k) < O(m) and O(k) £ O(n), the total time complexity reduces to O{(mn log mn)
because 9 intersects each Voronoi edge at most two times.

Second, instead of the Euclidean distance, consider the model with the transportation
cost function increasing and continuous in the Euclidean distance. It should be noted that
the efficient set of a bicriteria model using this cost function coincides with that using a
simple Buclidean distance. This is because this cost function does not affect the shapes of
the contours of both F(x) and G(x). Therefore, our algorithm can also be applied directly

to the models with the cost function.

Efficient Set and Trade-Off Curve

The following three properties can be defined. First, the efficient set .in geographical space
consists of only O{kmn) line segments, and the trade-off curve in criterion space consists of
only O(kmn) curves (5) and (6). Thus, the delineation of the efficient set and the construction
for the trade-off curve may easily be accomplished by using some software of GIS. Also, the
geometrical expressions of the efficient set and the trade-off curve may be of value in ;cerms
of intuitively understanding.

Second, the inspection of Figures 4.and 5 confirms the fact that jumps of the trade-off
curve in criterion space occur at some nearest-point Voronoi vertices in geographical space.
In any case, such jumps occur only at nearest-point Voronoi vertices, the intersections of
nearest-point Voronoi edges and 99, and vertices of Q. An intuitive explanation of this

is that as A increases, 2\ Lr()) will shrink into these vertices and intersections, and some
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of the subregions of 2\ Lp()) will disappear. So, if s*(\) was on such subregion, it must
Jump towards the new feasible region. This jump induces the minimax value, i.e., G(x) to
discontinuously go up. Therefore, we can conclude that these vertices and intersections tend
to be optimal for the scalarized location problems in which the objective is to minimize a
convex combination of the maximin and minimax objective functions with suitable weights
assigned to each of the two objectives.

Third, an observation of Figure 4 shows that the trade-off curve corresponding to either
the nearest-point Voronoi edges or the edges of 0 becomes concave. This means that
interior points of these edges cannot be optimal for the scalarized location problem. Indeed,
we see from Figure 4 that only the points between c* and U3, and two points uz, a* can
be optimal for each scalarized problem. Let us show the property that in any case, the
trade-off curve corresponding.to the nearest-point Voronoi edges is concave, and when £}
is convex, the trade-off curve corresponding to the edges of 89 is also concave. For any
e € 5" N(A(V;NW; N Q) \ 8W;), we may assume that p; lies on the same side of the line
including e from‘qj.. (Otherwise, since ec 0V, there exists k(# i) with e € 9V, N 8V},
so we can replace ¢ by k). For Vx € e, we again consider the three cases defined in the
previous discussion. It should be noted that in the last two cases and the first case with
a/F(x) < B8/ G(xj, x cannot be efficient, so we can exclude these cases from consideration.
This can be seen in Figure 6, where for each case, there exists the point x' € V,NW; N Q
such that [[x' — p;f| = [x — p;i| and |Ix' — q;]| < |x - q;ll, so x’ dominates x. ‘Therefore,
it suffices to examine only the first case with o/F(x) > 8/G(x), i.e., the function (5) with
aG(x) > BF(x). Differentiating G(x) two times with respect to F(x) yields

d*G(x) 1 ) _
dF(x)2  G(x)3(F(x)? - a?) (“"QG'(X)2 (1 + —F(J—;TT_"_—af) + ﬁ2F(x)2) _ )

Since F(x) > a and o?G(x)? > 2 F(x)?, we have %2[%:7{2)‘ < —g;g(x;&,? gf“ix))g < 0, as required.

4. CONCLUSIONS AND EXTENSIONS
In this paper, we have presented an analytical procedure of delineating the efficient set and
the trade-off curve of the single facility bicriteria planar location model with maximin and
‘minimax criteria. In addition, we have characterized geometrically the efficient set and the
trade-off curves corresponding to the efficient locations.

One possible extension of our methods is to apply it to the bicriteria model associated
8



with the generalized maximin and minimax criteria. Instead of maximizing the nearest dis-
tance as defined in (1) (resp. minimizing the farthest distance as defined in (2)), consider the
optimization pfobIem in which the sth nearest distance is maximized (resp. the tth farthest
distance is rﬁinimized). This corresponds to the case where the planner makes the facility
planning such that the minimum distance to (m + 1 — s) population centers is maximized
(resp. the maximum distance to (n + 1 — t) demands is minimized) without taking s ~ 1
population centers (resp. (¢t — 1) demands) into account. For example, to construct a new
airport, some population centers in the neighborhood of the airport may be transferred, and
some demands may be ignored because their locations are too far from the airport. We shall
call this type of model the generalized maximin model (resp. generalized minimax model).
For each model, instead of using an ordinary Voronoi diagram, a Voronoi diagram of ofder 3
(resp. of order n--1—%) can be used. More detail on this diagram can be found in Shamos and
Hoey (1975), Lee(1982). Since Voronoi diagrams of any order consist of some line segments,
we can derive the efficient set and the trade-off curve of the bicriteria model associated with

generalized maximin and minimax criteria by similar procedures.
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Figure 1: Nearest- and farthest-point Voronoi diagrams

Figure 2: x; < x] <3, X2 < %} and x3 < x}
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Figure 3: Relationship between F(x) and G(x)
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Figure 4: Trade-off curve in criterion space
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Figure 5: Efficient set in geographical space
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Figure 6: In any case, y dominates x
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