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ABSTRACT

Some empirical evidences indicated the high persistence in asset return volatil-
ity. Engle and Bollerslev (1986) proposed to use the integrated GARCH (IGARCH)
models for conditional volatility. Geweke (1986} and Pantula (1986) suggested the
integrated log-GARCH (ILGARCH) models, which are the logarithmic extension
of the [IGARCH models. Harvey, Ruiz, and Shephard (1994) and Ruiz (1994) mod-
eled as the logarithm of unobserved volatility follows a random walk process, which
is called the random walk stochastic volatility (RWSV) model. As with other SV
models, the likelihood function of the RWSV model is difficult to evaluate. In this
paper, we briefly review the estimation methods for RWSV models. We derive an
ILGARCH representation of a class of RWSV models, including linear regression
models with ARMA (p,g)-RWSV errors. We propose a new QML method via the
ILGARCH approach. Our Monte Carlo results indicate that QML estimator via
the ILGARCH approach performs well. In the view of relative efliciency, for the
parameter values found in empirical analysis, our estimators are superior to those
of the Method of Moments estimator and those of the QML estimator based on the
Kalman filter. We develop procedures for testing the integration of log-volatility.
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1 Introduction

It is well known that asset return variance or volatility changes randomly
over time. There are two types of econometric models for such effects. One
is the GARCH models, developed by Engle (1982) and Bollerslev (1986). In
GARCH models, such effects are captured by letting the conditional volatility
be a function of squares of previous observations and past volatilities. Since
the models are formulated in terms of the conditional distribution, the like-
lihood function may be evaluated straightforwardly. Another type is the the
stochastic volatility (SV) models, in which the logarithm of an unobserved
volatility is modeled as a linear stochastic process, such as an autoregres-
sion. Their statistical properties are easily obtained from the properties of
the process generating the volatility component. Their main disadvantage,
however, is that they are difficult to estimate by the maximum likelihood

estimation method.

Some empirical evidence indicated the high persistence in asset return
volatility; see, for example, Bollerslev, Chou and Kroner (1992). Engle and
Bollerslev (1986) proposed to use the integrated GARCH (IGARCH) models
for conditional volatility. Geweke (1986) and Pantula (1986) suggested the
integrated log-GARCH (ILGARCH) models, which are the logarithmic ex-
tension of the [IGARCH models. Harvey, Ruiz, and Shephard (1994) and Ruiz
(1994) modeled as the logarithm of unobserved volatility follows a random
walk process, which is called the random walk stochastic volatility (RWSV)
model. -

As with other SV models, the likelihood function of the RWSV model is
difficult to evaluate. In this paper, we briefly review the estimation methods
for RWSV models. We derive an ILGARCH representation of a class of
RWSV models, including linear regression models with ARMA(p,q)-RWSV
errors. To estimate these RWSV models, we propose a new QML method via
the ILGARCH approach. Our Monte Carlo results indicate that their finite



sample properties are superior to those of the Method of Moments estimator
and those of the QML estimator based on the Kalman filter.

The organization of this paper is as follows. Section 2 briefly reviews
the estimation methods for RWSV models, and derives an ILGARCH repre-
sentation of a RWSV model. Section 3 investigates finite-sample properties
of the QML estimator. Section 4 reports empirical findings for the daily
Deutsch mark/U.S. dollar exchange rates. Testing procedures for integration
in log-volatility are discussed in appendix C. Section 5 concludes the paper.

2 Random Walk Stochastic Volatility

A simple stationary SV model is given by

yr = eexp(hy/2), & ~ NID(0,1),

hlt = 7 + ¢ht—1 + ant, "’Tt ~ NID(O, 1), (1)
where ¢, is generated independently of 1, and |¢| < 1. Working with expo-
nentials ensures that exp(h;) is always positive.

The SV model in (1) can be generalised so that h, follows any stationary
ARMA process. Altenatively, h; can be allowed to follow a random walk.
The corresponding RWSV mode] is then

yr = eexp(he/2),

he = hiy+ogm. (2)
Since h,; is nonstationary, 1; is also nonstationary. The Kalman filter ap-
proach, proposed by Harvey, Ruiz, and Shephard (1994) and Ruiz (1994), is

still valid if the restriction ¢ = 1 is imposed. We consider the following state
space model:

Iny? = E(lngd) + hy+ ¢,
ht = ht—l + Oyt (3)
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where ¢, = (Inei — F(lne?)). Since the mean and variance of Ine? are
E(lne?) = (9(1/2) — In(1/2)) =~ —1.27 and Var(lne?) = x%/2 where (-}
is the Digamma function!, ¢; is a non-Gaussian white noise with mean zero
and variance 72/2. Estimation of ¢2 in model (3) can be carried out by
treating ¢; as it were i.1.d.N{0, 7%/2). Using the results in Dunsmuir (1979),
the asymptotic distribution of estimator of 0,% is given by

VT(52 — a2) £ N(0,Ci(02)),

where

2
01(012,) = [(03 + 203,%2)3/2 + (4)
n

Appendix A gives the derivation of this asymptotic variance. Note that the

2(03 + 20,277r2)2
oF + m?

asymptotic variance in Ruiz (1994, p.304),

2 4 2_2\3/2 2nta,
= 2 /24 77 Tm
z l(an + 20,7 e+ P , (5}

contains typogarphic errors and thus it should not be used?.

A method of moments estimator is also given in Ruiz (1994). Consider
the state space form in (3). The stationary form of Iny? is given by

Alnyf = oy + A

Given that 7, and ¢; are mutually uncorrelated and o7 = 7°/2, thet variance

of 1, is given by

O'2=O'

2 2
7 Alny?

.

!1See Abramovits and Stegun (1970, p.943).
?Instead of typogarphic errors, since Table 6 of Ruiz (1994, p.298} which provides

asymptotic standard deviations of QML estimator via the KF coincides the our results in
equation (4), Ruiz (1994) do not have to change her conclusion that the efficiency of the
method of moments estimator compared with the QML estimator via Kalman filtering

methods is exceptionally low for RWSV models.



A method of moments estimator of org is then given by

<2 _ 22 2
7 O-Alnyf L
9 : s 2 2 5
where &%, ngz the sample variance of Alnyf. If o7 > 0, then VT (57 — o2)

has an asymptotic normal distribution with zero mean and variance

Cg(af]) == 2[(0,27 + %)% + 74). (6)

Jacquier, Polson, and Rossi (1994) suggested a Bayesian inference and
used the Markov chain Monte Carlo (MCMC). This method can be applied
both stationary and nonstationay SV models. The MCMC is, however, com-
putationally intensive, and thus we do not deal with it in this paper.

Asai (1998) derived a log-GARCH representation of a class of SV models,
including linear regression models with ARMA(p,q)-SV errors. To estimate
these SV models, he proposed a QML method via the log-GARCH approach
based on either a Gaussian or a standardized ¢ distribution. His Monte Carlo
results indicate that their finite sample properties are superior to those of the
Genelalized Method of Moments estimator and those of the QML estimator
based on the Kalman filter; and close to those of the nonlinear filtering
maximum likelihood estimator, which is a conputationally intensive method.

Asai’s (1998) basic idea is that a SV model in y; is interpreted as an
ARMA process in In 3?2, and a log-GARCH model in z; as an ARMA process
in In z2. Thus, there is a link between a SV model and a log-GARCH model.
Following the spirit of Asai (1998), we derive a ILGARCH representation of
RWSV models. Concentrating out h; in model (3), we obtain

Iny’ = In yf_l + o+ G — G- (7)

Let us note that a Gaussian process variable combined with an MA(1) vari-
able reduces to an MA(1) process; see Hamilton (1994, chapter 4, pp.102-
106). Using this fact, the last three terms of equation (7) becomes an MA(1)
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process,
OpMe + (Q - Ct—l) =vp— Ove1, v~ WN(O,Ug) (8)

where WN(0, o%) denotes a white noise process with mean zero and variance

2 2 2y 2
g T _ 9\ _ 9a) _
o° = 7L f = (1+7r2) J(l—i_ﬂ) 1 (9)

The other solution of the quadratic equation for € does not satisfy the in-

o2, and

vertibility condition. Note that equation (9) implies 0 < 8 < 1. As a result,
the model reduces to an integrated MA(1)} process in Iny?:

In g7 = In g}, 4o — vy, v~ WN(0,0%). (10)

where v, is a skewed and leptokurtic white noise.

We next show RWSV process in y; is equivalent to an ILGARCH(1,1)
process in y; with a symmetric non-Gaussian noise. Define a standardized
process z; and a positive predetermined variable o; by

1 _1)ei- o= i
= — (Et ﬁ [Et—i|(0 1o l) eXp [?—nﬂc + ﬁzﬂ*m—i} ? (11)
Cz i=1 2 24
Ino? = Inc2 + (1 — 8)(1 ~ L) liny? ,, (12)

5 o (0-10+3) - )]

=L

c: = E(Ine?), and L denotes the lag operator. Since ¢, < oo if g, > 0, 2 is
a weak stationary process and its moments up to fourth order are?:

E(zt) =0, E(Z?) =1, E(Z?) =0,

3The derivation of the moments of z; in this paper is available upon request.



3 202 1
B(ef) = = exp l 1 26, + 26y (5)
i

+§ T (20— 1)6° + 7) =T (%)H ,

E{zz;) =0, forj>1.

All odd-moments are equal to zero. o, is measurable with respect to the time
t — 1 information set,

Rewriting &; in terms of z, or o; as
gt = Inz? — Inc? = Iny? — Ino? — Inc? (13)

and substituting equation (13) to (10), we obtain an equivalent representation
of the RWSV process in y;,

h = Oy, Zy ~ WN(01 1):
Ino} = (1-8)nc + (1~ ®iny? ; + Olnar ;. (14)

Note that z; is serially uncorrelated with mean zero and variance one, and
that Inc2 is the function of . Therefore the RWSV process in 3, can be
interpreted as an ILGARCH(1,1) process in y; which has a heavy-tailed and
symmetric conditional distribution. It should be noted that theorem 2.1 by
Nelson (1991) indicates y; in (14) is nonstationary.

The procesure in this section is also applied to linear regression models
with ARMA (p,q)-RWSV errors; see appendix B.

3 A New QML Estimation Method

In the previous section, we derived a ILGARCH representation of a RWSV
model, To estimate RWSV models, we propose a new QML method via the
ILGARCH approach based on the Gaussian distribution. We also analyze
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the finite sample properties of QML estimator of 0,27 using Monte Carlo ex-
periments. Using response surface methodology, we investigate finite sample
biases and compare estimated asymptotic standard errors to sample stan-
dard deviations. We examine their relative efficiencies with respect to other
estimators.

Under a set of mild regularity conditions, the quasi-maximum likelihood
estimator proposed by White (1982) is consistent and asymptotically normal.
Lee and Hansen (1994) established the consistency and asymptotic normal-
ity properties of the quasi-maximum likelihood estimator of the GARCH(1,1)
and IGARCH(1,1) models assuming that the standardized variable z is sta~
tionary and ergodic with a bounded fourth conditional moment. Unfortu-
nately, as with other ARCH models including EGARCH models, a satisfac-
tory asymptotic theory for the log-GARCH/ILGARCH is as yet unavailable.
In the remainder of this paper, we assume that the QML estimator is consis-
tent and asymptotically normal®. The asymptotic distribution for the QML
estimator of the parameter ¢ takes the form

VT {(Bgmrr — 60) & N(0,by/a?) (15)

where ay is the expected value of the Hessian evaluated at the true parameter,
and by is the expected value of the outer product of the gradients evaluated
at the true parameter. Hence, the asymptotic distribution for the QML
estimator of f(f) = .5n%(1 — 0)?/8 = o takes the form
VT(f(Ogure) — £(80)) ~ N (0,C), (16)
where
C = (0f(6y)/60)%by /. (17)
As in Ruiz (1994), we can obtain smoothed estimates of log-volatility, A,
by applying the extended Kalman filter, described in Anderson and Moore
(1979).
4This is the usual practice in papers that use ARCH models. See, e.g., Bollerslev,
Engle, and Nelson (1995).




The Monte Carlo experiment considers finite sample properties across two
dimensions. First, we investigate the effect of small to medium sized samples
using sample sizes of 250, 500, 1000, and 2000 observations. Second, we
consider the effect of widely differing parameter values given by 0,27 = {0.0009,
0.0025, 0.0048, 0.0081, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}.
This gives 14 design points and a total of 56 experiments. Parameter values
are chosen to cover the region of {0.0034,0.0194), which is empirical results
for daily exchange rates reported in Harvey, Ruiz, and Shephard (1994). The
model given by equation (2) is estimated via the ILAGRCH representaion
in (14) using Berndt, Hall, Hall, Hausman (1994) algorithm with analytical
derivatives. Pre-sample values of the logarithm of conditional variance are set
to zero. This is analogous to the IGARCH analysis; see Lumsdaine (1995).
The true parameter values transformed by equation (9) are used as starting
values for the parameters in the estimation algorithm. To approximate the
infinite sum which appears in ¢;, -(%-lncg, and %lncﬁ, we use the number large
enough so that the difference between approximate sum and the infinite sum
is less than 1075, These numbers are reported in Table 1. For each design
point and sample size, we use 200 replications. All conputations were carried
out on Pentium PC using GAUSS version 3.2.30.

Response surface methodology facilitates understanding of experimental
evidence because large amounts of experimental data can be summarized
using simple function forms. It also provides applied researchers a simple
tool for computing outcomes at points in the parameter space that are not
included in the experimental study. Another advantage, especially for com-
putationally intensive processes, is that a large number of replications is not
required. Increasing the number of replications, however, improve the pre-
cision of the estimates and makes it less likely that outliers influence the
regression results. See Maasoumi and Phillips (1982), Hendry (1982), and
Davidson and MacKinnon (1993) for detailed discussions of the merits of
response surface methodology.



The response surface regression for bias is

né% —Ino? (T, 02
! 1= (T 2) +uy (18)
U1 1

where af, is the true parameter value in the DGP, T is the sample size, and
u, is the regression error term. v; denotes the logarithms of the root mean
squared errors of parameter estimates {over replications) and implies the
heteroskedasticity transform. Although the true functional form of (T, 02)
is unknown, it may be approximated using polynomial approximations to the
true functional forms as:

i 2 -1 _ -1 21
W(To}) = 5T - gl + g sei (19

R?=10.53, SE=0.017, W =000, JB=13.5,

where standard errors are in parenthesis. W denotes White’s (1980) test for
heteroskedasticity and/or functional form misspecification. W is distributed
as a x2(8) under the null hypothesis of homoskedasticity. JB denotes Jarque
and Bera’s (1987) test for normality. Under the null bypothesis of normality,
JB is destributed as x?(2). W is not rejected at the five percent significance
level. This indicates the validity of the response surface specifications®. All
parameters are siginificant at the five percent level. In this case, the bias will
be minimized when o? =~ 0.0625. The bias may disapper as the sample size

7
increases.

The next question of interest is how the asymptotic variances, C, com-
puted in each experiment using analytical first and second derivatives com-
pare with T times sample variances of the estimated parameters obtained

from the simulations. Specifically, one might expects the asymptotic vari-
ance (AVAR) should approximate the corresponding 7' times sample vari-

5For the Gaussian QMLE, there is no apriori reason to believe that the residuals of

response surfaces will be normally distributed and have unit variance.



ances (SVAR). The response surface regression for AV AR is

InfAVAR) — In{(T - A Uy(T, o2
n( R) T)n( SV AR) _ 2(v o7) i 20)
2 2

where uy is the regression error term and v» = In(sample standard deviation
of AVAR for the experiment) is a heteroskedasticity transformation. We
specified the functional form of ¥5(T, o2) as:

Gy(T, 02) = — 1838.7T1 — 1035.4 6, 7" + 1170.7 62T~ (21)
7 (1069.6) (12805.5) (33749.3) 7

R?=.13, SE=.51, W=0.00, JB=H8.0L,

where standard errors are in parenthesis. W is not rejected at the five per-
cent level. All parameters are not siginificant at the five percent level. The
coefficent of T! is significant at the ten percent level. This is a desirable
property since it suggests that the difference between AV AR and T'- SVAR
is not a function of model parameter, though it is a function of the sample

size.

Remainder of this section, we exmine the relative efficiency of QML esi-
mator via the ILGARCH approach to Method of moment estimator and/or
to QML esimator based on the Kalman filtering procedure, which are dis-
cussed in section 2. We do not consider the Bayesian Markov chain Monte
Carlo (MCMC) method of Jacquier, Polson, and Rossi (1994) in our simula-
tion for practical computational reasons. To obtain more precise estimator
of C in (17), We conducted another Monte Caro sirulation. With sample
size 5000 and o2 = { 0.0009, 0.0049, 0.01, 0.09 }, we calculated the esti-
mate of v/C using the sample gradients and sample Hessian evaluated at
the true parameter, and obtained its sample mean by 1000 replications. Ta-
ble 2 shows the asymptotic standard error for three estimators. ILGARCH
indicates the estimates of asymptotic standard error, v'C, of QML estima-
tor via the ILGARCH approach. KF and MM denote analytical asymptotic
standard error of QML estimator via the Kalman filtering procedure and
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method of moments estimator, /C1(02) and |/Cy(02), respectively. Squre
root of relative efficiency is in parenthesis. It is possible to observe that, for

the parameter values between .0009 and .09, the efficiency of the method of
moments estimator and the QML estimator via Kalman filtering methods
compared with QML estimator via the ILGARCH approach is low.

4 Empirical Example: Daily Exchange Rates

The data consist of daily observations on the Deutsch mark/U.S. doliar ex-
change rate over Nobember 24, 1989 through December 31, 1996 period, for
a total of 1852%. A broad consensus has emerged that nominal exchange
rates over the free float period are best described as non-stationay, or I(1),
tyope processes; see, e.g. Baillie and Bollerslev (1989). We shall, therefore,
concentrate on the nominal returns; i.e. r; = InS; — InS;_;, where 5; de-
notes the spot Deutsch mark/U.S. dollar exchange rate at day ¢. Table 3
shows Box-Ljung Q-statistics for several transformations of r; minus its sam-
ple mean. The chi-square 5 percent critical value for ten degrees of freedom is
18.3. There appears to be little serial dependence in the levels of the returns,
whereas strong serial dependence in the squared returns and their logarithms.
Note that in the presence of heteroskedasticity, Ljung-Box Q-statistics will
tend to over-reject.

We consider the following MA(1)-SV model:
Ty = d + €t — bet_l
e; = erexp(hy/2) & ~ NID(0, 1),
h't - 'Y + tht—l + o-nnt) nt ~ NID(O7 1)3

The MA(1) term is included to take account of the weak serial dependence
in the mean. Following Asai (1998), the above MA(1)-SV model in r; may

8The data were obtained through Datastream.
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be interpreted as an MA(1)-log-GARCH(1,1) model in r;

Tt = ] +e — bet._.l
€ = Oy,

Ine? = ag + aylne?_, + Blno? |,

where the definition of transformed parameters, ayg, @, and 3, are given in
appendix C.

The first column of table 4 reports the QML estimates based on the above
representation. The robust QML covariance estimators proposed in a very
general framework by White (1982) are used to compute the standard errors.
Testing procedures for unit root in variance are discussed in appendix C. The
t-values for the null of ¢ = oy + 51 = 1 are calucalted under the MA(1)-log-
GARCH(1,1) representation. The ¢-value for ¢ = 1 is -1.1579 and cannot
be rejected the null of unitroot in variance at five percent siginificant level.
Since many paremeters are insignificant at five percent level, the model may
be misspecified.

The second column of table 4 indicates the QML estimates of SV model,
excluding the MA term. The #-value for ¢ = 1 is -1.1604 and cannot be
rejected the null of unitroot in variance. To calculate KPSS test statistic,
we have to determine the lag truncation parameter, I. According to the
results of Andrews (1991, pp.834-835}, [ is automatically selected as 336.
The critical value for five percent level and ten percent level are 0.463 and
0.347 respectively; see Kwiatkowski at al. (1992). The KPSS statistic is
0.4285 and is rejected at ten percent siginificance level. We conclude that
log-volatility of r; has a unitroot.

The QML estimates of MA(1)-RWSV and RWSV models are given in
third and fourth columns of table 4, respectively. The {-value of the coefficent
of MA(1), b, is significant, in this case. Therefore the MA(1}-RWSV model
is preffered.
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5 Concluding Remarks

In this paper, we briefly review the estimation methods for RWSV models.
We derive a ILGARCH representation of a class of RWSV models, including
linear regression models with ARMA (p,q)-RWSV errors. To estimate these
RWSV models. we propose a new QML method via the ILGARCH approach.
QOur Monte Carlo results indicates that QML estimator via the ILGARCH
approach performs well. In the view of relative efficiency, for the parameter
velues found in empirical analysis our estimators are superior to those of the
Method of Moments estimator and those of the QML estimator based on
the Kalman filter. We developed procedures for testing the integration of
log-volatility. We presented a empirical example of daily Deutsch mark/U.S.

dollar exchange rates.
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Appendices

A The limiting variance

Using the results in Dunsmuir (1979), the asymptotic variance of the QML
estimator via the KF approach is given by

Ci(o?) = 247" + A™'BAY,

1 g7 [Blng(eM)\?
A_271' /_w( dol a

where g(e*) is the spectral generating function of the stationary form of Iny?,
1 7 dlng(e™) .|
Bzﬁh“/_ﬁﬂLQA,
21 J-x Dol 7
where & is the measure of excess kurtosis of lne? and x = 4; see Abramovits
and Stegun (1970, p.943).

with

and

The stationary from of Iny? in equation (7) is given by,
Alng? = oyny + (1 = L)G.
The spectral generating function of Alny? is given by
. . 71'2
gle?) =l + 1 - e”‘[z—2— = ol + (1 — cos \),
and thus

Olng(e*) 1
802 o2+ 7*(1—-cos))

Using the results in Abramovits and Stegun (1970, p.78),

f’f Olng(e*) i\

2
-7 60' 7
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1 g7 1
= =/, 5 02/n%) —cosn’

2 srctan (1+02/n%) +1)tan3
\/(1 +o2/m?)? -1 \/(1 +ok/n?)? — 1
27

1/0% + 20,2]%2‘

Similarily, we obtain from the results in Prudnikov af al. (1986, subsection

1.5.9),
- iy 2
[ (Blng(s )) O
-1 30',?

1 ¢= 1
Tt /—w [(1+02/7?) — cos )\]Qd/\

72

-

1 sin A "
B [[(1 + a%/vr2)2 ~1][(1 + 0,2?/%2) — €08 /\]} .
(1+ Jg/ﬂ'?) 7 1
740+ 02/x2)2 — 1] L. @+ o2/n%) —cos A
o (0% +72)

(o} + 20272)3/2

Therefore the analytical expression of A, B and € are given by

B 03 + 72 _ 4
(0% + 202r2)3/2 "~ of + 20212
2(0t + 20272%)?
Ci(o2) = (o + 20371’2)3/2 -+ (9 o)

o2 + 72 o2+ 7

B ARMA-RWSV Models

We now consider a linear regression model with ARMA (p,¢)-RWSV errors,
or simply ARMA-RWSV model:

Yo = Xib+uy, (22)
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ALy, = B(L)e, (23)
e = eexp(h/2), e~ NID(0,1), (24)
he = hei+opm, 7~ NID(O,1), (25)

where ¢, is generated independently of 7, X; is a I x k vector, d is a k£ x 1
parameter vector,

AlL)=1-aL—-- —a,L?,
B(Ly=1~-bL—--- —bL",
and L is the lag operator. The Kalman filtering method is hard to apply
estimating ARMA-RWSYV models.

The ARMA-RWSV model of (22)-(25) can be interpreted as an ARMA-
ILGARCH(1,1) model in a similar fashion to the simple RWSV model (2):

g = Xeb 4w,
A(LYyu; = B(L)e,
e = oz, 2~ WN(0,1), (26)
Ine? = (1 —0)Inc2+ (1 - O)ne? | + blnc? |, (27)

where the definition of the transformed parameter 8 is the same as in the
RWSYV case. z; has the heavy-tailed and symmetric conditional distribution.

C Test for Integration in Log-Volatility

The appropriate procedure for testing for integration in variance is not yet
clear. In this section, we discuss three possible way.

One possible way is to apply augmented Dickey-Fuller test and/or Phillps-
Perron test to Iny?. However, the reliability of such unit root tests in this situ-
ation is questionable. According to Asai (1998) and Harvey, Ruiz, and Shep-
hard (1994), simple SV process (1) in g can be interpreted as ARMA(L,1)
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process in Iny?:

Ing? = v* + dlny? | + ¢ — 0°¢y, (28)
where (; is white noise and v* = v — 1.27(1 — ¢). Since the variance of ¢
typically dominates the variance of o,n, the parameter 8* will be close to
unity for values of ¢ close to one. For example, when ¢ = .98 and o, = .166,
which was used in Monte Carlo experiments of Jacquier, Polson, and Rossi
(1994), ¢* is .92. As shown in Pantula (1991) and Schwert (1989), when
moving-average parameter is very close to one, unit root tests reject the null
hyposthesis of a unit root too often since the model is difficult to distinguish
from white noise.

The other possible way is to use KPSS test proposed by Kwiatkowski af
al. (1992). The KPSS test is basically different from other unit root tests
since the null hypothesis is that an observed series is stationary. We consider
the data-generating-process (DGP) of Iny?:

1nyf=a+§t, t=12,...,T

Kwiatkowski af al. (1992) assume the components representation & = R, +
Vi, where r, is a random walk,

Rt = Rt_]_ + Vgy To— 0, Vg~ lld(O, 0'3),

and V; is ARMA process that satisfies Assumption 2.1 of Phillips {1987,
p.280). They test the stationarity hypothesis Hy : 02 = 0, which implies that
Iny? = V; is ARMA process. We can test, therefore, whether the DGP of
Iny? is ARMA process in (28) or random walk process in (3)

Let Z_—,:t be the residuals from a regression of In g, on intercept, and S; be
the partial sum process of the &: S; = Yk £,t=1,...,T. Let 0 be
the long-run variance of the errors v;, and consider the Newey-West (1987)
estimator of o2:

T ! T
SO=T" Y &+2T" Y w(s,l) 3 &é-,
-1 s=1

{=s5+1
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where w(s,l) = 1 — s/(l + 1), which guarantees the nonnegativity of s2(l).
For consistency of s2(I) under the null hypothesis it is necessary that the lag
truncation parameter ! —+ co and T' — 0. [ may be automatically selected
by the resluts of Andrews (1991). The KPSS statistic for testing the null of
stationarity can then be expressed as follows:
T
KPSS =17 > S7/8%(1).

. t=1
Critical values for this statistic are provided in Table 1 of Kwiatkowski et al.
(1992).

The third way depends on the results of Asai (1998). He showed the sim-
ple SV process in y; of equation (1) can be interpreted as a log-GARCH(1,1)

model in ¥;
Yt = Or2y
Ino? = o + aylne?_, + Blno? |,
where
o = v+ (1—@)e, + (1 —6%) Inct?,
ay = Q’) - 9*:
b = &,
and
. 1 o, 207 , . 207 2 8¢?a
g = ﬂl-i-qﬁ +?— l—qb—f-ﬁ2 + = ,

*

q = e - 5 s (5)

iy [mr ((9 _ )+ 5) — Il (1)]
2 i=1 2 2 .
Since ¢ = o + f;, the null hypothesis for ¢ = 1 can be tested by ¢ statistics

for the null hypothesis that o + 8, = 1. As is the test for IGARCH(1,1)
model, this test can be easily conducted.
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Table 1: The Number N for approximating the infinite summations
in ¢, Zlnc? and Z;lnc?

0.0009 0.0025 0.0049 0.0081

2000 1500 1100 800

0.01 0.02 0.03 0.04 0.05
700 600 500 400 350
0.06 0.07 0.08 0.09 0.1
350 350 350 300 300

2L 256 =2
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Table 2: Asymptotic standard error of QML estimator

o2 ILGARCH KF MM

0.09 0.71255  0.77922 (0.9144) 19.8294 (0.0359)
0.05 0.40598  0.48810 (0.8318) 19.7893 (0.0205)
0.01 0.10106  0.13916 (0.7262) 19.7492 (0.0051)
0.0049 | 0.05845  0.08049 (0.7262) 19.7441 (0.0030)
0.0009 | 0.01799  0.02220 (0.8103) 19.7401 (0.0009)

Notes: ILGARCH indicates the estimates of asymptotic standard error, v/C,
of QML estimator via the ILGARCH approach (1000 reprications). KF and
MM denote analytical asymptotic standard errors of QML estimator via the
Kalman filtering method and method of moments estimator, m and

+/ C2(02), respectively. Squre root of relative efficiency is in parenthesis.
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Table 3: Box-Ljung Q-statistics based on ten lags
re  r2  Inr?

Q(10) 184 1328 58.2

Sample period: 1 January 1990 to 31 December 1996.
The critical value is given by x%;(10) = 18.3
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Table 4: Quasi-maximum likelihood estimates

MA(1)-SV SV MA(1}-RWSV RWSV
I -0.0001136  -0.0001099 -0.0001802 -0.0001908
(0.0001686) (0.0001522) (0.9267 x10~7) (0.8729 x10~7)
b -0.04515 — -0.06218 —
' (0.03032) (0.0001565)
v -0.1236 -0.06848 — —
(0.1110) (0.06470)
¢ 0.9868 0.9923 — —
(0.01136)  (0.006660)
o2 0.004174 0.003237 0.01085 0.009930
(0.003576)  (0.002204) (0.003519) (0.003146)
quasi-log-
likelihood |  3.5880 3.5915 3.5076 3.4950
H0:¢ =1
t-value ~1.1579 -1.1604 o —_—

Notes: Sample period: 1 January 1990 to 31 December 1996.
Robust standard errors are in parentheses.

t-values for the null of ¢ = @y + B; = 1 are calucalted under the log-

GARCH(1,1) representation.
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