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Abstract

Sufficient axioms are identified for the existence of a finite-dimensional quasi-
linear utility function whose lexicographically ordered vectors preserve a deci-
sion maker's preference order on a mixture set A, It is shown that those
axioms are also necessary for the linear lexicographic representation when the
underlying set M is a mixture space,

1 Introduction

The aim of this paper is to identify sufficient (but also preferably necessary) axioms
for the existence of a finite-dimensional utility function whose lexicographically or-
dered vectors preserve a decision maker’s preference order on a mixture set A4, Such
a lexicographic representation was first axiomatized by Hausner (1954) who obtained
an infinite-dimensional utility function on a mixture space. His derivation involves
embedding a utility space (i.e., a mixture space with an order relation) in an ordered
vector space and showing by a nonconstructive method (see Hausner and Wendel,
1952) that every ordered vector space is isomorphic to a subspace of a lexicographic
function space.

Hausner also noted that the dimension of the lexicographic representation is fi-
nite if the dimension of the underlying mixture space is finite. This fact was recently
utilized in deriving a lexicographic probability system for decision making under un-
certainty (see Blume, Brandenburger and Dekel, 1991). However, Hausner’s method
may be somewhat undesirable for practical reason, since it is not constructive. To
cope with such a drawback, Fishburn (1971, 1982) presented a direct and construe-
tive derivation of a finite-dimensional lexicographic representation on a mixture set.
He made it clear that a hierarchical structure with respect to the set-inclusion for
mixture subsets generated by a certain equivalence relation on the set of all non-
degenerated preference intervals reflects multidimensionality of the lexicographic
representation.

Finite-dimensionality and its constructive derivation are important for practical
tractability. In this respect, LaValle and Fishburn (1991, 1992) recently developed
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lexicographic generalizations of subjective expected utility and derived the notion of
matrix probabilities. Fishburn and LaValle (1992) examined decomposition struc-
tures of lexicographically ordered multiattribute expected utility.

Fishburn’s hierarchical axiom, sufficient but not necessary for finite-dimensional
lexicographic representations, consists of several auxiliary relations constructed by
a decision maker’s preference order, and then preseribes the number of levels in the
hierarchical structure of mixture subsets, which corresponds to dimension of the
utility function. Therefore, his axiom may be undesirable in the sense that it is
not preference-based, i.e., it is not described directly by the preference order. We
shall develop such a preferece-based axiom that is sufficient for finite-dimensionalilty
when the underlying set M is a mixture set. However, it is shown that the axiom
is also necessary when M is a mixture space.

The paper is organized as follows. Section 2 introduces a sufficeint axiom system
for finite-dimensionality and present the main theorem, where the necessity of the
axjom system is also proved when A is a mixture space. Then Section 3 provides
the sufficiency proof of the main theorem.

2 Finite Dimensionality

Let I and I° be respectively the closed and open unit intervals. A set M is a mizture
setif for any A € I and any ordered pair (z,y) € M x M, there is a unique element
zAy InM such that, for all z,y € M and all A\, u € I,

M1, zly ==z,
M2, ziy=y{l- )=z,
M3, (zpy)ry = z(Au)y.

Following Hausner (1954), a set M is said to be a mizture space if, in addition, the
following condition js imposed:

AL~ p)
M4, (zpy)riz=z(Au) (ymz)
for all z,y,2 € M and all A, 4 € I for which A # 1.

Let > signify a binary relation on a mixture set A4 with ~ and > defined in the
usual way: for all 2,y € M,  ~ y iff not(z > y) and not(y > z), and = > y iff z > Yy
or & ~ y. The relation > is asymmetric if z > y implies not(y > z) for all @,y € M )
and negatively transitive if ¢ >~ y implies ¢ = z or 2> y for all 2,9,z € M. We say
that  is a weak order if it is asymmetric and negatively transitive.

We are concerned with a binary relation > on a mixture set M, which satisfies
the following three axioms, understoed as applying to all 7,4,z € M and all A € 1.

Al. » on M is a weak order.
A2, Ifz >y then zdz > yiz.
AB. Ifz e~y then zhz ~ yiz.



The meanings of those axioms are familiar from the expected utility theory. The
representational implication of the axioms proved by Hausner (1954) is that > on M
has a lexicographic representation, i.e., there is a multidimensional function on M
whose lexicographically ordered vectors preserve a binary relation > when M is a
mixture space. Furthermore, any function « on M that constitutes the lexicographic
representation is shown to be linear in the following sense: for all z,y € M and all
Ael,
u(zAy) = Au(z) + (1 — Nu(y).

There are several versions of the Archimedean axiom that are employed in ex-
pected utility theories, but omitted or relaxed in the lexicographic representation.
The usual version is stated as follows: for all z,y,z € M,

Archimedean Axiom AALl. Ifz >y andy > z, then there are a,B € I0 such
that oz = y and y » 203z,

As is well known, axioms Al, A2, and AA1 ate necessary and sufficient for the
existence of a linear function u on a mixture set M such that, for all z,y € M,
z -y <= ulz) > uly). :

The second version that we shall relax in our finite dimensional representations
is stated as follows: for all z,y,2,w € M,

Archimedean Axiom AA2. Ifz >y and zhz - yiw for all A € I9, then
not{w > z).

This is the weakest Archimedean axiom that will suffice for the One-way representa-
tion, i.e., there is a linear function % on a mixture set A such that, for all T,y €M,
z >y => u(z) > u(y) (see Aumann (1962) and Fishburn (1971b)).

Let " be an n-dimensional Euclidean space. Then we define a binary lex-
icographic relation >; on R™ as follows: for all n-dimensional real vectors a =
(a1,...,an) and b= (by,...,b,) in ",

a>rb <= az#banday> b
for the smallest k for which ay # by,

We say that (M, >) has an at most n-dimensional quasilinear lexicographic repre-
sentation (u1,...,u,) if u1,...,u, are real valued functions on M such that, for all
T,y € M,

z >y <= (u1(z),...,un(2)) >1 (@ (¥),..., un(¥))
with each u, on M quasilinear, ie., if up(z) # uk(y) and ui(z) = u4(y) for each
J <k, then for all A € I,

up{zAy) = Mg (z) + (1= Nug(y).

When each u; on M is linear, (M,>) is said to have an at most n dimensional
linear lexicographic representation.



Now we state a relaxation of the Archimedean axiom AA?2 below, which is under-
stood as applying to all positive integers n and all z;,.. ., Tndly Yiye oo Ynyp1 € M.

Ad(n). I forallAeI°,

Ty Yi ond TidTipr > YAy whenever 1 <1 < n s odd,
Yi> 2i and YAYii1 > AT whenever 1< i< n is even,

then nol(Yny1 > Tag1) if o is odd, and not(Tpi1 = Ynp1) if 0 is even.

Observe that A4(1) is equivalent to AA2. We say that, for z,7,2,w € M, a set
{{z,¥), (z,w)} of pairs (z,y) and (z,w) violates AA2 if either w > 2, 2 » y, and
zAz = ylw for all A € 19 or 2 > w, y > z, and yhw = zAz for all A € IO,
Then axiom Ad(n) requires that there is no n-sequence of sets, {(z1,v1), (2, %2)},

{(z2,32), (w3, ¥3)}s- -, {(@ny¥n), (@ng1,n11)}, that violate AA2,
The main theorem of the paper is stated as follows.

Theorem 1 Letn be a positive integer. Suppose that M is a mizture set that sat-
isfies azioms Al~-A3, and A4(n). Then (M,>) has an ot most n-dimensional quasi-
linear lezicographic representation. If M is a mizture space, then azioms A1-A3 and
Ad(n) hold if and anly if (M, >) has an ot most n-dimensional linear lezicographic
representation,

The proof for sufficiency of the axioms will appear in the next section. It is easy o
see that axioms A1-A3 are necessary for both representations in the theorem. To
show the necessity of A4(n) when M is a mixture space, suppose that (M, >) has
a linear lexicographic xepresentation (u1,...,u,). Given &,y € M with not(z ~ y),
let ksy denote a positive integer such that uy,, () # ug,,(y) and w;(z) = uly) for
all ¢ < kyy. Of course, 1 < kyy < n. If a set {(z,y),(z,w)} violates AA2, then it
follows from linearity of the representation that kry < ko

Assume that the hypotheses of axiom A4(n) hold. Then by the last claim in the
preceding paragraph, 1 < kzyyy < -+ < kgy, < n. Therefore, kg, 11 = Kooy
Hence it follows again from the last claim of the preceding paragraph that the set
{(@n,¥n), (Tns1,¥n41)} cannot violate AA2, so that not(yney > Tnwy) if n is odd,
and not(Zp41 > Y1) if 7 is even, Thus the conclusions of axiom Ad(n) obtain.

The following example illustrates insufficiecy of axiom Ad(n) for the quasilinear
lexicographic representation. Let n = 2, so that, for all z,y € M,

-y = (ulz), ua(@)) > 1 (u1(y), w2 y)).

Fix z,y,2 € M with z > y > 2. Since u1 is linear and uy is quasilinear, we define
ur(z) =1, u(y) =0, u(z) = —1, and, for all A € 7,

u2(m/\y) = A
u?(ZAy) = —A
0 fo<Aa<gy,
.1 i1 i
ug(zAz) = L ifg<Agy,
1 if 5 < AL



Then the 2-sequence of the sets {($%z,:c%y),(y,:c%z)} and {(y,a:%z),(m%z,y%z)}
violates axiom A4(2).

3 Sufficiency Proof of the Theorem

Throughout the section, we assume that M is a mixture set, and axioms AI-A3
and A4(n) hold for a positive integer n. We shall prove the sufficiency of the axioms
in three steps by deriving Fishburn’s hierarchical axiom A{m) introduced below in
Step 3. Fisrt in Step 1, we introduce several auxilliary relations and their properties
proved in Fishburn (1971a, 1982). Step 2 proves additional properties of those
relations. Finally Step 3 completes the proof.

Step 1. We introduce several auxilliary relations. Four Jemmas will be cited from
Fishburn (1982, Chapter 4) for the later developments, and their correspondent
numbers will be stated as L 4.n. Following Fishburn (1982), we shall construct the
hierarchical structure of closed preference intervals (z,y), where

(z,y) ={zeM:z > 2>y}

It follows that (z,y) is empty if ¥ > z, since > is a weak order. By N, we shall
denote the set of all nonempty closed preference intervals with nonindifferent end
points, Le., N'= {{z,y) : > y}. When (2,1}, (2, w) € N, the minimal element in
N that includes both {z,y) and {z,w) is easily seen to be {z,w) U (z,9).

An immediate implication of A1-A3 is that, for all {z,y) € A/, there is a function
Py on (z,y) taking value in I such that, for all z € (z,y),

TAy >z for all A > ¢y (2),
zr-zAy for all X < ¢y (2).

Note that either zay ~ z or zay = z or z > zay holds if o = Py (z). The following
lemma gives linearity and order-preserving properties of the Pzy function,

Lemina 1 (L4.1) If (z,y) € N, then ¢y is linear, and, for all z,w € {z, ), if
z = w, then ¢xy(z) Pt Cbmy(w)'

We define two binary relations, J and J*, on N by

(@,y) 2 (z,w) T (z,9) D (2,w) and ¢oy(2) > oy (w),
{z,y) O° (z, w) iff <$:y) 2 (Z;'w> and @”a:y(z) = Qbmy(w)-

When (z,y} 2 (z,w) and both intervals are in N, exactly one of (z,y) 3 {z,w)
and (z,y) 0* (z,w) must hold. It is easy to see from the definitions that J is
reflexive and 3J* is irreflexive. The failure of ¢,y (2) = $zy(w) can happen only if the
Axchimedean axiom, AAl or AA2, is false. We may say that J is commensurable,
since the ¢z, function may scale utilities for elements in (z,w) along with those in
(z,y) when {z,y) 3 (2,w), and 3* is noncommensurable, since otherwise.

The following lemma shows properties of 73* and some relations between —1 and
.



Lemma 2 (L4.4(a)-(d))

(a) If{z,y) 2 {2, w) and (z,w) T* {r,s), then (z,y) I* (r,s); if (z,y) T* (z,w)
and (z,w) 3 (r,s), then (z,y) 3* (r, s).

(b) If (z,y) I* (ry s}, (2,w) D (r,s), and (z,9) 2 (2,w), then (z,y) I* {z,w).

(c) * is transitive and irreflezive.

(@) I (&) 2* (zw), (z,9) 3* (ns), end (z,w) N (rs) # 0§, then (z,y) T*
{z,w) U(r,s).

We now define a key binary relation =g on & induced by 3 as follows:

@, 9) =0 (z,w) iff (2, w)U{z,y) 2D {z,y)
and (z,w) U{z,y) 3 (z,w).

The following relation between J and =¢ will be frequently used in the later proofs:
for all z,y, z,w € M,

($:y> = (z,w) = (93;'3)') =0 (z:w)

To see this, suppose that (z,y) I (z,w). Noting that {z,y) = (z,w) U {z,7), we
obtain that (x,w) U (z,y) J {#,w) and (z,w) U (z,y) 3 (z,3). Then by definition,
(2,9} =0 {w).

An important property of =g to formulate the hierarchical structure of mixture
subsets is stated by

Lemma 3 (L4.5) =g on N is an equivalence relation.

We partition A into equivalence class by =, and let Ay = A/ =p. Ap consists of a
single class A if and only if the Archimedean axiom, AA1 or AA2, holds.

Given an equivalence class A € A, let M(A) denote the set of all elements in
M that appear in at least one interval in A, i.e., M(A) = Ua(z,y). It follows that
M(A) is a mixture subset of M. The next lemma shows the hierarchical relations
between the different mixture subsets, M(A), induced by =j.

Lemma 4 (L4.8) For any two distinct A, B € Ny, either M(A)NM(B) =0 or
M(A) D M(B) or M(B) > M(A).

Step 2. This step proves three lemmas which show additional properties of how
hierarchical structures of mixture subsets induced by =¢ and commensurable and
noncommensurable relations can bhe related.

Lemma 5 If(z,y) 0% (z,w), (z,3) € A, and (z,w) € B, then M(4) 2 M(B).

Proof. Suppose thai the hypotheses of the lemma hold. Take any = in M(B).
We are to show that € M(A). Let (2/,w') be an interval in B that contains r.
Also, let (2", w") = (z,0') U (#/,w), i.e., the smallest interval that includes (z,w)
and (2/,').

Since (z,w) =¢ {2/, ), it follows from the definition of = that {2”,w") 2 (z,w),
so (2", w") =¢ (2,w). Thus (z”,w") € B, since {2,w) € B.

6



We note that (z,y) U (z",w") is in N, since (z,y) N (2", w") % §. We obtain that
(z,yy U (2", w"} D {z,y), so that

either (z,p) U{",w") I (z,v),
or {zyyu{",w") 3* (z,y)

Since (z,y) 3* (z,w}, it follows from Lemmas 2(a) and 2(c) that {z,y) U (", w) 3*
{z,w). Therefore, noting (z”,w") I (z,w), Lemma 2(b) implies that (z,y) U
(", w"y 3 (2, w").

Assume that (z,y) U {",%") 2* (z,y). Since {z,1) N (z",w") # @, a con-
tradiction to irreflexivity of J* follows from the last claim in the preceding para-
graph and Lemma 2(d). Hence we must have that (z,y) U (2", w") 2 (z,1), so
{@,y) U (", w") = {z,y). Thus (z,y} U (", w") € A. Since r & (", 1"}, we obtain
that » € M(A). : ‘ 0

Lemma 6 Iz w)Ulzy) 3 (z,0), {&,w)U (2,0} I* (z,0), {z,9) € 4, (z,w) €
B, aend {z,y) N (z,w) = 0, then M(A)N M(B) = §.

Proof.  Suppose that the hypotheses of the lemma hold. Assume that M(A) N
M(B) # €. Then by Lemma 4, either M(4) > M(B) or M(B) > M(A). Suppose
that M(A4) > M(B). Then we are to derive a contradiction. When M(B) > M (A),
a similar proof Jeads to a contradiction. Hence we must have M(A4) N M(B) = 0.
Since (z,w) € B isnot empty, let t & (z,w). Since t € M(B), we have t € M(4),
so that we take any {2',3') € A that contains ¢. Since A and B are distinct,
not({z',y'} =¢ (z,w)). Noting that (z',y') N (z,w) # @ and (2/,y") U (z,w) =
(&', w) U {z,9"), Lemma 2(d) implies that either one of the following two cases holds:

Case 11 {&,w) U{z,¢) O3* (z,w),
Case 2: {2/, w) U (2,9} 2* (', ¥/).

Case 1. Suppose that (z,w) U (2,7') 2* (z,w). Then (', w) U (z,7') 2 (', 9").
Let (z,y") = (z/,w) U {2,9'), i.e., the smallest interval that includes (', ") and
{z;w). Then (2",y"} =0 (#/,3/), so that (z","} € A. Since {z,9) € 4, (z,) =
(=, "), so that (z",y) U (z,v") 2 {z,y).

Since {z”,y) U (2,3"} 2 {z,w) U (z,y), we have that

either {z",y) U (z,y") =T* {(z,w)U (z,u),
oo &y U(zy") 2 (=m0 Ulzy).

If the former holds, then it follows from Lemma 2(c) that (z,y) U (z,3") 2* {z,1),
since {z,w) U {z,y) J* (z,y). This contradicts the last claim of the preceding
paragraph. If the latter holds, then it similarly follows from Lemma 2(a) that
(", 1) U{z,y") 2* (z,v), a similar contradiction. Hence Case 1 fails to hold.

Case 2. Suppose that (z",y") 3* (2/,y). Then (z",4") I (z,w). Thus
(2", 4"y =0 (z,w), so that {z",¢") € B. It follows from Lemma 5 that not(M(A4) o
M(B)), a contradiction. Hence Case 2 fails to hold, O



Lemma 7 If (z,y} € A, (2,w) € B, and M(A) D M(B), then

{,wyU{zy) 3 (2,9,
T, w)Ulzy) 2 (z,w).

Proof. Suppose that the hypotheses of the lemma hold. Then not({z,y) =¢
{(#,w)), so that
(@, w) U {z,y) 3* {z,9),
or (@ ,w)U{z,v) J* {z,w).

Suppose that (z,w) U (z,y) 2* {,y). Assume first that {z,w) U (z,7) 2 {z,w).
Then {z,w}U (2,3) =0 {z,w). Thus {z,w) U (z,4) € B. Hence by Lemma 5,
not{(M(A4) > M(B)), a contradiction. Assume next that {z,w) U (z,%) J* (2, w).
Then (z,y)N{z, w) = @, otherwise contradicting irreflexivity of 1*. Hence by Lemma
6, M(A)N M(B) =0, a contradiction.

Therefore, we must have that (z,w) U {z,y} O {=,9), so that (z,w) U {z,y) 2*
(z,w). O

Step 8. This step completes the sufficiency proof by deriving Fishburn's hierar-
chical structures of mixture subsets induced by =.

Adjacent mixture subsets induced by =; are identified by Dy, so that, for all
A: Be .Afo, ‘

M(A) D1 M(B)
HE M(4) D M(B) and M(A) D M(C) D M(B) for no C € M.

Furthermore, mixture subsets separated by & ~ 1 other ordered mixture subsets are
identified by Dy, so that, for k£ > 2 and for all 4, B &€ N,

M(A) o M(B) ‘ .
it M(A) D1 M(C) and M(C) Dp_; M(B) for some C € Np.

Now we state Fishburn’s hierarchical axiom as follows, understood as applying
to all positive integers m.

A(m). Form =1, there is no A,B € Ny such that M(A) > M(B). Form > 1,
there are some A, B € Ny such that M(A) Dm_1 M(B), and for all A, B € Ny, if
M(A) D M(B) then M(A) Dy M(B) for some 1 <k <m— 1.

The sufficiency proof is completed by showing that axiom A{m) holds for some
m < n. Suppose on the contrary that there are Aj,....Any; € My such that
M{A1} D - D M(An4a), Le, M(A1) Dp M(Any1). Tt suffices to prove the
following claim, since Axiom A4(n) is easily seen to be violated.

Claim 1 If (z,y) € 4, {z,w) € B, and M(A) > M(B), then z w > yz for all
eI



Proof. Let (r,s) = {z,w) U (z,7), the smallest interval that includes (z,y) and
{z,w). Then by Lemma. 7, (r,s) 2 (z,y) and {r,s) 2* (z,w).

Since w € {r,s) and (r,s) 2 (z,y), T \w and yAw are in {r,s). It follows from
the definition of J that ¢ns(z) > $rs(y). Thus by Lemma 1, ¢rs(zdw) > ¢rs(viw).
Hence (r,s) O {zAw,y w) for all A & I,

Since y € (r,s) and {r,s) D* (2,w), zAy and wAy are in {r, s). It follows from
the definition of J that ¢rs(2) = ¢rs(w). Thus by Lemma 1, ¢prs(zAy) = drs(wiy).
Hence (r, s} 23* {(yAz,y w) for all A € I°,

It follows from preceding two paragraphs, Lemma 1, and the definitions of I
and 3* that ¢rs(2Aw) > ¢rs(¥AW) = Prs(yr2). Hence zhw > yrzfor all A e 10, O
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