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1 Introduction

Changes in asset return variance or volatility over time, may be modeled us-
ing the GARCH models, developed by Engle (1982) and Bollerslev (1986). In
GARCH models, such effects are captured by letting the conditional volatil-
ity be a function of squares of previous observations and past volatilities.
Since the models are formulated in terms of the conditional distribution, the
maximum likelihood estimation may be implemented in a straightforward
way. A wide range of GARCH models have now appeared in the economet-
ric literature; see, for example, a survey by Bollerslev et al. (1995).

An alternative approach is to use an unobserved volatility component
model. The logarithm of an unobserved volatility is modeled as a linear
stochastic process, such as an autoregression. Models of this kind are called
stochastic volatility (SV) models. A simple SV model is given by y; = /A,
and Inh; = y+¢lnh;_; +o,14, where vy ~ NID(0, 1) and 7; has a mean of zero
and a variance of one, and is generated independently of ,. Many researchers
assume 7; to have the normal distribution. Compared to the GARCH models,
the SV models are more general in several respects. The statistical properties
of SV models are obtained easily from the properties of the process generating
the volatility component. Their main disadvantage, however, is that they
are difficult to estimate by the maximum likelihood method. Taylor (1986),
Melino and Turnbull (1990) and Andersen and Sgrensen (1996) used the
method of moments (MM) to avoid the integration problems associated with
evaluating the likelihood directly. Nelson (1988), Harvey, Ruiz, and Shephard
(1994) and Ruiz (1994) employed approximate Kalman filtering methods
in their quasi maximum likelihood (QML) estimation. The Monte Carlo
evidence of Jacquier, Polson, and Rossi (1994), however, implies that MM
and Kalman filtering procedures suffer from poor finite sample performance
because they do not depend on the exact likelihood.

When researchers can neglect computational costs, there are better al-
ternatives based on the exact likelihood; Danielsson and Richard (1993) and
Danielsson (1994a) proposed simulation-based maximum likelihood proce-
dures; Watanabe (1997) developed nonlinear filtering maximum likelihood
(NFML) procedures; Jacquier, Polson, and Rossi (1994) suggested a Bayesian
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inference and used the Markov chain Monte Carlo (MCMC). Although these
methods are computationally intensive, experimental results of Jacquier, Pol-
son, and. Rossi (1994), Danielsson (1994b) and Watanabe (1997) show that
these estimators outperform MM and Kalman filter approaches.

These computationally intensive methods have certain advantages, but
they still leave much room for extensions. In the first place, taking account of
empirical results that many financial time series are well described as ARMA
processes, we need a estimation method for ARMA-SV models. In the second
place, SV models may be generalized using heavy-tailed distributions. This
is important because the kurtosis in many financial series is greater than the
kurtosis which results from incorporating stochastic volatility into a Gaussian

process.

In this paper, a Bayesian MCMC technique is developed to estimate SV
models, which are more general in two respects: (i) that allow 7, in a SV
process to follow a heavy-tailed distribution and (ii) that allow y; to follow
an ARMA-SV process. Regarding the first point, a natural candidate for the
distribution of 7, is the Student ¢ distribution. Ruiz (1994) used a scaled ¢
distribution and applied his QML method via the Kalman filter. Shephard
and Pitt (1997) also used a scaled t distribution and developed a Bayesian
MCMC technique based on the likelihood approach. In this paper, we as-
sume that 7; has a Generalized Error Distribution (hereafter, GED), which
is favored by Harvey (1981), Box and Tiao (1992), and Nelson (1991).

Regarding the second point, Asai (1998) proposed a new QML method to
estimate ARMA-SV models. The log-GARCH models, proposed by Geweke
(1986) and Pantula (1986), are the logarithmic extension of the GARCH
models. Their models may be interpreted as a special case of the Exponential
GARCH models, originally developed by Nelson (1991). Asai (1998) derived
a log-GARCH representation of a class of SV models, including linear regres-
sion models with ARMA (p,q)-SV errors. He proposed a new QML method,
and conducted Monte Carlo experiments to analyze the finite-sample proper-
ties of his method to estimate simple SV models. His log-GARCH approach
has an advantage over the NFML procedure with respect to computational

!Box and Tiao (1992) call the GED the exponential power distribution
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burden, although the finite sample performance of this method is not as good
as those of other computer-intensive methods. Thus, it is worth developing
a computationally intensive method for ARMA-SV models.

The organization of this paper is as follows. The rest of this section briefly
surveys MCMC methods. Section 2 deals with simple heavy-tailed SV mod-
els instructively. Section 3 introduces ARMA-SV models with heavy-tailed
distributions, and develops a Bayesian MCMC method, based on the results
in section 2. Section 4 briefly reports empirical findings for the yen/dollar
daily exchange rate. These findings indicate that the heavy-tailed distribu-
tion is preferable to the normal distribution. Section 5 concludes the paper.

Before turning to our main results, we briefly introduce an MCMC method.
The MCMC method has been used recently to simulate complex multivari-
ate distributions. The Gibbs sampling algorithm is the best known of these
methods, and its impact on Bayesian statistics, following the work of Tanner
and Wong (1987) and Gelfand and Smith (1990), has been immense as de-
tailed in many articles, e.g., Smith and Roberts (1993), Tanner (1993), and
Chib and Greenberg (1994). Many statisticians also use the more general
Metropolis-Hastings (MH) algorithm. This technique was originally devel-
oped by Metropolis ef al. (1953) and subsequently generalized by Hastings
(1970); see Tierney (1994) and Chib and Greenberg (1996).

Let 7(w;|Y") be the density of the target distribution from which we want
to generate w;. If it is easy to generate a sequence from the full conditional
posterior density of w; given Y and the rest of parameters,p(w;|Y; w_;) where
w_; denotes all parameters except for w;, the Gibbs sampling algorithm may

be applied in the following way. For the (¢ + 1)th iteration of the Markov
chain, w{*Y is drawn from p(w;|Y,w?), WitV

and so on. He}"e, wg = (wgiﬂ), e ,w‘,gfj-ll),wﬁl, - ,w,(:))’ . Then, under weak
conditions, wj(-") converges to a random draw from = (w;|Y). Furthermore, it

can be shown that

is drawn from p(ws]Y, w(_i%),

1.2 .
- ij(-z) — E(w§Z)|Y),
i=1

where n is the number of Gibbs runs. It can also be shown that the sample
mean of any function of wj{-“) convergens to its expectation.
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The MH algorithm may be helpful in cases where it is not straightforward
to sample from p(w;|Y,w-;). For our setup, the sampling scheme becomes:

1. Initialize (9. Set 7 = 0.

2. Generate a new candidate value wi based on the current value w{f; by
using a candidate generating density, g(w§|Y, w_;) and write wj(-”"“l) = w§

with probability

Min (p(w?_lm’—f)ﬂ“’a(‘i)m W ), 1) ,
p(wP|Y, w_i)g(wslY,w_;)

(+1) _ 0

or reject and keep w e

;
3. Set i =141 and goto 2.

As we repeat the MH algorithm, the distribution of w? converges to the

target distribution under a regularity condition. ’

In Bayesian inference, we evaluate the posterior statistics of a parameter
of interest such as its mean, standard deviation, median, and quantiles. For
example, when we want to obtain the posterior mean of a parameter w; in
w:kx1,

E(w;|Y) = fwjﬂ'(w|Y)dw,

we need to calculate multiple integration. Since it is difficult to perform
multiple integration analytically and/or to evaluate the likelihood function
in the SV model, Jacquier, Polson, and Rossi (1994) applied an MCMC
method to obtain the posterior statistics or to marginalize the joint posterior
density.

2 SV models with heavy-tailed distributions

In this section, we focus on simple SV models to show our MCMC method for
heavy-tailed distributions instructively. ARMA-SV models with heavy-tailed
distributions are discussed in section 3.



We consider the following model:

w = yhm, (1)

Inh, = v+dlnh; +o.0y, v~ NID(0,1), (2)

where 7; is a white noise process with unit variance, generated independently
of v,. We assume that 7; has the GED instead of the standard normal
distribution. The density of a GED random variable normalized to have a
mean of zero and a variance of one is given by

p(nX) = a(A) exp [—b(N)[n|>/ V)] (3)
where
oy Gae)” [r(%(u)o)r““},
L+ [0 (2a+n)™" T (L1 +N)

and —1 <A <1 When A=0, 7 has the standard normal distribution. For
A > 0, the distribution of 1 has thicker tails than normal and for A < 0, the
distribution of n has thinner tails than normal. In particular, when A = 1,
the distribution is the double exponential. When A tends to —1, it can be
shown that the distribution tends to the rectangular distribution. The GED
is sometimes used in ARCH models, as well as the £ distribution, to describe
the tail-thickness of the distributin of asset returns. While a f-variate has
moments depending on the degrees of freedom, a GED-variate has arbitrary
finite moments; see Nelson (1991). Thus, if we assume that 7, has the GED,
then y; in equations (1) and (2) has arbitrary finite moments.

Let Y = (y1,-+,yr) : Tx1,and h = (hy, -, hr) : Tx1. We assume the
latent variable vector h is generated by (2), and that the data Y are generated
by (1). Let the prior distributions for the parameter vector w = (v, ¢, 02, A)’
be dlo? ~ No(¢o,02®;)]s,, 02 ~ IG(1/2,50/2), and X ~ Uni(—1,1),
where ¢ = (v,¢)' ~ 2 x 1, Nj is the i-variate Gaussian distribution, IG is
the inverted gamma, distribution, Uni is the uniform distribution, Ig is the
indicator function of the set S, S, is the set of ¢ that satisfies |¢| < 1, and

the hyperparameters ¢g, ®g, vo, and s are known.



The joint posterior of (h,w) is given by the Bayes theorem,
m(h,w|Y) o< p(Y [, N)p(hlw-»)p(w)
where w_y denotes all the parameters in w other than A.
T 1
hlw_ —
p(hlw_x) tI;II oo
: T
p(Y|h,A) = tgla()\) exp [—b(/\) (yf/ht

The key to constructing the appropriate Markov chain sampler is found

1
exp I:—Ea_—z' (h’lht -7 — ¢lnh,t_1)2] )
)1/(1+A)]

by breaking the joint posterior into various conditional distributions. We
simulate w and A from the following conditional densities: 7r(q5|Y,w_&,,h),
w(o2|Y,w_gz, h) and 7(AY,w_s, ), w(he|ye, w, heoy, hes1)-
!
Let LH = (Inhy,---,Inh7) : Tx 1, LX = Lo T % 2,
Inhg --- Inhy_y
pe = (1 — @)y + ¢(Inhypy + Inhe—y)) /(1 + ¢2) and of = o2/(1 + ¢*).
We now present the full conditional distributions that are used in the sim-
ulation of the simple SV model. By assuming the normal-gamma conjugate
prior above?, the full conditional distributions for (¢, 52, A} and h, are given

by

() BYw_gih~ Ny ((LX'LX + @0) ™ (LX'LH + Dogo), o} (LX'LX +@0) ') Is,,
(i) Y, w gz, ~ IG (T + w0+ 1)/2,((6 — $0) Bo(d — o)

+(LH — LX$)'(LH — LX) + 50)/2) ,

)1/(1“)]

(i) 7A@, h) i{la()\) exp [—b(A) (s2/he S1<a<,

1/(1+3) _ (Inh; ~ M)Q]

(v)  wlhelye,w, hot, hes) o< by exp [—bm (v /he) 707
h

While sampling from the full conditional distributions of é, o2 can be

done by the Gibbs sampling algorithm, sampling from A and A, requires the
MH accept/reject algorithm.

2Tt is straightforward to modify our full conditional distributions to the flat prior case.
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Although Jacquier, Polson, and Rossi (1994) argued that it was difficult
to find the bounding function of 7(h:|ys, w, At—1, A1), we can derive it, using
the idea of Shephard and Pitt (1997). Note that although Shephard and Pitt
(1997) applied their idea to SV models with Gaussian distributions, their
essential procedure may be extended without change. The logarithm of the
density of hy|ys, w, hy—1, herq 18 by (iv),

In(7(he|ye, w, hiei, Ber1)) = const + In(p}),
where

. 1
In(p) = ~51n he = b(}) (v2/h

Let h; = exp v; and using the first-order Taylor series expansion of exp{—wv;)

1/(14X) 1 2
) - ﬁ (Inh; — 2)”. (4)

around uf(= In h}), we obtain

1 1/(1+4A) i u* (Ut _ 'U*) u*

5 o2 2 () - Ben()
(ht) eXp( 1+/\> = eXp( T+ T+a CP\TTa

_[r\Yer |, (g — Inh,)
ht I+ A ’

Rewriting (4) using the above inequality, we have a bounding function,

* 1 ?Jt,2 R (lnh}‘ — Inhy) (lﬂ fuy — Nt)2
< _ gt _
In(p}) < 2ln he — b(A) (h’;) 1+ T 207
= In(g;).

The normalized version of g; is a Gaussian density, which has the mean and
the variance

, a2b(\ 2\ 1/(1+3) o2
mE = e+ wb(A) U _ Oh 2

d .
1+ A \R g 2% %
Hence, we can sample from p(h;|) by proposing h; ~ LN(m}, o}) and accept-
ing with. probability p}/g}. Following Pitt and Shephard (1995), we choose
h} = exp(y,) as the point at which a Taylor series expansion may be carried
out®.

3Watanabe (1996) proposed the following procedure: we first derive the value of hq,
which corresponds to the peak of pf very roughly by iterating the Newton method for
a few times; then we choose h} so that the peaks of p} and g coincide. Applying this
method may produce slightly higher acceptance rates for the MH algorithm.
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We derive the approximate function of the full conditional distribution
for A. We define

T
M) =In(r(A[Y,w_y, k) =T In a(X A) (g2 ) AN,
' i=1

Using a second-order Taylor series expansion* of M () around A*, we obtain

MH‘ (A*)

M(A) =~ MY+ M (M) — )+ —L(A - 2*)? (5)
”( *) 12
= const+ — (A—p") (6)
h
where . (N
Ho= M”(z\*)'
If A\* is chosen so that M’'(A) = 0 using Newton’s iteration procedure,

then M'(A\*) = 0 and the candidate of A, say, A° may be generated by
N (X%, ~1/M"(X*}). The acceptance probability of the MH algorithm for
the kth sampling is

Min (exp (M(/\") — MO®) 4+ 54:2(’\—*)(,\(“ — )2 — M(Ac - )\*)2) ,1) :

2
(7)
The derivatives of M()) are given in Appendix.

When A = 0, the above results may be reduced to the case of SV models
with Gaussian distributions treated in Shephard and Pitt (1997).

3 MCMC method for ARMA-SV models

3.1 The Model and Prior Assumptions

In this section, we extend the results of SV models with the GED presented
in the previous section to models in a more general framework. We consider

tM'()) denotes the partial derivative of M(}) by .



a linear regression model with ARMA (p,q)-SV errors, or simply ARMA-SV
model:

w = X+ w, (8)
A(L)u, = B(L)e, 9)
€& = \/‘;ﬂ?t’ (10)

Inh; = Wy + dlnhyy + 0,0, v ~ NID(0, 1), (11)

where 7; has the normalized version of GED, generated independently of v,.
X and W, are 1 x k vector and 1 x! vector, respectively. ¢ is a kx 1 parameter
vector and v is a [ x 1 parameter vector.

AlL)=1—oqL — - —apL?,
B(Ly=1-L~---—G,L7,
and L is the lag operator. This ARMA-SV model is a straightforward exten-

sion if we take account of the empirical result that many asset return series
may be expressed as ARMA processes.

Let @ = (ar, - +,0p) 1 px 1, B= (81, . By) rax 1w = (8¢, 5,2 :
(k+p+g+1)xL,we = (v, ¢,02) : (I42)x 1, w = (wi,w}) : (k+l+p+q+3)x1,
Y=,  ur):Txl, X=X, X5): Tx kW= W, ,Wp):
T xl,and h=(hy,---,hy) : T x 1.

We consider a state space expression of the ARMA model (8)-(10), given
the latent variable vector h:

yo o= Xeb+zar + G, (12)
a1 = Tag+ Hem, (13)

where z = [1,0,---,0] : 1 x m, Gtzhyz,

‘041 ] _al—ﬁl-
o’ I vy —

T= 2 m Tm X m, thhiﬁ 2.}62 cm X 1,
| o 0 - 0] _am—ﬁm_

m = max{p,q}, a; =0 for j > p, B = 0 for j > ¢, and 7; has the GED with
mean zero and variance one. We assume ag = 0. Obviously, e; = v/hyn;. This
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state space expression® is not the same as the typical expression of the ARMA
model, given in textbooks such as Harvey (1993) or Hamilton (1994). We
can, however, easily verify that this expression reduces to equations (8)-(10).

We now assume that the latent variable vector h is generated by (11),
and the data Y are generated by (8)-(10), with p,¢,known. We consider the
following constraints;

C1: All roots of A(L) = 0 lie outside of the unit circle.

C2: All roots of B(L) = 0 lie outside of the unit circle.

C3: |¢] <L

C1 and C2 are related to the stationarity and invertibility of the error term.

C3 guarantees the stationarity of the latent variable Inh,.

Let the prior distribution of the vector w, p(w}, be given by

plw) = plwi)plws),
plwr) = p()p(a)p(B)p(A),
§ ~ Ni(6o, DgY), @~ Ny(ap, AyY) s, ,
B ~ No(6o, By Vs,, A~ Uni(—1,1),
plws) = p(dlol)p(o?),
$lo ~ N (do, 0285V Is,, of ~ IG(vo/2, 50/2),

where ¢ = (v, 8)' : (1 4+1) x 1, Ig is the indicator function of the set S, S,
is the set of a that satisfies C1, Sy is the set of b that satisfies C2, Sy is the
set of ¢ that satisfies C3, and the hyperparameters &y, Dy, ao, Ag, Bo, B,
to, Py, Yo, and sy are known.

Nakatsuma (1996) shows that y; is given by

Xté + Z a4 yt_J - Xt—J +e — Zﬁ]et—_] + at ﬁt)eﬂa (14)
7=1 j=

5State space representations of this type are found in De Jong (1991), Koopman (1993),
De Jong and Shephard (1995), and Nakatsuma (1996), among others.
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and 1 does not depend on ¢ for t > m (= max{p,q}). One advantage
of our state space expression is that we only need to obtain ey, which is a
scalar, in order to start the recursion of the state space model. Chib and
Greenberg (1994) derived a similar expression for a regression model with an
ARMA(p, q) error. Their expression, however, is based on the initial state
variable ayg, instead of the initial error term e;. Another advantage of our
state space model is that we can evaluate ey given the data, unobserved
volatilities and the rest of the parameters without using any smoothing.
Using equation (14), we obtain the following equations:

11— X180 = (o1 — B)eo + e,
Yo — Xod —01(yy — X16) = (02— Bo)eo +e2 — Pren,
ys — X30 — ar(yp — Xo0) — oy — X18) = (a3 — f3)eq + 3 — frea — ey,

» ' 0
yr — Xrd — Y o(yr—; — Xr_36) = (ar — frles+er— 3 Bjer_;,

=1 j=1
or
Pu = Zey + Q8Y?y,

where © = (’91 —X15,y2 '—Xzfs,"',yT—XTCS)I T x 1, Z = (031 —,61,052 -
ﬁ2:"':aT_ﬁT)l :TXJ-:TIE (ﬂlﬂh:"’a"ﬂT) :TX]-sEEdia‘g{hl!h?1"':hT} :
TxT,

—1 1

—&y — 1

]
I

:T'xT,
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. -
-6 1
- -H 1
Q= T x T,
—B, B2 —H 1
0 - =B, - =B B 1]

and 7; has the GED with mean zero and variance one. The estimate of eg
is given by the GLS®:

é =[2'(Q2Q) 2] 2 (Q2Q) " Pu. (15)

As noted above, we can start the recursion of (12) and (13) once we obtain
eg by (15).

3.2 Full Conditional Distribution

We will derive full conditional distributions to implement the MCMC in this
subsection. The joint posterior of (h,w) is given by the Bayes theorem,

m(h,w|¥, X, W) < p(Y|X, h, w1 )p(h|W, ws)p{w)

where
T 1 1 2
p(h,H’V, w2) = tl;Il -—\/—E-_E exp l“é‘}“g (lnht ans Wt’}’ - qﬁlnht_l) ] s

3

pY|X,hyw) = tilla(/\) exp[—b(/\) ((?Jt - ytit—l)z/ht
Ye-1 = X + (1 = A(L)) (e — Xi) + (B(L) — ey,

)1/(1+A)]

and yy—; is the one-step-ahead prediction of y; given X; and information
up to the period £ — 1. Breaking the joint posterior into various condi-
tional distributions is the key to constructing the appropriate Markov chain
sampler. We simulate w and h from the following conditional densities:
m(8|Y, X, W,w_s, h), n{calY, X, W,w_g, h), n(B|Y, X, W,w_g, h), 7(A|Y, X, W,w_y, h),

80f course, ey can be estimated by the maximum likelihood method given w and h.
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W(éllfa X: VV: Wogs h’): W(GEIY’ X? T/Va W—g2, h) and ﬂ-(htlyt: Xta 1|:/Vt: W, h't—la h’t+1):
where, e.g., w_s denotes all the parameters in w other than 4.
We use the data transformation derived by Chib and Greenberg (1994).

Let the scalars y§ = uo, y; = y; = 0 for s <0 and the vectors X, = X} =0,
5 < 0. For t=1,...,T, define

p q
Yi = Ye— 20— 2 Bl
=1

i=1

Xy

P q
Xe— > X i— Y BiX]
i=1 j=1

Using this definition, we can easily verify that yj — X;'d = e; and proceed by
induction, making use of

P q
yr — X780 =y — X6 — Y o(ye—s — X4i) — Zﬁj(y;—j = Xy_40)-
j=1

i=1
As a result, we obtain the regression relationship y; = X} + e;, where
e; has the GED with mean zero and variance h;. By repeatedly applying
transformations given in the following definition, we arrive at the regression
relationship about ¢.
Let 7 = eg, and let the scalars y, = , = 0, 8 < 0. For s < 0, let the
scalars ys =7, = 0. Fort =1,...,T, define

q
G = w—Xib =Y Bifii,
i=1
Xt = (gt—l,"‘,ﬂt—p) 1 xp.

As mentioned above, the relationship of §; — Xia= e; and

Y - Xy =y — Xi6 — Zaj(yt—j - Xt—j5) - Z ﬁj(@t—j - Xt—jﬁ\f),
J=1

J=1
can be rewritten compactly as i; = X+ ey

We must extend the definition of y;, and LX for the ARMA-SV model
as = ((1 — ¢)Wf,’y + ¢(lnht+1 + lllht_l)) /(1 + ¢2), and

Wi Wh

T (I+1).
].Ilho lnhT_1 ( )

LX=[
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We now present the full conditional distributions that are used in the
simulation of the regression model with ARMA (p, ¢)-SV errors. Under prior
assumptions given in subsection 3.1, the full conditional distributions for

(6,0, 8, ¢,02) and h, are given by

1) w(O1Y, X,wo,h) o< [T a(A) exp | <00 ((F ~ X7 /h)

1/(1+A)]

1
x (2r) T5/%| Dg| 2 exp [—5(5 — 60)' Do (6 —~ 50)} ;

1-(if) m{a]¥, X, w_a,h) tlr;'rlla()\) exp {—b()\) ((ﬂf _ X—ta)z/ht)l/(lﬂ)]

X(ZW)‘P/21A0|1/2exp [—%(0{ - ao)’Ao(a - ao):| Iga,

1-(i) w(BIY, X,w_g,) o 1T a() exp [—b(,\) (ecB)?/me)" ‘”*’]

x(2m) 92 Bol 2exp |3 (8 - o) Balf - )| I,
1-(iv} 9lY,X,w_g,h
.~ Nt ((BX'LX + @) "H(LX'LH + o), o3 (LX'LX + B9) ") Is,,
1-(v) o2|Y,X,w_s2,h
~ IG (T +vo +1)/2,((§ — ¢0)'Bo(d — o) + (LH — LX) (LH — LX) + 50)/2) ,

hy

A
(v — yt[t—1)2)1/(1+ ) 3 {Inh; — ut)Q}

_ 1/(1+3)
1-(vi) w(AY,w_y,h) oci[la()\) exp [—b()\) (w) ] Is,,

.. —1/2 -
1-(vil} w(helye,w, he—1,heq1) o< by Cexp [ b(A) ( By 203

Note that our full conditional distributions can be modified easily to the fiat
prior case.

If we use the Gaussian distribution instead of the GED, that is, we have
the prior information of A = 0, our full conditional distribution may be
reduced to

2'(1) 6'1/1 X, w-g, h

~ Np ((D[, + XTI XYY Dobp -+ XHMETIYH), (Do + X*’E“lX*)“l) ,
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9-(ii) Y, X,w—a,h
~ Np (4 + X'T1X) (dgao + XB719), (Ao + X'S7IX) ) I,

> [_et(ﬁ)2

T
(i) w(BIY; X, w_g,h) o II 2

t=1 v/2mh; e
1
x (2m) 92| Bo| 2 exp [—§(ﬁ — fo) Bo(B — ﬁo)} Is,,
2-(iv) @Y, X,w_g,h

~ Nyt ((LX'LX + &) Y (LX'LH + ®o¢o), 0(LX'LX + @0)—1) Is,,
2'(V) UE'KX1w—agah
~ IG ((T + v+ 1)/2,(( — do) @o(d — o) + (LH — LXP)'(LH ~ LX) + 50)/2),

(ye - ytlt—l)g] exp {_ (Inh¢ — Mt)Q}

2-(vi) m(helys, Xoyw, hut, heat) o< by Pexp [— 2h, 20}
h

where Y* is the T x 1 column vector of the yf, X* = (X7, -, X§) : T x k,
Y is the T x 1 column vector of the g, X = (X/,---,X%) : T x p, and
¥ = diag{hy, -, hr} : T x T. In this case, most of the parameters may be
generated by Gibbs sampling; see Asai (1997) for more detailed discussion
and implementation.

3.3 Implementation Issues
By the first-order Taylor series expansion of 2/ about z*, we obtain

1
V/(AAY Ay AL/ (LX) 5 = a=Xf(1+X)y, _ o*
z ~ z + 3% (z —2%).

Thus, we have the approximation for a given §”,
i = X3\ (= X692\
hy h hy
* * ok —A/{I+A ] * * * S
n 1 (y7 — X;67)? [l (yz_Xt‘S)z__(yt—Xt‘SV
14+ A hs hy hy '

Therefore, the approximate function of the full conditional distribution of §

is proportional to

exp (—%(Y* XY S5V — X*6) — %(5 — 6o Do(6 — 50))
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where

g d 2O [l = Xy 2\ VO]
Eg_dlag{ht(1+/\)( » :T'xT.

The candidate generating function of ¢ is given by the normal distribution
Ng ((Do -+ X*fng*)—l(Docsg + X*’EJY*), (Do + X*’EgX*)'—l) .
4* may be obtained by applying Newton’s method for

T * YR LN2 L/(1+2)

t=1 hy
Using the analogous approximation, we have the candidate generating
function of a,

Ny (Ao + XS0 X) " (Aoeto + XTa), (Ao + XD X)) I,

where Ig is the indicator function of the set S, .S, is the set of a that satisfies

Cl1, and
S o gy MY
o Ediag{ 26() ((y‘ Xi0") ) } T xT.

hy(1+ 2} by
Apgain o is the solution of
8§ « ((ﬁt - Xtay)l/(lﬂ)
_ Z At ARERS =,
O =1 ht
by Newton’s procedure.
Since e;(f) is the nonlinear function of 3, the above approximation may

not be applied in a straightforward way. Thus, we use the second-order

Taylor series expansion of
T

Mg(B) = tuzl (et(ﬁ)Z/ht)I/(l-{-A)
around j*,
MB) = Mp(8") + (8 - 5y 225,

where 3* is the solution of M}() = 0 by Newton’s procedure. In this case,
the candidate generating function of 8 becomes

Ny ((Bo + (A M(8)) ™ (Bofho + BN MH(8)8"), (Bo + b(NMH(8) ™) Is,.
The derivatives of Mg(A) are given in the Appendix.
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4 Empirical Example: Daily Exchange Rates

The present data set consists of daily observations on the yen/dollar exchange
rate over the period January 1, 1987 through December 31, 1997, for a total of
2870 observations’. A broad consensus has emerged that nominal exchange
rates over the free float period are best described as a non-stationary-type
process; see, e.g., Baillie and Bollerslev (1989). We shall therefore concen-
trate on modeling the nominal returns; ¢.e., r, = Ins, — Ins;_;, where s
denotes the spot yen/dollar exchange rate at day ¢.

Instead of prefiltering the return series to take out AR terms and day-
of-the-week effects in the mean returns, we consider the following MA({1)-SV
model:

™y = (50+'U,t
U = e — biep,

€ = \/h_t??ta ne ~ GED()),
Inhy = v+ mnwe+ ok +o,1y, 1 ~ NID(0, 1),

where w; denotes a weekend dummy equal to one following a closure of the
market. The MA(1} term is included to take account of the weak serial
dependence in the mean. We relax the assumption C3, which requires that
¢ is within [—1,1], to test the stationarity of In k.

For our implementation of the MCMC algorithm, we use QML estimates
as the prior information. QML estimates and standard errors are obtained
by the log-GARCH approach proposed by Asai (1998). Asai (1998) derived
log-GARCH representation of a class of SV models, including ARMA-SV
models, and proposed QML estimation based on the standardized ¢ distri-
bution. Smoothed estimates of h; may be obtained using the approximate
Kalman filtering method.

The iterations are started from QML estimates and smoothed estimates
of h:%. The Markov chain sampler is run for 20000 draws such that the first m

"The rate data were obtained through Datastream.
8 Asai's (1998) log-GARCH approach assumes the normality of 7, i.e.,, A = 0. Thus,

we set the starting value of X as 0.
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draws are discarded and then the next n (= 20000—m) are retained. Posterior
means are computed as n sample averages. Geweke (1992) recommended
using methods from spectral analysis to assess convergence of the MCMC
after m + n iterations. Though created for the Gibbs sampler, Geweke’s
(1992) method may be applied to the output of any MCMC algorithm; see,
for example, Cowles and Carlin (1996). If we let our estimate of a marginal
posterior mean E{w |y, w) be

1:“ )
-+ i
“= ni=1w' ,

where w® is the m + ith draw of a parameter, then {w®} is a univariate
stochastic process. Geweke (1992) shows that @ is asymptotically normal
with mean E(w |y, w) and asymptotic variance n~15(0), where S(0) is the
spectral density of {w®} evaluated at frequency zero. This finding suggests
that [n~15(0))'/2 can be used as a numerical standard error (NSE) for . and
that the calculation of the NSE of the Markov chain is feasible. In all results
reported in this paper 5(0) is formed from the period gram of {w®} using a
Daniell window of width 27 /(.375n1/2).

Geweke’s (1992) convergence diagnostics are based on the following idea:
a Markov chain sampler yields draws from the posterior only as the number
of passes becomes large; hence, comparison of early n,4 passes with late ng
passes can reveal failures of convergence. Define

na )

ot = =30,
nAjzl

1 & .

# = 5,
NB j—ng

where ng = n—ng-+1, and let nse4 and nseg be the numerical standard errors
for the two estimates, @* and @7, calculated as in the previous paragraph.
If the sequence of w(® is stationary, the ratios n4/n and np/n are held fixed,
and ng + ng < n, then by the central limit theorem, the distribution of the
convergence diagnostic (CD),

(@* — &P) /\/nseﬁl + nse} ,
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approaches a standard normal as n tends to infinity. Following the suggestion
of Geweke (1992), we calculated this statistic by setting ny = 0.1n and
ng = 0.5n.

It has sometimes been suggested that inferences should be based on every
kth iteration of each sequence, with & set to some value high enough that
successive draws of the parameter vector, w, are approximately independent.
This strategy cannot be used in this situation since the set of simulated values
is not so large that reducing the number of simulations by a factor of k gives
important savings in storage and computation time.

Table 1 presents the QML estimates via the log-GARCH approach and
the Bayes results for the ARMA-SV model. For the log-GARCH approach,
the robust QML covariance estimators of White (1982) are used to compute
the standard errors. According to convergence diagnostics values, the null hy-
pothesis that the sequence of 20000 samples is stationary cannot be rejected
at five percent significance level for all parameters. Therefore, m = 11000
and n = 9000 are chosen. The marginal posterior means for the tail-thickness
parameter, A is 0.896. This result indicates that n; in our model has tihcker
tails than normal. The marginal posterior means for dy and b; are almost
zero. Each 95 percent highest posterior density region contains zero. These
results support the empirical findings of Hsieh (1988,1989) and Baillie and
Bollerslev {1989} for the levels of exchnage rate returns. The marginal poste-
rior means for SV parameters (vy,71,0,02) are (—0.993,—0.00655,0.899,0.135).
The 95 percent highest posterior density region for ¢ is [0.868,0.929]). Thus
the yen/dollar exchange rate data exhibit a high degree of persistence in
volatility although the posterior is massed well away from the unit root case.

5 Concluding Remarks

In this paper, a Bayesian MCMC technique is developed to estimate SV
models, which are more general in two points than previous models: (i)
allowing 7; in (1) to follow a heavy-tailed distribution and (ii) allowing ¥, to
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follow an ARMA-SV process. Using the daily yen/dollar exchange rate, we
showed that our Bayesian MCMC technique performs well.

Appendix
A Derivatives of M())

M'(A [¢( (1+) - ( 1+N)] -+ |
=(y¢ - )1I(I+A)[ (g ((1+)\)—% ((1+A))
ﬁ(mr(saﬂ lnI‘ 1+A +ln( y*'“ )H
)= [0 50+ "‘))””’((”’\))] FESV
g (=) ““’HH,« (3+9) -0 i)
—ﬁ—}/\—)-(lnr(g-(1+A lnl" A) +ln( y"“ ))]
(1+ ))——w(g( ))
(z0+) -5 (50+%))
+(Tj—)\)5 (mr (%(1 +A)) — 1T (%(1 +)\)> +1n ((ﬁiii'ii)-z-))] .

B Derivatives of Ms(0)

M

My(B) = Y (ex(8)*/ 1) Y

t=1

’ 3 T 9 et(ﬁ)z =A/(1+2) aet(ﬁ)
M) =Y s (A) T a0 25,

t=1
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hy 1+ 38 ap

t=1

where for £ > 0,

ey ([ Oe;_s .
3;?) = t—z +Eﬁs etaﬁzﬁ)a (7'215---5Q)=
aget(ﬁ) _ Oei_i(6) aet—J(ﬂ ey (8) CoL
86;00; B 00; 95; +szlﬁs 8B3:08; ’ Gj=1,...,9),
and for ¢ <0,
palf) _,  Peld)
op ’ opap
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Table 1: MA(1)-SV Models

Posterior distribution

log-GARCH Lower Upper

Parameter estimate Mean 95% limit  95% limit Corr. CD

8o 0.000145  6.38x107% -3.23x10°5% 0.000200 0.62 0.37
(0.000161)  (1.92x1075)

by 0.0537 -0.000336 -0.00255  0.00194 0.93 0.73
(0.0271) (0.000357)

Yo -0.501 -0.993 -1.305 -0.705  0.75 -1.38
(0.294) (0.0145)

T -0.144 -0.00654 -0.0537 0.0397 010 1.94
(0.076) (0.000284)

¢ 0.945 0.899 0.868 0.929  0.65 -1.37
(0.032) (0.00148)

o2 0.0184 0.135 0.0957 0.180  0.97 0.85
(0.0166) (0.00255)

A — 0.896 0.863 0915 071 -0.38
(0.00185)

Note: Numerical standard error of posterior mean is in parentheses. Corre-

lation denotes the first-order correlation of the Markov chain run. For the

log-GARCH approach, standard error is in parentheses. 9000 simulations.
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