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Abstract

This is a sequel of our investigation of the evolution of deductive thoughts in
the inductive game situation. Here we consider the case where the individual player
finds that his payoff function allows no dominant strategies and believes the same
for the other player. The interpersonal feature of decision making is expressed by
interaction structure J* = ({1,2}, {1,2}), which makes the individual thought on
decision making reciprocal. Tracing this reciprocal thought, the player goes to tran-
sitory phase k = 1,2, ... We will show that a lot of difficulties appear in these phases.
For example, the player is incapable to exploit fully the final decision axioms: this
incapability allows only negative recommendations to eliminate noncandidates for
decisions. Then we assume that he jumps to the Limit Phase w. There the axioms
are fully exploited as far as a game has a Nash equilibrium and satisfies the inter-
changeability condition. However, the false subjective thinking may still remain,
and even if such difficulties are removed, other problems are waiting for the player,
which he may not deductively notice.

1. Introduction

This is a sequel of our investigation of the evolution of deductive thoughts in the induc-
tive game situation. In Part I of this paper, we described the basic inductive situation,
and started our discussions with Phases 1 and 2. In Phase 1, the individual player thinks
as if he would be a one-person decision maker, and this deductive reasoning could be
compatible with his inductive knowledge if his source of knowledge on the game is re-
stricted purely to his active and passive experienges £(i | @*) in the past. He constructs
a true belief on his payoff function over the experienced domain, but it may be false over
the unexperienced domain. In Phase 2, a player regards the other player as a one-person



decision maker of the type of Phase 1. In both phases, each player may get stuck in a
pitfall of induction, but is capable of noticing this pitfall by deductive reasoning. In
this Part II, we will leave these phases assuming that they have got more knowledge on
his and the other player’s payoff functions through communications.

A player, 1, would notice that he should leave Phase 1 or 2 when his belief/knowledge
on his payoff function allows no dominant strategies and when his belief on the other’s
does neither. In this case, he starts thinking about (his theory and) the other player’s
thinking about (his theory and) his thinking, and so on. This situation is expressed with
interaction structure J* = ({1,2}, {1,2}). As defined in Section 3 of Part I, the belief set
generated by J*, say, BY(74,1(1-3)), has an infinite number of formulae. This infinity
can be interpreted either as representing transitory phases open to further phases, or as
representing an infinite set as a total. From the viewpoint of the evolutions of thoughts,
these two interpretations should be considered separately.

First, we consider the belief set, Bi(74,1(1-3)), from the viewpoint of transitory
phases. Here the repetitive beliefs on each player’s decision making appear up to any
depths. For example, we have the following: for any m > 0,

BI(74, (1-3)) b Li(ai) A Lij(a;) O (BiBj)™ (Nash™(a) A\ Bi(Nash™(a))),  (1.1)

where Nash*(a) is the formula B;(Nash;{a; | a2)) AB2(Nashz(az | @1)), which will be
discussed in Section 2.1 It is a point here that the assertion for each m in (1.1) needs
only a finite subset of Bi(74,](1-3)). It is shown in Section 3 that to have a conclusion
for m, we need a finite subset T of B'(74,1(1-3)) so that T involves the 2m + 2 nesting
occurrences of By and By. This result means that the players should know each other
well (up to some appropriate depth) or at least this is belicved by player i. As the
players have got acquired more and more, they go to further phases and can use a finite
assumption set T of larger depths. Nevertheless, each phase requires only a finite subset
of Bi(J4,1(1-3)). '

As far as the players are in transitory phases, they are with some difficulties but
they cannot notice them. Player i is incapable of capturing the totality of Bf(74,I(1-3)),
which corresponds to our use of a finite subset of B*(74,1(1~3)) in (1.1). This incapability
makes him to derive only necessary conditions from Bi(74,1(1-3)). A conclusion from
this partial exploitation is only the capability of negative thinking to eliminate some
strategies from his decision making. This will be discussed in Section 2.

Let us look at the above difficulties from the outsider’s point of view. The conclusion
from B*{(74,J(1~8)) in (1.1) differs from each other for different m. This means that the
contents of BY(74,1(1-3)) are only partially revealed in each assertion of (1.1). This
partial revelation corresponds to the difficulty that the premise of Axiom WD; cannot
be formulated in KD42. However, the difficulty is actually deeper than it appears: there

In fact, B*(J*,I(1-2)) suffices for (1.1). See Theorem 2.A.



are no formulae which satisfy the requirements described by B(74,I(1-3}), actually,
no formulae satisfy 12; AI2;. Hence there is no hope to have the full exploitation of
Bf(7*,I(1-3)) in epistemic logic KD42. This is argued in Section 3. It is important to
note that we (outsiders) deductively notice these difficulties using meta-mathematical
arguments but not the players (insiders).

The difficulties mentioned above are resolved in the Limit Phase w, though the
players cannot deductively notice the need to go to phase w. This jump needs a player
to take also some big inductive (heuristic) step. Suppose that a player reaches the Limit
Phase w. This case is extensively discussed in Kaneko {4} with the Veridicality Axiom
(T:): Bi(A) D A. With this axiom, the final decision axiom determines completely the
individual decision to be the common knowledge of a Nash strategy. However, since
we drop Axiom T;, the result is the individual belief of the common knowledge of a
Nash strategy. It may be the case that a player believes that it is common knowledge
but is objectively false. Actually, it is logically consistent that each player believes the
common knowledge of different game structure. This cannot be the case if we add Axiom
T;. This will be presented as the Konnyaku Mondé Theorem in Section 5. Hence even
in the Limit Phase w, we would have a result similar to the inductive pitfall theorem
(Theorem 6.D) of Part L.

Formally, the Limit Phase w is considered by extending epistemic logic KD42. One
possible extension is to enrich the language so that infinite conjunctions are allowed
to capture the totality of B'(J4,I(1-3)). The other is to introduce common knowledge
operator into KD4?% with appropriate logical axioms and inference rule. The former is
taken by Kaneko-Nagashima [11] and {12]. The latter is the approach taken by some
authors (e.g., Halpern-Moses (1], Lismont-Mongin (15] and Meyer-van der Hoek [16])2
In this paper, we adopt the former approach, and the extension of KD4? is called geme
logic GL,,, and give another characterization theorem in Section 5.

We discuss the evolutionary phases 1,2, ...,w in epistemic logic KD42 and game logic
GL.. In each phase k < w, we use a relatively small fragment of the language P, say,
Phase 1 involves formulae with no interactive occurrences of belief operators B, ,Bz2, and
Phase 2 needs formulae with their nesting occurrences up to depth 2. In fact, we can
restrict the language to some fragment of P sufficient for each phase, ¢ fortiori, the
epistemnic axioms as well as inference rules, such as Necessitation, are restricted to such
a fragment. Therefore phases evolve with required logics themselves. We will discuss
this evolution of required logics and related game theoretical problems in Section 3.

Before going to the main body to the paper, we mention one condition on a game.
In this paper, we restrict our attentions to games satisfying the condition:

(Int): if (a1, a2) and (by,b2) are Nash equilibria of g = (g1, g2), s0 is (ai, b2).

?Kaneko [3] showed that the later approach is faithfully embedded into the former with an appropriate
translation. Hence the results of the present paper are also translated into the latter approach.



This condition, introduced by Nash [17], is an extension of uniqueness. Therefore it is
satisfled by the games of Table 1.1 = 1.3 of Part I, but not the game of the following
table (Battle of the Sexes):

521 S22
s11 (2,1) (0,0)

si2 (0,0)  (1,2)"
Table 1.1

Since our very basic problem is the individual decision making, an individual player
needs to make a decision by himself in either case with and without communications.
For the Battle of the Sexes, he needs some additional information, which is discussed in
Kaneko [4] with Axiom T;. Here our purpose is not to investigate these games, but to
continue our discussions of the evolution of thoughts to the Limit Phase w. Therefore we
assume Condition Int always in this paper. Under this condition, the following notion
is meaningful: a; is said to be a Nash strategy iff (a;; ;) is a Nash equilibrium for some
aj.

2. Reciprocal Thoughts with Interaction Structure 7% = ({1,2},{1,2})
Transitory Phases

Suppose that the game g = (g1, g2) allows neither player to have dominant strategies.
Suppose also that the players have communicated with each other and that each player
t knows the other player j's payoff function, as well as his own payoff function g;,
to the extent that his belief §; allows no dominant strategies for 7. Then he may
realize that the situation is reciprocal and that he needs to adopt interaction structure
J* = ({1,2},{1,2}). In the following sections, we consider the case where player i
adopts this interaction structure. :

The case of J4 = ({1,2}, {1, 2}) differs from those of the other interaction structures
in that the former genrerates an infinite flow of reciprocal thoughts, while the flow of
thoughts stops at depth 1 or 2 in the other cases. In this sense, 7* = ({1,2},{1,2})
requires a lot, which may be regarded as approximating a situation where both players
get acquired to each other well. We argue that this situation creates some serious
difficulties. )

For J = ({1,2},{1,2}), Axioms I1; - I3; ({7,7} = {1,2}) are written as

I1; 0 A\ (Za(z:) A Lij(z5) O Bi(Nashi(z: | 2;)));

2 2
12: : A AN Ua(z0) O BilZu(20)));

k=l=1=



13;: (v Li{z:) D v I{j(ﬁj)) A (v Lij(z5) O \/ I.-;(x;)) .

As mentioned above, the belief set B(7%,I(1-3)) is infinite. This infinity causes the
impossibility of finding full solutions for the above axioms in epistemic logic KD42.
However, the point is not merely this impossibility but that neither player can deduc-
tively notice it, which can be proved by us (outsiders).

The above axioms are formulated so as to capture the distinction between belief and
knowledge. Accordingly, we should modify the formula Nash(ai, a2) to take epistemic
elements into account:

By(Nashi(ay | a2)) A Ba(Nashs(as | 1)),

which we denote by Nash*(a1, az). This states that 1 believes that a; is a best response
to ag, and that 2 believes that as is a best response to ;. This is not the concept we
ultimately target, but is a base concept on which we construct a super structure.

In epistemic logic KD4?, we can only exploit the belief set Bi(74I(1-3)) in the
following form, which will be proved in the end of this section.

Theorem 2.A (Partial Characterization). Let m be a nonnegative integer. Then
(1): BI(T*I(1-2)) F Li(ai) ATij(a;) D (BiBj)™ (Nash*(a) A Bi(Nash=(a)));

(2): BT I(1-3)) F Lu(as) O \/ (BiB;)™ (Nash=(a;; z;) A Bi(Nash*(a; 2;)));

Z;

(3): BI(J4I(1-3)) + Ii;(e;) D \/ (BiB;)™ (Nash™(z;; a;) ABi(Nash~(z; a;))}).

The first states that if I;;(a;) A i;(a;), then (ay; a;) has the property of Nash®, player
1 believes this property, ¢ believes j believes it, and so on. The second and third assert
that a; and a; are Nash strategies with the additional epistemic structures.

The assertion (1) require only Axioms I1 and I2 in BY(74,I(1-2)), while (2) and (3)
need I3 as well as I1 and I2 in B'(74,I(1-3)). The main difference between (1) and (2),
(3) is to separate I;;(a;) from I;;(a;). Even if the players communicate, the ultimate
decision made by player 7 is to choose his own strategy a; and player ¢ predicts that the
ultimate decision by j is to chooses a;. The ultimate decisions are independent though
they are restricted to some extent by their communications. Therefore the assertion (1)
should be regarded as an intermediate step to (2) and (3).

The above theorem was stated in the subjective manner. Since, in fact, the objective
version is easier to read, we restate Theorem 2.A.(1) in epistemic logic $42. Recall that
§4? is obtained from KD42? by adding Axiom (T;) : Bi(4) D A. If follows from Theorem
2.A.(1) that for any nonnegative integer m,

B (T4, X(1-2)) Fsqz Liia:) ALij(a;) O By,...B;, (Nash(a)), (2.1)
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where B;,...B;,, is 2 sequence of By ,Bq, 73 # i443 forany ¢ = 1,...,m—1. This means that
it is common knowledge that a strategy pair ¢ = (a1, a2) is a Nash equilibrium, though
“common knowledge” is not formulated as a formula, yet. It is an significant difference
between Theorem 2.A.(1) and (2.1) that the former is only about the subjective belief
of player 7 on the common knowledge of a Nash equilibrium, while the latter states that
being a Nash equilibrium is actually common knowledge between the players. Therefore
the former allows false belief, but the latter cannot. This will be discussed again in
Section 5.

A difficulty arising in the infinity of the belief set B(74,1(1-3)) is, as stated in
Section 4 of Part I, that the axiom scheme WD; cannot be formulated in KD42, It is
simply out of the scope of KD4? to take the conjunction of an infinite set of formulae.
Hence we cannot use Axiom WD; in KD42, This impossibility is deeper than it looks.
Although taking the conjunction of B'(74,I(1-3)) is not allowed in the assertions of
Theorem 2.4, their essential parts are expressed, but only the totality of Bi(74,1(1-3))
is not captured in KD4% However, the totality is essential for Axiom WD;. This will
be proved in Section 4. In fact, this partial exploitation brings about a serious problem
to the players.

For a clear-cut statement, we use the true payoff functions g = (g1,g2) for the
statements instead of the believed ones, ¢* = (g:;§;), and state the assertions only on
I;;:(-). The proof of the following theorem will be given in the end of this section.

Theorem 2.B (Negative Recommendation):
(1): If a; is a not Nash strategy for g, then Bi(74,1(1-3)), Bi(J4,9) F ~Ji(as).
(2): For any a; € &;, it is not the case that

2

2
U B*(7%,1(1-3)), | B*(J%, ) - Fi(as). (2.2)
k=1 © k=1

Note that the first implies BI(74,1(1-3)), B{{ 7%, g) & Bi(=I:(a;)). It asserts that un-
der the belief sets BY(.74,1(1-3)) and Bi(J74, g), he can decide a nonequilibrium strategy
not to be a candidate for his decision. The second asserts that neither player can decide
a decision. In this sense, this theorem states that as far as a player lives in KD42, only
negative recommendations are available for him.

It is important to emphasize that the unprovability stated in (2) is not in the scope
of either player. Although the number of pure strategies is finite, he needs to check an
infinite number of proofs to find that (2.2) is not the case. Hence he may get stuck here,
and it is an alternative case that after many failures, he may start thinking heuristically
and may notice that his language and logic are insufficient. In this case, he may jump
to the limit phase w.

Parallel results hold in the Phases 1 and 2 in the cases of Sections 5 and 6 of Part
Iif Axiom WD; is not assumed. In these cases, however, Theorems 5.A and 6.A are



full characterizations with Axiom WDy, and by these, we obtained the decidability and
playability results. In the present case, in fact, WD; cannot be formulated, and, thus,
the above theorem is unavoidable as far as we are in KD42,

We may find some similar fact in the economic literature. We often observe that
only necessary conditions for decision making are considered. This partial consideration
does not raise any conceptual problem if we (outsider) separate ourselves from the
inside players in deriving necessary conditions. However, if we regard the inside players
as doing the same, then the partial consideration is problematic. The above theorem
states that such considerations provide no positive recommendations for decisions.

Lemma 2.1.(1): 12; & Li(as) A Li;(e;) DBi(Lii(ai) A 13;(a;)).

(2): 120,B:(12;) F Iu(e:) A Lij(a;) O BiBj(Li(ai) A Lij(a;))-

(3): For any m > 0, BY( 74, (12;;12;)) Li(a:) ALij(aj) D (B:B;)™ (L) A Lij(a;)).
Proof. (1): Since I2; M Iii{a;} O Bi(Zji(es)) and 12; F I;;(e;) O Bi(f;;(a;)), we have
12: - Li(e) ALij(e;) O BilZji(ai) A Zjs(as)),

(2): It follows from (1) that B;(12;) F Bi(Ji(a;) ALsi(a:)) D BiB;(Jiula:) A Liz(a;)).
Hence 12;,B:(12;) & Lii(a;) ALij(a;) D B:iB;(Lii(a;) AZi;(a;)).

(3): We prove the assertion by induction on m. Since B'(74, (12;;12;)) includes B (12;),
B Bi(12;), (2) implies the assertion for m = 1. Now, suppose

BY(T*, (12:12))) F Jies) Aij(az) O (BiB;)™ (L) ALij(ay)). (2.3)
Then we have ‘

BT, (12::127)) F B:Bj(Lilai) A Lij(a5)) D (B:B;)™ (Ji(e:) A Lij(ay)).

Hence it follows from this and (2.3) that B¥(J4, (12;;12;)) F Li(a:) A fi;(a;) D |
(BiB;)™* (Li(ae) ALij(as)). O
Lemma 2.2. I11;,12;,B;(I1;) + Li(a:) Afij(a;) O Bi(Nash=(a)).

Proof. First, IL; b Li(a:) A Lij(e;) D Bi{Nashi(a; | a;)), which together with Axiom
PI; implies
I1; & Iii(ei} A Lij(e;) D BiB;(Nash;(a; | a;)). (2.4)

Since 12; l‘ Li(ai) A Lij(a;) O Bi(£;5(e;) A Lii(a:)) and B;(I1;) F Bi(Zji(a;) A Lji{e:)) D
B;B;(Nash;j{a; | a;)), we have

12;, B;(I1;) F I{A;(a;)/\fgj(aj) D BiBj(Nashj(aj | as)). (2.5)

By (2.4) and {2.5), we have the assertion of the lemma. O



Proof of Theorem 2.A. It follows from Lemmas 2.1.(3) and 2.2 that
B (7%, 1(1,2)) F Lii(a;) ALij(a;) O (BiB;)™Bi(Nash™(a;)).
Also, it follows from Lemmas 2.1.(1) and 2.2 that
BY(J*,1(1,2)) F Jii(a:) ALij(a;) D BiB;(Nash™(a)). (2.6)

Indeed, since Bi(11; AI2; AB;(I1:))  Bi(Z;;(a;) A Jji(a:)) D B;B;(Nash=(a)) by Lemma
2.2 with the permutation of 7 and j and since B*(J4,1(1,2)) B:i(11; AI2; AB;(I1))), we
have (2.6) by Lemma 2.1.(1). From (2.6), using Lemma 2.1.(3), we have B#(74,1(1,2)) F
Iii(ai) A Lij(a;) O (BiB;)™(Nash~(a)). ' '

Assertions (2) and (3) can be proved in the same manner as in the proof of Lemma
6.2 of Part I. O

Proof of Theorem 2.B.(1): Let a; be not a Nash strategy. Let a; be an arbitrary
strategy for 7. Then

gi Fo ~Nash;(a; | a;) or g; Fo ~Nash;(a; | a;).

Hence Bi(g:) & Bi(~Nashi(a; | a;)) or Bj(g;) & Bj(~Nash;(a; | a;)). This implies
B:(g:) - B;Bi(-Nash;(a; | a;)) or B;B;(g;) + B;B,-(-—:Nashj(aj | a;)). Hence Bi(gi) F
~BiBi(Nashi(a; | ¢;)) or B;B;(g;) + ~B;Bj(Nash;(a; | a;)) by Lemma 3.1.(6) of Part
I. Thus Bi(Jq,g) F =B;Bi(Nash;(a; | a;j)) or Bi(J"‘,g) F =B:B;(Nash;(a; | a;)). This
implies B'(J*,g) F ~B;Bi(Nashi(a; | a;))V —B;B;(Nash;(a; | a;), which is equivalent
to BY(J*%, g) b =Bi(Nash*(ai; a;)). Since this holds for all a;, we have

Bi(J4,g)F - \/ Bi(Nash™(a;; z;)). (2.7)

*j

Since Bi(74,1(1-3)) + ILi(a:) D \/ Bi(Nash*(a;;z;)) by Theorem 2.A.(2), we have
%

Bi(74,1(1-3)), Bi{(J4,g) + - \/ Bi(Nash*(ai; z;)) D —Iii(a;). This together with (2.7)

implies the assertion. ’ '

(2): Suppose, on the contrary, that (2.2) holds for some ;. Since an conjunct of I2; is
expressed as Igi(ar) D Bi(Lji(ar)), we have {~Ju(ar): a; € y and k = 1,2} F I1x Al2%.
we have :

U Be(Tw): To, [ J {~Tuilar) a1 € By and 1 = 1,2}, g1, 92 - Tia(b2), (2.8)
% k



where B,(T'x) is the set of formulae in B¥(74,1(1-3)) U B5(74, ¢) whose outermost sym-
bols are Bi(-), and T'o = {I3; : £ = 1,2}. Applying the Separation Theorem (Theorem
5.E of Part I) to (2.8), we have

U {_’Ikl(af) top € Ehl = 11 Q}t F01911g2 F Iii(bi))
k (2.9)

Bl(I‘l) FL or Bg(rz) L.

We can prove by the belief-elimination operator ¢ and Soundness for F¢ that neither is
the case. Here we prove that the first is not the case. Suppose, on the contrary, that
‘the first is the case. Then, by applying the operator ¢, we have

U {=Iu(ar) s a1 € Ty, 1 = 1,2}, To, 91, 92 Fo Ji:(b:). (2.10)
%

We show that this is not the case by Soundness for g .
Now we define an assignment o over the set of atomic formulae by

o(Ir(ar)) = false forall k,{=1,2and all g € Zy;

true  if ge(a) > gr(a’)
o(Bi(a: b)) =
false otherwise.

In this assignment ¢, we have |=, A for every formula 4 in U {~d(a) car e 1 =

k
1,2},T0,41,92, but I;(;) is false. Hence by Soundness for g, (2.10) cannot be the
case. O )

" 3. Depths of Thoughts in Transitory Phases

We have discussed the evolutionary phases 1,2,... in epistemic logic KD42. In each
phase, we use a relatively small fragment of the language P, say, Phase 1 involves
formulae with no interactive occurrences of belief operators By,B,, and Phase 2 needs
formulae with their nesting occurrences up to depth 2.In fact, we can restrict the
language to some fragment of P sufficient for each phase, a fortiori, the epistemic
axioms as well as inference rules, such as Necessitation, are restricted to such a fragment.
Therefore phases evolve with required logics themselves.



3.1. Evolution of Logics Required for Transitory Phases

The epistemic depth 6{ A) of a formula 4 is crucial for our considerations in this section.
The depth 6;(4) of a formula A (¢ = 1,2) is defined by induction on the structure of
formula A:

(0): 8;(A) = 0if A is atomic;

(1): 8:(=A) = 8:(A);

(2): 8:(A D B) = max(§;(4), 6;(B));

(3): &i(A®) = 6;(V &) = max{6;(A): A € &};

(4): for j # 1, 6;(B;(A)) =0, and 6(Bi(4)) = max(§;(4), 5;(A) + 1).

We define 6{A) = max(6:1(A4),82(A4)). Step (4) counts the successive occurrences of
B1,Bs, ignoring the repetitive occurrence of the same B;. For example, if A is nonepis-
temic, then 5(B2B1(A 2 B]_(A))) = éz(BQBI(A DB]_(A))) = ma.x(ég(Bl(A o B](A))),

We define the language P(m) of formulae of epistemic depth up to m by

Pim)={AeP:6{A)<m}form=0,1,.. (3.1)

For example, the language P(0) is the set of nonepistemic formulae. Of course, P(m)
;: P(m+ 1)} for all m. Now we restrict the language P to P(m) in epistemic logic KD4?2,

and consider the pair (P(m),KD42). In (P(m),KD4?), any formula occurring in a proof
is required to be from P(m). We emphasize that in (P(m),KD4?), Necessitation rule
is allowed to be applied to A only if B;(A) (or B;{A)) belongs to P(m). For example,
neither Necessitation rule nor any formulae including belief operators B;(-) is allowed
in (P(0),KD42), and thus it is classical propositional logic.

First, we mention some facts on these logics form the viewpoint of logic. The relation
between two logics in the sequence (P(0),KD42),(P(1),KD4?), - - is as follows: for any
k,m with & > m,

(P(k),KD4%) is a conservative extension of (P(m), KD4?), (3.2)

that is, (1): if A € P(m) is provable in (P(m),KD4?), then so is in (P(%),KD4?); and
(2): if A € P(m) is provable in (P(k),KD4%), then so is in (P(m),KD4?). The second
part is called conservativeness. This conservativeness is almost a direct consequence
of the cut-elimination theorem for KD42.3 Also, a model theory for (P(m),KD4?) is
developed in Kaneko-Suzuki [14], which gives a sound-completeness theorem for each
(P(k),KD4?) with respect a modified Kripke models with the corresponding depths.

3The cut-elimination theorem for game logic GL. ir Kaneko-Nagashima [12] can be simplified for
KD4?,
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Let us return te our discussion on the evolutions on game theoretical thoughts. Up
to now, we did not give a clear-cut definition of Phase k. Here we identify each Phase
k (k 2 1) with the thought processes to be described in logic (P(k),KD42). Now we
should argue that this identification capture the original intention of the introduction
of phases. .

The entire arguments for J with J; = {i} (Section 5 of Part I) can be done in
(P(1),KD4?%). We remark that WD; is an axiom schema and includes any formulae
potentially, but that it works actually with the restriction of formulae to P(1). Similarly,
we can verify that the entire arguments for .7 with J; = ({1, 7}, {7}) (Section 6 of Part
I) can be stated in (P(2),KD4?). Hence these arguments are in Phase 2.

Now consider the assertions of Theorem 2.A. If we look carefully at the proofs of
these assertions, we would find that only a finite subset ' of BY(74,1(1-3)) having depth
2m + 2 is used in the proofs. Hence Theorem 2.A belongs to Phase 2m + 2. Here the
conservativeness of (3.2) has the implication that when a player goes from phase & to
phase k+1, i.e., from (P(k),KD4?) to (P(k + 1), KD4?), his previous thoughts in phase
k are faithfully preserved in phase £ + 1.

Our identification of Phase & by (P(k),KD4?) has the intention that if beliefs up to
depth £ are assumed, the meaningful conclusions should be in (P(k),KD42). If this was
not the case, i.e., some meaningful conclusions outside P(k) were derived, the restriction
to P(k) could be rather artificial: only the results in the above particular cases we have
considered happened to be in the corresponding P(k). Actually, this is not the case,
which is shown by the following theorem. The theorem is due to Kaneko-N agashima
[13]4.

Theorem 3.A (Depth Lemma). Suppose b 4 D B;,...B; (B), §(A) < k and 4; # iyy1
fort=1,..,k=1. Then F -4 or I B.

That is, if By,...B; (B) is derived from A with §(A) < k, then at least one of A
and B is trivial in the sense of <A or - B. This theorem implies that if beliefs up
to depth k are assumed, then all meaningful conclusions from the assumptions are in
P(k). Hence this warrants our identification of Phase & to be (P(k),KD42).

Let us apply Theorem 3.A specifically to Theorem 2.A.(1).

Theorem 3.B (Necessary Depth). Let m be a nonnegative integer, and let I" be a fi-
nite subset of BY(74,1(1-2)). If T F I;;(a;) AZij(a;) O (BiB;)™ (Nash(a) A B;(Nash=(a))),
then max{6(A): A €T} > 2m + 2.

The faithful reading of this theorem is that if the Nash* property is known to the
players in the sense of (B;B;)™ and (B;B;)™B;, the assumption set I should include

*This theorem is proved for S4? in Kaneko-Nagashima (13] using the cut-elimination theorem for
$47 in the Gentzen style sequent calculus due to Ohnishi-Matsumoto (18]. Since KD4? permits cut-
elimination, we can prove the theorem in the same (actually simpler) way.
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the depth 2m + 2, where the additional 2 comes form B; in the second conjunct and
B; in Nash*(a). As discussed above, we could read it as meaning that if I' has at most
depth 2m + 2, we can derive the outer B;B; only up to m times. Thus, the depth of
the conclusion is getting deeper as player i's thinking (i.e., the assumption set) or the
degree of intersubjectivity is getting deeper. Nevertheless, the potential depth of the
assumption set, B'(.74,1(1-2)), is infinite, and only some finite part of it is used as far as
the players are in epistemic logic KD42, i.e., it does not allow the players to capture the
totality of the belief set. Thus, the evolutionary process of thoughts are getting deeper
without reaching infinity.

Proof of Theorem 3.B. Suppose I' - Iii{a:) A Iij(a;) D (BiB;)™ (Nash=(a) A Bi(Nash~(a))).
This is equivalent to = (A T) A(Zii{ai) A Lij{a;)) D (BiB;)™ (Nash*(a) A B;(Nash=(a))).
This further implies

F(AT) AlZii(e:) A Lij(a;)) O (BiB;)™B:B;(Nash;(a; | a:)). (3.3)

If neither F = ({AT) A(Zii(a:) ALij(a;))) nor + Nashj(a; | a;), then the application of
the depth lemma (Theorem 3.A) to (3.3) implies max{é(4): A € I'} > 2m +2. We can
provet = ((AT) A(4i(ai) A Lij(a;))) nor F Nash;(a; | a;), by using the belief-elimination
operator € and the soundness for Fq . O

3.2. No Nontrivial Formulae satisfying the Axioms in KD42

As remarked in Section 2, a difficulty is caused for the reason that it is not allowed to
take the conjunction of B#(74I(1-3)[A]) since it is an infinite set. The reader might
wonder whether it would be possible to capture its essential part, as in Theorem 2.A,
by considering an arbitrary finite subsets of Bi(74,1{(1-3)[4]). However, the difficulty
involved is more intrinsic: the language does not allow any formulae to have the prop-
erty I2; AI2;. In the above axiomatization, Axiom 12; AI2; is solely responsible to the
difficulty. This fact is expressed in the following form, which is proved by using the
depth lemma.

Theorem 3.C (Indefinability in KD42). If a family of formulae {Ay : k,! = 1,2}
2 2

satisfies /\ /\ (At D Bi(Ag)) for ¢ = 1,2, then & —Ay or + Ay for each pair
k=1i=1
k,l=1,2.

Thus, the theorem allows only the trivial cases. Since no families of nontrivial formu-
lae satisfy Axioms I2; AI23, it is impossible to express I;;(a;)’s as equivalent formulae in
P. It is an implication that KD42 is incapable of full exploitation of the above axioms.
Therefore we need to extend KD42 in order to exploit fully the final decision axjioms.

12



Proof of Theorem 3.C. Consider a formula Ay;. Since b Ay D By(Ay) and F Ay D
B2(Ayt), which implies - By(Az) D B1Ba(Ay;), we have

= Au O BiBa(Aq). (3.4)

Now we assume that - Ay D (ByB2)™(Ay). Then = (B1By)dy D (BiB2)™*1(Ayy).
Hence by (3.4), we have F Ay; D (B1B;)™+1(Ay). Thus we proved

FAyD (BlBg)m(Au) forall m > 0. (35)

We take m greater than §(Ay;). Then we apply the depth lemma {Theorem 3.A) for
KD4? to (3.5) with this m, and then have - =4, or F Ay O

4. Game Logic GL,

To exploit {ully the belief set B'(7,I(1-3)) of the final decision axioms in the case of
J =J*=({1,2},{1,2}), we need to extend the language P so that we can represent the
contents of certain infinite sets such as Bi(74,1(1-3)) by object formulae. As mentioned
in Section 1, there are, so far, two possible approaches available: one is to extend P to
an infinitary language to have infinitary conjunctions (the approach taken by Kaneko-
Nagashima [11] and [12]), and the second is to introduce new operator symbols and to
add certain axioms and inference rule to describe the required properties to the original
finitary logic (cf., Halpern-Moses [1], Lismont-Mongin [15] and Meyer-van der Hoek
(16]). Here we take the former approach: the extended logic is called game logic GL,,.
It is proved in Kaneko (3] that the latter can be faithfully embedded into the former.
This implies that the essential part of our argument can be translated into the latter
approach. Nevertheless, we will mention briefly the latter approach, too, since it gives
some hints for the understanding of the evolution of logics.

First, we extend the language P to P1,P?,.... by the following induction. We call
the formulae in P° = P the O-formulae. Suppose that the set P*-1 of (k — 1)-formulae
is already defined (k = 1,...). Then P* is the set of k-formulae defined by the following
induction: ‘

(k-1): any expression in P*~1 U {{A®),(V &) : & is a nonempty countable subset of
P51} is a k-formula;
(k-ii): if A and B are k-formulae, so are (~A4),(4 D B) and B;(4) fori=1,2.

We denote [ J; ., P* by P¥. We call an expression in P¥ simply a formuls, and also &
an allowable set iff § is a nonempty countable subset of P* for some & < w.

The primary reason for our infinitary language is to express the concept of common
knowledge explicitly as a conjunctive formula. The common knowledge of a formula 4
is defined as follows: For any m > 0, we denote the set {Bi,Bi;-..Bi,, ¢ i # 44y for
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t=1,...,m— 1} by B(m), where B(0) is stipulated to consist of the null symbol e, i.e.,
eA is A itself. We define the common knowledge of A as

AMBHA):BEe | B(m)), (4.1)
0<m<w

which we denote by C(A4). Hence C(A)is common knowledge in the sense that it includes
A, instead of common belief, where the common belief of A is defined by deleting 4 in
(4.1). The common belief of A is expressed as C(B1{A) AB2(A4)) using C(+). To capture
the relativization of “knowledge” to “belief”, it will be also shown that the necessary
modification of common knowledge is not common belief but the individual belief of
common knowledge, instead.

The space P is closed with respect to the operation C(-). Indeed, if A is in P%1,
the set {B¥(4): B* € Un<o B(m)} is a countable subset of P41, and its conjunction,
C(A), belongs to P* by (&-1).

To state one more axiom, we define the notion of a cc-formula. We say that A in
P¥ is a cc-formula iff (i) it contains no infinitary disjunctiorns and (ii) if it contains an
infinitary conjunction, then it is written as C(B) for some B € P*. Any subformula of
a cc-formula is also a ce-formula.

Game logic GL,, is obtained from KD42? by substituting the infinitary language P«
for the finitary P together with the following additional axiom (schema):

(C-Barcan): A{B;B*(4):Bf ¢ <L_J B(m)} D B;C(A),
0<m<w

where A is assumed to be a cc-formula.’

The definition of a proof in GL,, is extended slightly from that in KD42%. A proof P
in GL,, is defined as: (i) it is a countable tree with no infinite path from the root; (ii) a
formula is associated with each node in P, and the formula associated with each leaf is
an instance of the logical axioms; and (iii) adjoining nodes together with the associated
formulae form an instance of the inference rules. We write b, A iff there is a proof P in
GL,, such that A4 is associated with the root of P. For any set I' of formulae, we write
[, Aiff b, AP D A for some allowable subset @ of T,

In the finitary KD4?, b B;(A @) = AB:(®) for any nonempty finite set of formulae
in P, where B;(®) = {Bi;{A) : A € ®}. Even if ® is an infinite set, the one direction,

*In the game logic approach of Kaneko-Nagashima f11] and [12], the restriction on A to be a cc-
formula is not assumed. Without this resiziction, we have not succeeded in obtairing the faithful
embedding result of the common knowledge logic to the game logic. Since our purpose of the introduc-
tion of infinitary conjunctions and disjunctions is to treat common knowledge as object formulae, the
restriction to cc-formulae is not an obstrucle in our game theoretical applications, On the other hands,
a reader may find that in our game theoretical considerations, the restriction is not used at all. Only
with it, we can obtain the embedding result (Kaneko [3]}, which associates maodel theoretic counterparts
(Halpern-Moses [1] and Lismont-Mongin [15]) with our considerations.
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B:(A®) D ABi(®), is easily extended into GL, without using the C-Barcan axiom,
but the converse cannot be provable in a direct infinitary extension of KD42. By the
C-Barcan axiom, we allow this converse to the extent that it holds for the infinitary
conjunctions of the common knowledge type and a cc-formula A. Without adding the
C-Barcan axiom, Theorem 2.C would hold in the direct infinitary extension of KD42.
Hence, without the C-Barcan axiom, the Limit Phase would not give a remedy to the
problems in the transitory phases.®

Game logic GL,, is an extension of finitary XD4? and, in fact, it is a conservative

extension: for any 4 € P,
F Aif and only if +, A, (4.2)

where the if part is conservativeness. This conservativeness is proved in Kaneko [8]. We
use the only-if part without referring to (4.2). After all, the logics required are evolving
in the form:

(P(0),KD4?) — (P(1), KD4?) — - .- = (P(k),KD4?) - ... GL,,

Each logic is a conservative extension of its predecessors. Game logic GL,, is also a
conservative extension of all predecessors. As discussed in Section 3, each (P(k),KD42)
is needed for the consideration of Phase k, but the totality of B*(.74,I(1-3)) is captured
by none of these logics. Game logic GL,, allows each player to capture the totality and
gives a solution to his decision making problem.

First, we state the following simple facts on common knowledge formulae (Kaneko-
Nagashima [11)). '

Lemma 4.1. Let & be a finite set of formulae, and A;, A; € P¥, Then
(1): Fu C(A8) = AC(®);
(2): Fo VC(2) D C(V ®);
(3): Fu C(A1 D 42) D (C(A4)) D C(42));
(4): C(T') ko, A1 implies C(T') Fo, C(4y).
Now we express the belief set BY(J%, (A1, A2)) in terms of the common knowledge
operator C(-), which becomes much easier to read.

Lemma 4.2. Let Ay, A3 be cc-formulae in P, Then k., A BY{( T4, (A1, 42)) = B:C(4; A 4a).

Thus, B( 74, (A1, A2)) means that player 7 believes that A; A A, is common knowl-
edge. In the S4-type game logic, i.e., we add Axiom (T;) : B;(4) D A to GLe,

$This difficulty has a counterpart in logic. The fragment of all cc-formulae in GL,, (with the C-Barcan
axiom} is proved to be sound and complete with respect to Kripke semantics. This is a consequence
of the faithful embedding theorem of Kaneko [3] on the common knowledge logic to game logic GL..
Without the C-Barcan axiom, it is proved that this fragment is Kripke incomplete (Kaneko [3]). This
is a counterpart in logic.
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B;C(A1 A A2) is equivalent to C(A; A Az). Hence the relevant modification of com-
mon knowledge in our context is not the common belief, but the individual belief of
common knowledge.

Proof of Lemma 4.2. Recall that the set Bi(J4, (A, A3)) is written as
{B (A1), (B:B;)'Bf (4:), (B:B;)*Bf (41), ... JU
{B:BY(4;),(B:B;)' BB} (4;), (B:B;)*BiB} (4;), .- }-

We denote the first and second sets by I'y and I';. Then we can prove that for all m > 0,
T; Fo Bi(BiB;)™Bi(A:), Ii Fo BiB;(B;B;)™B;:(A4;), and T; k., B:(B:B;)™(4:), Ti by,
B;B;(B:B;)™(A:). Hence b, AT; D A{BiB*(4:) : B* € Upncw B(m)}. The converse is
straightforward. Hence k-, AT; = A{BiB*(4:) : B¥ € U, <o B(m)}. By the C-Barcan
axiom, we have

Fo AT = BiC(4;).

In the same manner, we have
Fo AT; = B,‘C(AJ').

Hence we have k, A B{(J74, (A1, 42)) = B;C(41 A A2) by Lemma 4.1.(1). O

Also, the conclusion of Theorem 2.A.(1) is represented as B;C(Nash*(a)), which
means that player ¢ believes the common knowledge of Nash*(a). Note that Nash*{a) =
Bi(Nashj(a; | a2)) AB2(Nasha(az | a1)) itself includes beliefs. In the S4-type game
logic, B;C(Nash*(a))) is shown to be equivalent to C(Nash(a)).

Lemma 4.3. b, /\ (B;B;)™ (Nash*(a) A B;(Nash(a))) = B;C(Nash(a)).

mdw

Proof. First, we prove that the latter implies the former. It holds that ,, B;C(Nash*(a)) >
(B:B;)™(Nash*(a)) and F,, B;C(Nash=(a)) D (B;B;)™B;(Nash~(a)) for all m > 0. Hence

ko BiC(Nash*(a}) > /\ (B:B;)™ (Nash*(a)) ABi(Nash*(a))).

mw

Consider the converse. The former formula is equivalent to

A{B;B™Nash*(a) : B™ € | | B(m)},

m<{w

Here we note that Axiom PI; is used. By the C-Barcan axiom, we have

Fo A{BiB™Nash"(a):B™ ¢ | ] B(m)} > B; (/\{B"‘Nash“(a) :B™ e | B(m)}).

mw mw
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This is the converse itself. O

Before going to our game theoretical considerations in Section 5, we mention briefly
the common knowledge logic (cf., Halpern-Moses [1], Lismont-Monrgin [15] and Meyer-
van der Hoek [16]). First, observe that the common knowledge operator has the following
properties (cf., Kaneko [3]).

Lemma 4.4. Let A, B € P¥, Then
(1): Fo C(A) D AAB1C(A) AB2C(A), where A is a ce-formulae;
(2): if -y, B D A ABy(B) ABa(B), then k, B D C(A).

The common knowledgelogic CKL is formulated by focussing these properties and by
requiring these as axioms for new symbols Cp(-) in the finitary extension of our language
P including this unary operator symbol Cp(:). Then one axiom and one inference rule
corresponding to (1) and (2) are assumed on Cp(-). Then it is shown by proving the
sound and completeness theorems with respect to Kripke semantics that this extension of
the finitary KD4? determines Co(-) to be common knowledge. This common knowledge
logic CKL is embedded into GL., by translating Co(A) into C(A4~), where A" is also
obtained by the same principle, and GL,, is a conservative extension of the embedded
fragment.

The following lemma will be used in Section 5.

Lemma 4.5, Let 4;, 4,,Cy,Cy € P¥. Then

(1): f BI(T4, (A1, A2)) o C: and BT, (Ay, 42)) FuB:BH(C;),
then BY(J*, (A1, 42)) Fu ABH (T4 (Cy, C2));

(2): if by Ci and Fy, BiBf(C}), then ko, ABI(JT4,(C1, Ca)).

Proof. The assertion (2) can be regarded as a special case of (1). For (1), it suffices to
show that for all m > 0,

BY(74, (41, A2)) Fu (B:B;)™BF(C:)
(4.3)
Bi(J*, (A1, 42)) ko (B:B;)™B:BF(C)).

Indeed, since the set {(B;B;)™BF(Ci): m 2 0}U{(B:B;)™B;B}(C;): m > 0} is exactly
Bi(74,(Ch, C2)), we take the conjunction of this set, which is the desired result. Let
us prove {4.3). For m = 0, (4.3) holds. Indeed, the second assertion is the assumption.
Consider the first assertion for m = 0. By the assumption and Lemma 4.3, we have
B:C(A1 A Az) ., Ci. This together with Nec and MP; implies B:B:C(A1 A 42) o
B:(C;). Since F,B;C(Ay A A2) D B;B;C(A; A Az), we have B;C(4; A A2) F, B (CY).
By Lemma 4.3, this is equivalent to the desired one.
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Now suppose that (4.3) holds for m. Then it follows from Lemma 4.2
BiC(Ar A A2) by, (B:B;)™BFH(C:).
Hence by Nec and MP;,
B;B;B:C(A; A A2) by (B;B;)™HIBFH(C)).

Since ko, C(A1AA2) D B;C(A1 A Az) by Lemma 4.4, we have F,B;C(A; A 42) D
BiB;C(A1 A Az2) and Fy, BiB;C(A4, A A2) D BiB;B:C(A1 A A2) by Nec and MP;. Thus
we have

B;C(A1 A A2) Fo (BiB;Y™HBH(C)).

Hence we have the first one of (4.3). In the same manner, we have the second. O

5. Reciprocal Thoughts with Interaction Structure J* = ({1,2},{1,2}):
the Limit Phase w

The reciprocal thoughts in the Limit Phase w can be fully captured in game logic GL,,.
The final decisions are determined to be the individual beliefs of the common knowledge
of a Nash strategy. It is still a subjective belief and may have a discrepancy from the
objective reality. This possibility will be well reflected in the result we call the Konnyaku
Mondd Theorem to be given in Subsection 5.2. '

5.1. Characterization, Decidability and Playability

In the following, we denote, by .f.-,-(a,-) and f,-_,-(aj), respectively,

\/ B;C(Nash*(a;; z;)) and \/ BiC(Nash*(z;; ;). (5.1)

IJ‘ E4y
The following is the characterization result, which will be proved in the end of this
subsection.

Theorem 5.A. (Characterization III): Let g* = (g;; §;) satisfy Condition Int. Then,
Tork=1,2,

Bi(J*,1(1~3)), BY(J*, WD}, B{(J*, ¢°) -, /\(I;k(mk)zf;k(mk)). (5.2)

Tk

We emphasize that in Theorem 5.A, f,-k(:nk) has the outer B; and means that player
¢ believes the common knowledge of a Nash strategy. Also, player 7 believes that it is
common knowledge that 7 has and knows his own payoff function g;- These beliefs §; and
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g2 may different. Hence each player may believe the common knowledge of a different
situation. That is, the assumption sets (J B'(74,1(1-3)),|J Bi(J¢,WD),|J B (J4,¢)

1 1 1
are consistent in GL,, even if §; and §, are different from g; and g, respectively. This
possibility will be discussed in Subsection 5.2.
In the S4-type game logic, Iii(a:) and I;;(a;) are determined to be

\/ C(Nash(a;; z;)) and \/ C(Nash(z;; a;)). (5.3)

This result is what is considered in Kaneko-Nagashima [11] and Kaneko [4]. These
papers evaluated this version of the theorem. In this case, it is impossible that each
player believes the common knowledge of a different situation. That is, U Bi(J4,¢%) is

inconsistent in the S4-type game logic if §; is different from g; for at least :Jne ofi=1,2.

Without Cendition Int on ¢* = (g:; 3;), the above theorem need to be modified so
that Nash equilibrium is replaced by the subsolution concept given by Nash {17]. In the
S4-type game logic, Kaneko 4], Section 6 obtained 2 result corresponding to Theorem
5.A under some additional assumption that they have some communication to guarantee
the common knowledge of the choice of a subsolution, and also discussed new difficulties
arising from such games. We will discuss fully the cases without Conditions Int and
Conc; in a separate paper.

Let us return to game logic GL,, and mention the decidability and playability. In
the following, we denote B¥(J4,1(1-3)), B{(J4,WD), B(J4, ¢*) by IL;(g?). We will give
the proof of Theorem 5.B.(3-1) in the end of this subsection.

Theorem 5.B. (Decidability III): Let g* = (g;; ;) satisfy Condition Int. Then, for
k=12,

(3-1): ax is a Nash strategy for ¢' if and only if II;(g*} Fo, BF (Zie(ar));
(3-2): ax is not a Nash strategy for ¢° if and only if IL;(¢') ko, BF (~Lix(ar)).

Theorem 5.C. (Playability III): Let ¢° = (g;; ;) satisfy Condition Int. Then, for
k=1,2,

(3-3): ¢* has a Nash equilibrium if and only if II;(¢%) F,, Bf’(\/ Lie(zr));

Ty
(3-4): g has no Nash equilibrium if and only if ILi(g*) Fu BF (= \/ Lie(zs)).
Tk
Thus, a player who has reached the Limit Phase w can decide his final decision

relative to his belief on the game g* = (g;; §;). Here player 7 has no longer a difficulty
mentioned by Theorem 2.B.(2). Statement (3-2) means that he finds that a; is not a
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solution. If (3-4) is the case, he finds neither 2 Nash equilibrium nor a Nash strategy
in pure strategies. One possible way out is to consider mixed strategies, which case will
be remarked in Section 6.

Let us prove Theorems 5.A and 5.B.(3-1). First, the following lemma is an almost
direct conclusion from Theorem 2.A.(1) and Lemma 4.3.

Lemma 5.1. B (J4,1(1~-2)) by, Lii(ai) A fij(a;) D BiC(Nash™(a)).

The following lemma can be proved from Lemma 5.1 in the same manner as the
proof of Lemma 6.2 of Part I.

Lemma 5.2. B(J%I(1-3)) o Lie(ar) D\ BiC(Nash=(ax; ;) for &k = 1,2.

Ty
Lemma 5.3.(11): Let g° = (g;; §;) satisfy Condition Int. Then
Bi(J* ¢%) Fu fii(e:) ALij(a;) O Bi(Nashy(a: | a5));
BI(74,9°) b B:BY (Ijj(a;) ABji(as) D Bj(Nashj(e; | a;))) .
(12): b, Iy(a)) D Bi(Iy(ar)) for i,k,1=1,2, and a7 € ;.
(18): +o V Ju(z) DV fiwlzs)) for 4,k,1 = 1,2.
=i

Tx
Once this lemma is proved, BY(74,¢%) b, 1;(1~3)(Z] and B(74,¢%) Fo, B;B} (L;(1-
3)[Z]), where T = {Ixi(ar)}x,1,e,- Hence by Lemma 4.5, Bi{(T4, ¢) ., BI(T4,1(1-3)(Z]).
Hence using WDy, we have B(J4, g%), B{(J¢, WD) k., Iix(ar) D Li(ax). This together
with Lemma 5.1 implies that Bi(74,I(1-3)), B{(74, ¢), B{(74,WD) ko, T(ax) = Fix(as).
This complete the proof of Theorem 5.A.

Proof of Lemma 5.3. Assertions (12) and (I3) are straightforward. Now we prove
only the first assertion of (I1). Before going into details, we mention one fact:

Bf'(gi),Bj‘(gj) . Nash™(a;; aj) > Nash(ai; CLJ'). (5.4)

Since +,Nash*(a;; @;) D Bi(Nash;(ai; ¢;)) and Bf (g:) o Bi(Nash(q; | a;)) D Nash;(a; |
a;) by Lemma 3.2.(3) of Part I, we have Bf (g;) bo Nash™{a;;a;) D Nashi(a; | 2;). In
the same manner, B} (§;) ko Nash=(as; ¢;) D Nashj(a; | a;). These imply (5.4).

By (5.1),

Fo f;,-(a;) /\f,-j(aj) > (\/ B;(Nash"‘(a;; Ij))) A (\/ B;(Nash'(z;; a,—))) .

%y
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Since F, VBi(®) D B;(V @) for any allowable set @, we have
by Filag) /\fgj(aj) D B; ((v Nash™(a;; z;)) /\(\/ Nash™(z; aj))) . (5.5}
z; zi
It follows from (3.4) that

B} (9:), B} (45) Fo (V Nash*(a;; 2;)) /\(\/ Nash*(zi; ¢;))
D (\/ Nash{a;; z;)} /\(\/ Nash(z;; a;))

Since g satisfies Int, i.e., g% kg (\/Nash(a;;a:j)) /\(\/Na,sh(:cg;aj)) D Nash(a;; q;), we
;i
have

Zi

B (g:), Bj'(gj) Fo (\/ Nash™(a;; z;)) /\(\/ Nash™(zy; e;)) D Nash(ai; a;).
z;
Hence
BiB{ (g:), B:B(8) Fu Bi(\/ Nash*(ai; 2)) A(\/ Nash*(z; a5))
i
> Bi(Nash(a;; a;)).
Thus it follows from (5.5) and (5.6), noting k., B (g:) O B;Bf(g;), that

(5.6)

Bf (g:), BiBf () b fu(ae) ALij(a;) D Bi(Nash(as; q;)).

This implies BY(J4, g%) ko, Fi(a:) ALij(a;) > Bi(Nashi(a; | aj)). O

Proof of Theorem 5.B.(3-1): Suppose that a; is a Nash strategy for g*. Then there
is a strategy a; for player { such that (ay; a;) is a Nash equilibrium. Then BY{(J4,¢°) F,,
B;C(Nash(ax; ar)). Thus BY(J4,¢%) k., \/ B:C(Nash(as; z;)). By Theorem 5.A, we have .

Ty
Hi(¢') Fu Li(ar). Then I;(g%) Fo, BF (Zix(ar)).
The converse can be proved in the manner parallel to Theorem 5.B of Part I. O

5.2. Konnyaku Mondé ~ — Devil’s Tongue Dialogue

We emphasized after Theorem 5.A that the final decision was an individual belief of the
common knowledge of a Nash strategy. The Limit Phase w is interpreted as meaning
that the players have been talking, face to face, about their game situation as well
as their thought making. The belief sets Bi(74,I(1-3)), BY(J4,WD), Bi(.74,¢°) mean
that player ¢ believes that the situation and their ways of thought making are common
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knowledge between the players. Nevertheless, we often observe in our life that one
regards something as common knowledge, though it is not really common knowledge.
The following theorem is a specific version of such situations. Recall that II{g* ) denotes
BH(74,1(1-3)), Bi( 74, WD), Bi(J4, ¢).

Theorem 5.D (Konnyaku Mondé): Suppose that each g; allows no dominant strate-
gies, and that (aj, a3) is an inductively stable stationary state. Suppose that (a},a3) is
a strict Nash equilibrium, i.e., for i = 1, 2,

gi(ef; a}) > gi{ai; a}) for all a; # af.

Then there are payoff functions §; and g, such that

(1): each §; allows no dominant strategies;

(2): each believed game g* = (g;; ;) satisfies Condition Int;

(3): each player 7 has interaction structure J4 = ({1, 2}, {1, 2});

(4): Ti(g) b Tix(ag) and Ti(g%) ko —Lix(ak) for all ay # af and 4,k = 1,2;

(8): I1(g') UTl2(g?) is consistent in GL,,.
Recall that Theorem 5.4 that each I;1(ax) is determined to be \/B ;C(Nash(ax; z;)).
Each player i beheves that 1(1-3),WD and ¢* are common Lnowledve (Lemma 4.2),

but g' = (g1, §2) and g2 = (G, g2) may be objectively false. For example, consider the
following game g = (g1, g2) given by Table 5.1.

s21 S22 S23 21 S22 S23
s (5,8 (0,3)  (5,5) sn (5,2  (0,3) (52
siz (3,00 (3,3 (0,1) s12 (3,0)  (3,3y  (0,1)
sz (0,2) (2,00 (2,2) sz (0,2)  (2,0)  (2,2)
Table 5.1 Table 5.2: g1 = (g1, )

Suppose that (s12, s22) is the inductively stable state. We modify g; and g9 so that each
player mistakes 2 for 5. Table 5.2 describes g* = {91, §2)- Each believed game g* = (g:;§;)
has a unique Nash equilibrium, a fortiori, it satisfies Condition Int. This may be caused
by their misunderstandings of payoff 2 for 5 through their communication. The point
here is the possibility that each player develops a false and different belief of the common
knowledge of the situation.

Stories of this kind can be found in literature and folklore. A Japanese traditional
rakugo (comic story), “Konnyaku mondé” (Devil’s Tongue dialogue), describes exactly
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such a situation: A (devil’s tongue) jelly maker lived in a Buddhist temple pretending
to be a monk. A real Buddhist monk came to. visit this temple to have a dialogue
on Buddhism thoughts. The jelly maker first refused but eventually agreed to have a
dialogue. Since the jelly maker did not know how he could communicate with the Monk
on Buddhism, he answered the questions of the Monk in gestures. The Monk took this as
a style of dialogue, and also responded in gestures. After several exchanges of gestures,
both thought that the jelly maker defeated the Monk. After the dialogue, a witness
asked the Monk about the dialogue. The Monk said that the jelly maker had a great
Buddhism thought shown by his gestures and should be respected. Another witness
asked the jelly maker about it, and the jelly maker answered: the Monk communicated
poorly about jelly products and the jelly maker defeated the Monk with his gestures.”
Thus each of them believed that they had perfectly meaningful dialogue and that it was
common knowledge that the jelly maker defeated the monk in the dialogue. The Monk
believed that they had a Buddhism dialogue, but the jelly maker believed that they had
discussed jelly products (pp.61-70 in [20]).2

The above reciprocal form is interesting, but a one-person version of this theorem,
i.e., one believes that something is common knowledge but the other does not, may be
more often observed. For example, consider the following game ¢ = (g1,92) given by
Table 5.3:

S21 S22 S23 So1 Sg2 S23
su (3,2) (0,3 (6,1) su (3,6) (0,3 (6,5)
siz (6,0) -(3,3) (3,0) siz (6,0) (3,3 (3,0)
Table 5.3 -Table 3.4: g* = (g1, §2)

In this game, player 2 has a dominant strategy sp2, but 1 has no dominant strategies. If
g = (g1, 92) is truly believed by player 1, then interaction structure 73 = ({1,2}, {2})
suffices and the argument of Section 6 of Part I is applied. Suppose, however, that
player 1 mistakes payoff 5 and 6 for 1 and 2 for player 2’s payoffs through their commu-
nication. The resulting matrix is Table 5.4. For this matrix, player 1 need interaction
structure J* = ({1,2},{1,2}) and may believe the common knowledge of Nash equi-
librium (s12,55;). Nevertheless, player 2 himself may truly believe that sj; is a unique
dominant strategy, and that he does not care about the decision making of player 1 (2
may be kind enough to talk to 1, though he is indifferent).

"This part is slightly modified from the original (pp.61-70 in {20]) to have a shorter consistent story,
but the essential part is not changed. .

*This analogy was suggested by T. Nagashima. Kurosawa's movie, “Rashomon”, (based on a short
story, “Yabunenaka”, by R. Akutagawa) can be regarded as having a similar point.
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Here we emphasize that the evolutions of thoughts for the players are interactive but
do not necessarily progress together. The above example suggests that player 2 stays
in Phase 1, while player 1 goes to Phase w.

Sketch of the Proof of Theorem 5.D. This proof is parallel to that of Theorem 5.D
of Part 1. First, we construct §; and §; so that each allows no dominant strategies and
(a7, a3) is a unique Nash equilibrium for each of g1 = (g1, 32) and g% = (g1, 92). Hence
each satisfies the assertions (1) and (2). The assertion (3) is an assumption, and (4)
follows from Theorem 5.B. The main step is to prove that II;(g!) U II2(g?) is consistent
in GLy. For this, we first prove the lemma parallel to Lemma 5.1 of Part I. Then we
refer to the separation theorem for GL, of Kaneko-Nagashima {12] (p.281, Theorem
3.3), which is a stronger version of Theorem 5.E of Part I. The remaining is essentially
the same as the proof of Theorem 5.D of Part I. O

6. Conclusions

6.1. Evolution of Thoughts

In Parts I and II, we have discussed an evolution of intersubjective thoughts on a game
(payoff functions) and decision making. Here we summarize the process and its further
continuation. As in Parts I and II, we describe one phase to next phase, but this phase-
to-phase presentation is rather for simplicity. It may happen that some phases may go
simultaneously in the mind of a player. ‘

Phase 0: In this phase, a player does not construct a theory: he maximizes his payoff
function based on his memory of experiences. In Section 2 of Part I, we postulate that
he has made trials over all possible actions, and that he has a capacity good enough to
recall information, received in the past, on the events of unilateral deviations from the
stationary state. Proposition 2.1 of Part I states that these memories on experiences
are sufficient for his behavior.

1t is often more convenient to summarize his experiences and to construct a “theory”
(or “model”) of the game situation from them. In our setting, the players are isolated
and playing solely the game ¢, but this is a simplicity assumption for our consideration
of modeling some social situation. If they are perfectly isolated and can concentrate on
playing the game g, they might not need to construct a theory. The people we would
like to target are not isolated but live in social situations facing other problems. The
recurrent situation of the game constitutes a rather small part of the social world of
each player. In such a situation, it would be useful for the individual player to construct
a summarizing theory of the problem in question than always to recall experiences in
his memory. This is our basic postulate for the present research program.

Now an individual player leaves Phase 0, and as stated by Postulate 7 of Part I,
he starts constructing a theory to explain the situation based on his experiences. If he
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thinks only about his own payoff function, then he is in Phase 1.

Phase 1: Here the player thinks only about his own payoff function, and chooses a
payoff maximizing strategy — — a dominant strategy. Theorem 5.B of Part I states
that he can decide whether or not a given strategy is 2 dominant strategy. If he finds a
dominant strategy, he would stay in Phase 1. On the other hand, if he finds no dominant
strategies, then he should think about the other player’s decision. Theorem 5.D of Part
I states that if he can know his payoff function up to the experienced domain £(7 | a=)
— — Postulate 5 of Part I - -, then it would be always possible for him to construct a
believed payoff function so that his stationary behavior is a dominant strategy. If the
player is cautious enough to find that there are many other possibilities for his payoff
function to allow this explanation, he may become more cautious about the less frequent
events, and may find that his payoff function allows no dominant strategies. If this is
the case, he would think about the other player’s behavior. One possibility is to go to
Phase 2. '

Phase 2: In this phase, the player starts thinking about the other player’s behavior but
regards the other player as a one-person decision maker of the type of Phase 1. Without
communication, the player has only the knowledge on the other player’s choices. Hence
it may be easier for the player to construct a belief on the other’s payoff function in
the sense that his thinking on the other player’s payoff function is less restrictive. Here
he could find also the great possibilities for his explanation, but would have no source
to narrow down such possibilities without having communications to the other player.
Once he starts talking to the other player, he may get some information about the other
player’s payoff function.

If he finds still that the other player has 2 dominant strategy, he would stay in
Phase 2. If he finds that his belief on the player’s payoff function allows no dominant
strategies, he can no longer regard the other player as a one-person decision maker.
Now he leaves Phase 2. .

Transitory Phases k: First, suppose that the player happens to believe that neither he
nor the other has a dominant strategy. Here he needs to think about the other player’s
thoughts on decision making. However, without communications, he has no hint for the
other player’s thinking. If this is so, he does not actually reach the transitory phase.
To think about the other player's decision making in the way of J% = ({1,2},{1,2}),
he needs to'have some communication with the other.

Having some communications with the other player, the individual player starts
making some beliefs on the other player’s thoughts on decision making. In general,
communication goes deeper, the belief is getting deeper and he goes to a further phase.

Here we emphasize that the face-to-face communication is important. If their com-
munication is not face-to-face but takes a step for one direction, such as computer
message communication, then the reciprocal depth does not go deep, and is constrained
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by the number of messages. However, the face-to-face communication has the special
feature that it allows visual verifications and the players’ mutual understanding goes
almost instantaneously to any finite depth.® Strictly speaking, however, to achieve the
common knowledge, each player needs to have an inductive decision from any finite
depths to the limit. It is the point here is that this inductive decision is rather a
good approximation. Subject to possible misunderstanding, the individual player may
believe that something becomes common knowledge. This jump also includes some
decision making of his thought.

Here we should realize that this step from transitory phases to the Limit Phase w
need also a big jump of the language as well as a logic. If the player sticks to living in
the finitary logic KD42, then he would meet serious difficulties but would not realize
them as far as he stay in the same language and logic. This is the subject discussed in
Sections 2 and 3 of Part II. To go to the Limit Phase w, the individual player should
make a heuristic jump. This jump is also regarded as an induction, since the player can
experience many failures and decides the need of the jump.

The Limit Phase w: In this phase, if the game has a Nash equilibrium and satisfies
Condition Int, the player reaches some decision, though they might be committed to
the beliefs of the common knowledge of false facts, as stated in Subsection 5.2.

We need an additional consideration on decision making if the game does not satisfy
Condition Int. In this case, the players need to talk to make some coordination on
strategies. Kaneko [4] has discussed this difficulty in the S4-type ga.rne logic. - ’I‘his
consideration is carried over to our GL,, with some modifications. '

A more serious difficulty would appear when a game does not have a Nash equi-
librium in pure strategies, a fortiori, no dominant strategies for each player. When
gt = (g:; ;) has no Nash equilibria, player 7 can notice, by the results of Subsection 3.1,
that he has no decisions. In this case, it is one possibility for him to think about a Nash
equilibrium in mixed strategies. Then the inductive game theory needs to be modlﬁed
so that each player may notice probabilistic behavior. -

Then there are two problems newly emerging, both of which are related to the
probabilistic behavior. One is related to the deductwe game theory and the second
is inductive. Both problems are simultaneously emerging, but again, we discuss each
separately. .

First, if an individual pla.yer consaders hlS proba.blhstic behavxor in hxs theory, his
theory should include some real number theory. In the two-person case, in fact, the

9Plato [19), Book VI started the analogy of the Sun with writing “Then have you noticed,’ I asked,
‘how extremely lavish the designer of our senses was when he gave us the faculty of sight and make
objects visible ?° Then Socates {Plato} continues arguing that vision is helped by light {the Sun}, while
the other senses do not have a help of a third element. Now we know that the speed of light is almost
infinite relative to our individual visual scope. The common knowledge may be regarded as an (ideal)
approximation of the situation where people are looking at each other.
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ordered field theory suffices (cf., Kaneko [3]). In this case, the problem is not very
difficult. However, if the game includes at least three players, then we need more
complicated equilibria including potentially any real algebraic numbers as equilibrium
strategy probabilities. In this case, the choice of language matters, and a natural choice
of a language and a logic leads to a serious undecidability, which implies that the game
is deductively not playable (Kaneko-Nagashima [11]). Kaneko [5] gave full discussions
on this problem. : -

From the inductive point of view, we meet the problem of how or whether the
player can notice probabilistic behavior from his experiences. This is related to the
definition of a frequentist probability (cf., von Mises [22] and Wald [21]). According to
this frequentist probability theory, if the player can recall his experiences in the past up
to any length (to the infinite past), he could identify the probabilistic behavior of the
other players. However, this assumption is already far beyond our intention. Another
possible approach can be taken by using the Kolmogorov complexity measure, which
defines an approximate randomness of a given finite sequence. Probably, this is more
appropriate here than the direct von Mises-Wald approach. However, this is not studied.

6.2. Games with More Players

For a game with more than two players, the basic evolution story is essentially the same,
but there are much more possible interactive patterns. Even if we assume no differences
in the players’ subjectivities, there are very many possibilities: if we take subjectivities
into account, the multitude of possibilities is almost explosive. Here we consider a few
simple 3-person games without differentiating subjectivities.

521 S22 531 532 531 532

511 (5,5) (1,2) 821 1 _0 . S11 1 0

S12 (6, 1) (3, 3) Sag 0 1 Si2 0 1
Table 6.1 Table 6.2 “Table 6.3

Consider the 3-person game defined by Tables 6.1 and 6.2. Table 6.1 gives the payoffs
to players 1,2 which depend upon their choices, and Table 6.2 gives the payoffs to player
3 which depend upon the choices of 2 and 3. In this game, player 1 can choose a payoff
maximizing strategy s;; by thinking about his own payoffs, 2 should think about 1's
decision making, and 3 should think about 1’s and as well as 2’s. The interactions are
described as Diagram 6.1. Expression { « j means that j needs to think about i’s
decision making. Hence the beliefs of depth 3 are involved in this game.
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1 e 2 « 3 1<
3

Diagram 6.1 - Diagram 6.2

If the payoffs for player 3 are changed into Table 6.3, i.e., 3’s payoffs are determined
by 1’s and 3’s choices. Here the interactions are described by Diagram 6.2. The beliefs
of depth 2 are required.

Consider the following game:

S21 S22 S23 _
- $31 $32
511 (5,5) (1,2) (4,3) ' S11 1 0
su (6,1) (3,3 (3,1) se;7 O 1
Table 6.4 Table 6.5: 3’s payoffs

In this game, the common knowledge of the decision making postulates between 1 and 2
is required, and 3 needs to know this common knowledge. In this game, players 1 and 2
need not care about 3’s decision at all. Then the interactions are described as Diagram
6.3.

- 1.‘

N N
3 3
/ Loy
2 2
Diagram 6.3 Diagram 6.4

The following is a 3-person game, where player 3’s choice determines his payoff but
affects the payoffs of 1 and 2. The roles of s1; and s12 (s9; and s3;) are permuted by
3's choice. In this game, players 1 and 2 need the common knowledge of 3's decision
making. The interactive structure is described by Diagram Diagram 6.4.

$21 s22 . Sp3’ S1 S22 S23
s 1 s (5,8) (L,2) 0 (4,3)  su (33 (61) (31
sz 0 " 811 (6,1) (3,3)* - (3,1) 511 (1,2) ) (5,5) (4,3)

Table 6.6 Table 6.7: s3; Table 6.8: s32
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When we have more players, the possible interactive patterns are very many. The
evolution of each player’s thought may stop in some pattern.

Kaneko [6] gave a systematic (game theoretical) analysis of these possible patterns,
and (7] considered these problems from the viewpoint of game logic.
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