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Abstract

This note develops a regression-based testing procedure for serial correlation
in the presence of stochastic volatility. We investigated finite sample properties of
our test and found that our test is robust to stochastic volatility in terms of both
size and power performances.
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1 Introduction

Changes in asset return variance or volatility over time, may be modeled
using either the GARCI class models pioneered by Engle (1982}, or stochas-
tic volatility (SV) models; see, e.g., Taylor (1994). A test for the presence
of serial correlation is routinely carried out as a test for efficiency in finan-
cial markets. Most of the existing tests of autocorrelation, however, require
homoskedastic errors and hence may not be robust to heteroskedasticity.
There also exists tests of autocorrelation literature that take account of het-
eroskedasticity, such as Diebold (1986), Wooldridge (1991), and Bollerslev
and Wooldridge (1992). These tests are, however, designed to have good
perforrﬁance only under conditional heteroskedasticity. The purpose of this
note is to develop a regression-based testing procedure for serial correlation
in the presence of stochastic volatility.

2 The Testing Procedure
Consider the model
yt:$t5+ut1 t:]-a:T (1)

where y, is a dependent variable, z, = [zy,...,2r) is a 1 X k& vector of
variables, which may include stochastic and non-stochastic variables, lagged
regressors and lagged values of y;, and f is a k X 1 vector of unknown pa-
rameters, and u, follows the stationary AR{p) process

ut=p1ut_1+"'+pput—p+et t:].,-.-,T (2)
where py, ..., pp are unknown autoregressive parameters. In order to ensure
the stationarity of (2), we assume that roots of 1—p L—- -~ p,L? = 0, where

L is the lag operator, lie outside the unit circle. The term e; is assumed to
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follow a simple stochastic volatility process

e = \/i?gnt, e ~ lldN(O, 1), (3)
Inh, = y+¢nhey+o,v,, v~ 11d.N(0,1), (4)

where v, is generated independently of 7;. This model may be estimated by
GMM, Asai’s (1998) QML method via a log-GARCH approach, or Bayesian
Markov chain Monte Carlo by Jacquire, Polson, and Rossi (1994).

We wish to test the null hypothesis, Hy : gy = -+ = p, = 0, against the
alternative hypothesis H; : Not all p; =0, (j=1,...,p).
Asai (1998) showed that a simple SV process in e; can be interpreted as
a log-GARCH(1,1) model in e,
€ = Oi&, (5)
Ino} = wy+arlne’ |+ flno’ |, (6)
where og = v+ {1 — ¢)ey + (L — ) Ine, oy = ¢~ 0, pp =6, and ¢, =
E(lnn?) ~ —1.27,

2 2\ 2 2,2
0 = i[1+¢2+%%—4(1—¢2+2—0‘4) +8¢:”],
T T

2¢ w2

0.2

— ___L____f_n____(g"qﬁ)g (1)
G = o l4(1 —) "3 21-6"\3
L [mr ((9 )6+ 1) — Il (1)]
2 2 2 '
2 is a weak stationary process, odd-order moments of which are all zero, and

E(z}) =1 and F(zz-;) for j > 1. The forth order moment exists if |¢| < 1
and o, > 0, and is larger than three. ¢; is measurable with respect to the

time ¢t — 1 information set. This representation enables us to test for serial
correlation in the presence of SV, using Wooldridge’s {(1991) robust tests.

Wooldridge’s (1991) ARCH-corrected LM test is robust for testing Hy in
time series models with correctly specified conditional mean. The construc-
tion of the LM statistic involves the following step:
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1. Obtain the fitted value denoted here by Ing2, ¢t = 1,...,T from the
linear regression

h’l’&?:a0+a11nﬁf_1+"'+am1nﬂ’t2—-m+6t’ 'f,':]_,,T

2. Define 2} = z;/6; and @y = 4;/6,, t =1,...,T.
3. Save the 1 x p vector of residuals, say 7, from the regression of each of
the A; on z;, where A= (e, .., fg—p).

4. Compute (T-SSR), where SSR is the sum of squared residuals from the
regression of 1 on ;7. (T-SSR) ~ x*(p) asymptotically under Hy.

Remaining problem is how to choose m. Indeed, m = 10 is enough in
empirical analysis. A log-GARCH(1,1) process in e¢; can be interpreted as a
ARMA(1,1) process in Ine?, and thus a AR(co) process in Ine?;

e} = (1= §)ey +7)/(1 -6 + G- P +a. (7

If, for example, ¢ = 0.90 and ¢, = 0.363, which were used in Monte Carlo
simulations of Jacquire, Polson, and Rossi (1994), then # = 0.817 and the
coefficient of Iny? ,, is about 0.01.

3 Size and poer in finite samples

This section examines finite-sample properties of our test through simulation
experiments. All the work described subsequently was conducted using the
GAUSS programming language.

The true model in our experiments is given by a linear regression model

Yy =28 +u fort=-20,...,T



with z, = (1,zy;) and the true vector 8y = (1,1)’. The expression {z; : ¢t =
—19,...,T} is generated from an AR(1) process

T =05z, 1 +& with & ~ 1.1.d.N(0, 1)

with X_95 = 0. And {u,: ¢t = —19,...,T} is generated from an AR(1)-SV
process
ty = ptig—1 + € with u_ppy =0

where e; is gencrated by equations (3) and (4). The data are creating
T + 20 observations, and discarding the first 20 observations to remove
the effect of the initial conditions. Samples of size T' =250, 500, 1000,
2000, and 4000 are used in the experiments. A sample of 1000-4000 is
not uncommon in studies using daily or weekly data. As for the parame-
ters in equations (3) and (4), we take (v, ¢, 0,) ={(—0.7360, 0.90, 0.3629),
(—0.3680, 0.95,0.2600), (—0.1472,0.98,0.1657) }. These parameter values are
also used by Jacquire, Polson, and Rossi {1994), among others. As we noted
in previous section, we set m = 10.

We first consider the size of the tests. The null hypothesis specifies p =
0. We can see in table 1 that the tests have approximately correct size
even for T = 250. We next consider power of the tests. Table 2 presents
simulation results giving the powers of the test for p =40.1, £0.5, £0.8.
We find appreciable power except when p ==30.1 and T is not large. For
p ==0.1, power increases as T increases. When T is larger than 1000, powers
for 5 percent level are large enough. We may conclude that our test of 5
percent level is robust to stochastic volatility in terms of both size and power
perforrﬁances for sample sizes in studies using daily or weekly data.



References

[1] Asai, M., 1998, A new method to estimate stochastic volatility models: a
log-GARCH approach, forthcoming in: Journal of the Japan Statistical
Society 28.

[2] Bollerslev, T. and J.M. Wooldridge, 1992, Quasi-maximum likelihood

estimation and inference in dynamic models with time-varying covari-
ances, Econometric Reviews, 11, 143-172.

[3] Diebold, F.X., 1986, Testing for serial correlation in the presence of
ARCH, Proceedings of the American Statistical Association, 323-328.

[4] Jacquier, E., N.G. Polson, and P.E. Rossi, 1994, Bayesian analysis of
stochastic volatilities, Journal of Business and Economic Statistics 12,
371-389.

[5] Taylor, S.J., 1994, Modeling stochastic volatility: a review and compar-
ative study, Mathematical Finance 4, 183-204.

[6] Wooldridge, J.M., 1991, On the application of robust, regression-based
diagnostics to models of conditional means and conditional variances,
Journal of Econometrics 47, 5-46.



Table 1: Size of the tests (5000 replications)

5 percent level 1 percent level
T |¢=090 ¢$=095 ¢=098 ¢$=090 ¢=095 ¢=0.098

250 0.048 0.047 0.049 0.0066 0.0080 0.0074
300 0.048 0.053 0.047 0.0078 0.0102 0.0090
1000 | 0.055 0.048 0.052 0.0090 0.0074 0.0088
2000 | 0.049 0.042 0.051 0.0110 0.0086 0.0102
4000 | 0.049 0.052 0.047 0.0110 0.0088 0.0064

Note: “o = 0.90" denotes the SV parameter setting
(4, b, 0, )=(—0.7360, 0.90, 0.3629).



Table 2: Power of the tests (5000 replications)

5 percent, level 1 percent level
T p | =090 ¢$=095 ¢=098 ¢=090 ¢=095 ¢=0.98

250 0.8 0.998 0.999 0.996 0.996 0.997 0.990
0.5 0.999 1.000 0.999 (.998 0.999 0.996
0.1 0.214 0.214 0.209 0.070 0.073 0.067
-0.1 | 0.262 0.270 0.258 0.099 0.102 0.095
-0.5 | 1.000 1.000 1.000 0.999 0.999 0.996
-0.8 1.000 1.000 0.999 0.999 0.999 0.997

500 0.8 0.999 0.999 0.997 0.998 0.998 0.994
0.5 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.416 0.424 0.401 0.195 0.202 0.188
-0.1 | 0.449 0.459 0.445 0.218 0.230 0.222
-0.5 1.000 1.000 1.000 1.000 1.000 1.000
-0.8 | 1.000 1.000 0.999 0.999 1.000 0.997

1000 0.8 1.000 1.000 1.000 0.999 0.999 0.999
0.5 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.704 0.709 0.695 0.473 0.477 0.453
-0.1 | 0.721 0.738 0.727 0.496 0.508 0.496
-0.5 | 1.000 1.000 1.000 1.000 1.000 1.000
-0.8 | 1.000 1.000 1.000 1.000 1.000 1.000

T

2000 0.8 1.000 1.000 0.999 1.000 1.000 0.999
0.5 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.938 0.947 0.938 0.823 0.839 0.832

-0.1 | 0.946 0.948 0.947 0.835 0.852 0.845

- -0.5 1 1.000 1.000 1.000 1.000 1.000 1.000

-0.8 3 1.000 1.000 1.000 1.000 1.000 1.000

4000 0.8 1.000 1.000 1.000 1.000 1.000 0.999
0.5 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.999 1.000 0.999 0.993 0.995 0.992
-0.1 | 0.999 0.999 0.999 0.993 0.993 0.993
-0.5 | 1.000 1.000 1.000 1.000 1.000 1.000
-0.8 | 1.000 1.000 1.000 1.000 1.000 1.000

Note: “& = 0.90" denctes the SV parameter setting
{v,d,0,,) =(—0.7360,0.90,0.3629).



