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Abstract of “Estimation of the Hedonic Price Function Using
Monotonicity Restrictions” by Yasushi Kondo

In hedonic analyses, estimating imputed prices of utility-bearing character-
istics is of great interest. Nevertheless, it is not so easy to estimate the imputed
prices because characteristics display multicollinearity inherently. As an im-
proved estimation method, this paper examines the constrained least squares
estimator with inequality-form constraints which represent the monotonicity of
the hedonic price function. The estimators of imputed prices are guaranteed to
be nonnegative by definition and are expected to have smaller variances than the
unconstrained least squares estimators. To compare the constrained estimator
with the unconstrained one, an empirical example and Monte Carlo experiments
are presented.

JEL CLASSIFICATION NUMBERS: C13, L85, R32.



I. INTRODUCTION

This paper examines the performance of the constrained least squares method
(abbreviated to CLS) for estimating the hedonic price function (abbreviated to
HPF) and the imputed prices of utility-bearing characteristics. The constraints
for the CLS estimator are constructed to represent monotonicity restrictions on
the HPF. Compared with the (unconstrained) ordinary least squares method
(abbreviated to OLS), the CLS has advantages that it necessarily provides non-
negative estimates of imputed prices by definition and that its variance is ex-
pected to be smaller than that of the OLS estimator.

In hedonic analyses, estimating imputed prices of utility-bearing charac-
teristics is of great interest. There seem to exist no other methods than the
hedonic approach to estimate implicit values of characteristics which are not
traded in a market explicitly but bundled into an explicitly traded product.
"The implicit values of characteristics are called their imputed prices. Estimated
imputed prices can be used in a tax policy making and policy assessment and
in constructing quality-adjusted price indices. In addition, they are used to
estimate the structural parameters contained in the bid functions of demanders
(Quigley, 1982; Kanemoto and Nakamura, 1986). Nevertheless, it is difficult
to estimate the imputed prices “accurately” because utility-bearing character-
istics display multicollinearity inherently. That is, we might unfortunately face
the situation that estimated variances are large and/or that estimated imputed
prices are negative,

In the economic theoretical context of the hedonic analysis, the HPF is
determined by various conditions such as producers’ offers, demanders’ bids,
market situation (competitive or not, arbitrage can be done or not), and how
agents are distributed. Rosen (1974), Ohta (1975), and Arguea and Hsiao (1993)
studied the properties of the HPF. They considered different market situations,
and so they obtained different properties. As far as I know, Rosen’s result is
accepted most widely among the three studies above. He showed that the HPF
is the envelope curve of producers’ offers and demanders’ bids 8o we have no

a priori information about the curvature of the HPF.! Economic theory tells

! Because the functional form of an HPF is scarcely restricted by economic theory, the Box-

Cox transformation {Box and Cox, 1964) is widely applied to make data themselves “speak”



us only that the HPF is monotonic in utility-bearing characteristics, which is
derived from the assumption of free disposal and nonsatiation of preference.?

As stated above, it is difficult to estimate the imputed prices of character-
istics because of inherent multicollinearity among characteristics. For example,
the total number of rooms and bedrooms, and lot area do not vary indepen-
dently for housing characteristics, and a heavy passenger car likely has a high
horse-power. Therefore, in order to obtain “accurate” estimation results, we
should cope with the inherent problem of multicollinearity using an appropri-
ate device. I believe that a non-sample information, that is, the monotonicity
restriction on the HPF, can be a device to circumvent the problem of multi-
collinearity; the CLS uses such a non-sample information and the OLS does
not.

In general, a parameter estimate can be irregular even if the true parameter
is hypothesized to be regular and the hypothesis is correct, where the word “reg-
ular” is used for the same sense as in the following cases: a conditional demand
system is said to be regular if it satisfies the corresponding integrability condi-
tion; and a marginal propensity to consume is said to be regular if it belongs to
the unit interval [0, 1]. In this paper, an HPF or an estimated HPF is said to be
regular if it is monotonic. An irregular parameter estimate appears more likely
as the variance of the estimator is larger. Though that is a (rigorous) analysis
in statistics, econometricians sometimes not only believe the true parameters
to be regular but also wish parameter estimates to be so. The reasons why we
wish 8o are that irregular estimation results are difficult to interpret and that
we have to give up continuing our analysis in the worst case. For example, since
Quigley’s (1982) procedure uses the logarithms of estimated imputed prices to
estimate structural parameters in hedonic models, the procedure can continue
only if all the estimated imputed prices are positive. Therefore, it is worth-
while to develop an estimation method which guarantees parameter estimates

themselves to be regular.

much.

20Ohta (1975) and Arguea and Hsiao (1993) derived curvature conditions that the HPF
should satisfy. Note that the HPF is monotonic even if we accept the market situation they

assumed.



Varian (1974), Atkinson and Crocker (1987), and Gilley and Pace (1995)
used Bayesian approaches from similar motivations as this paper. Their proce-
dures to incorporate a non-sample information take the forms of prior densities.
If the monotonicity restriction can be represented as inequalities only in pa-
rameters, we can use their Bayesian methods straightforwardly. A sufficient
condition for the monotonicity restriction to be given by inequalities only in
parameters is that the HPF is a linear combination of utility-bearing character-
istics or a one-to-one transformation of it. In most existing hedonic analyses,
specifications for the HPF satisfy this sufficient condition. Specification tests
such as the RESET (regression specification error test), however, might reject
the condition. This is the case for our empirical example presented later. Tn
such cases, we cannot represent the monotonicity restriction on the HPF only
with a prior density. In addition, we have to specify the likelihood function
to conduct the Bayesian approach. The use of a misspecified likelthood might
lead us to a seriously biased estimation result. In contrast, the constrained
least squares estimator (abbreviated to CLSE) can be used even when Bayesian
methods cannot be used straightforwardly.

‘This paper is organized as follows. Section II presents the regression model
of the HPF, the definition of the CLSE, and a bootstrap method to estimate
the variance of the CLSE. In Section II1, the CLS is applied to the hedenic
office rent function in the Tokyo central business district to be compared with
the OLS. Section IV conducts Monte Carlo experiments. Finally, concluding

remarks are mentioned in Section V.

II. THE MODEL AND THE ESTIMATION METHOD

Consider a purely competitive market of differentiated products and suppose
that a differentiated product is distinguished completely by a finite number,
say £, of observable utility-bearing characteristics, as Rosen (1974) studied.
Suppose further that producers and demanders in the market have production
functions and utility functions, respeétively, and these functions are defined on
a convex set Z C R¢, which coincides with the domain of the HPF. We wish to
estimate the HPF for the market price and the imputed prices of characteristics

using a data set {(p;,z) : i = 1,..., N}, where p: and z; are the price of a



differentiated product and its vector of characteristics, respectively, for the {th
observation.
Suppose that the logarithm of the HPF, h(-), is given by the following

quadratic form
h(z;):ag-{-aTz,-—!-zfAz,-/Sa fori=1,...,N, (1)

where ag, @, and A denote parameters to be estimated, they have suitable
dimensions, and the superscript T denotes the transpose. Note that we can
assume A be symmetric without any loss of generality and that this assumption
. Is necessary for all the parameters to be identified. Adding an error term u; to
the right-hand side of (1), we estimate parameters in the regression equation
logpi = h(z) + u; under the assumption Bu; = 0 for i = 1,...,N. Since
pi > 0, the sign of imputed prices 8p;/8z; = p;(0h/0z;) coincides with that of
the gradient VA(-) = 8h/8z; of h. Thus, the monotonicity restrictions on the

HPF can be written as
Vh(z)=a+Az>0 foralze Z, (2)

Remark 1. The reasons why I choose a quadratic form to specify the HPF are:
(i) While most existing empirical studies in the hedonic analysis specify the HPF
as linear in characteristics, a specification test might reject the linearity of the
HPY', as is the case for our empirical example presented later. The RESET is
one of the most well-known and the easiest to implement specification tests, and
a quadratic regression function is an exact form of the alternative hypothesis
for the RESET;® and (ii) The optimization problem to define the CLSE takes
the form of the quadratic programming problem (abbreviated to QP) if the
regression function is linear in parameters. There exists a polynomial time
algorithm to solve the QP, that is, the QP is one of the nonlinear programming

problems which we can solve reliably and quickly.

Now I define some notations for brevity. Let & denote the vector consisting
of all the parameters ap, o, and A. For a subset W C Z, let S(W) denote the
system of inequalities @ + Az > 0 for all z € W on 6. By this notation, the

38ee Davidson and MacKinnon (1993, pp. 195-196) for detail.



system of inequalities (2) can be denoted by S(Z). Define the function Q()
representing a squared residual as Q(6; py, z:) = (log pi — ap — aTz; — 2] Az /2)2.

Then, using the least squares criterion, the optimization problem to define
the CLSE is given by

N
minimize N1 E Q8 pi, ;) subject to  S(Z). (3)

i=1
This optimization problem, however, is generally intractable because it would

have uncountably many constraints. Thus, we consider the following tractable

form
N .
minimize Nt ZQ(Q;pi,z,-) subject to  §(z1,...,2n), (4)
i=1
where S(zy,... ,2y) stands for S({z,...,2n}) by a slight abuse of notation.

This problem is a QP, and it has a unique global minimizer under the same
condition as the least squares estimator can be identified. Note that the dif-
ference between the two problems above is only in the constraints. Since Z
is assumed to be convex and over restrictive constraints would make the esti-
mator inconsistent, a plausible choice of the system of inequality constraints is
S(W) with W = conv{z,... , zn), the convex hull of all the observation points.
Note also that the system S(z1,...,2n) for the problem (4) is equivalent to
S(conv(z1,... ,zn)) because the inequalities in the system S() are bilinear in

parameters € and characteristics z.

Remark 2. This equivalence between S{conv(z,...,2n)) and S(z,...,zn)
can be used to reduce a computational burden as follows. First, find all the
extreme points of conv(zi,...,zn), and let W be the set of all the extreme
points. Then, solve the problem (4) after replacing the constraints with S(W).
Finding extreme points can be done by solving linear programming problems at

most N times.

The CLSE defined above can easily be shown to be consistent under the
assumption that the HPF is monotonic, or equivalently, the true parameters in
the HPF satisfy the monotonicity restrictions. Note that, under this assumption,
the CLSE coincides with the ordinary least squares estimator {(abbreviated to

OLSE) for a sufficiently large sample. If the regressors are nonstochastic, then



the CLSE is equivalent to what Judge and Takayama (1966) and Judge and
Yancey (1986) studied. Their results, however, afe difficult to be applied here
because their studies are made under the assumptions that error terms are
independently and identically distributed as a normal distribution, regressors
are nonstochastic, and the number of constraints is a fixed integer, say K. In
addition, the distribution of the CLSE they derived is extremely complicated
as a mixture of 2% distributions. Therefore, I apply the bootstrap to estimate
variances of CLSE. _

The bootstrap, originated by Efron (1979), is a nonparametric method for
statistical inferences based on resampling. A number of varieties of the boot-
strap has been proposed in the literature (Efron and Tibshirani, 1993; Shao
and Tu, 1995). The three bootstrap techniques, the naive bootstrap, the para-
metric bootstrap, and the wild bootstrap, are typical ones for the regression
model. Given a data set Xo = {(logpi,2:) : 4 = 1,...,N}, the naive boot-
strap draws bootstrap samples, which are of the same size with the original
data set, from the empirical joint distribution of the dependent and the inde-
pendent variables. Then a bootstrap sample for the naive bootstrap is given by
{(og pr(iy, 2e(y)) 1 i =1,... , N}, where k(1),... , k() are integers distributed
as the distribution putting mass n=! to each of integers 1,... , N. The paramet-
ric bootstrap draws from the empirical distribution of the estimated residuals
so that a bootstrap sample is {(?L(Z,') + U, 2i) 1 1= 1,..., N}, where R is
an estimator of the regression function h, and ; = logp; — h(z). The wild
bootstrap draws error terms e; from estimated distributions such that Ee; = g,
Ee} = @, and Be} = @3, Then a bootstrap sample for the wild bootstrap is
{(h(z:) + €3,20) :i=1,... ,N}.

Of the three techniques above, the wild bootstrap is the most appropriate
for our study because it is consistent under a more general condition, where the
others are not consistent (Shao and Tu, 1995; Mammen, 1993). That is, if the
error terms are heteroskedastic, then the naive bootstrap and the wild bootstrap

are consistent but the parametric bootstrap is not.? The dimension of the

4Hirdle and Marron (1991) studied how to construct simultaneous error bars for a non-
parametric regression estimator. They showed that the naive bootstrap is not consistent while

the wild bootstrap is consistent for their purpose.



distribution that the wild bootstrap tries to mimic is smaller than that the naive
bootstrap does; the former is only one and the latter is the number of regressors
plus one. Results become more accurate as the bootstrap technique mimics a
smaller dimensional distribution. Therefore, I will use the wild bootstrap in the

next section with the following error terms e;:
& = T((61 + v1i/ V(62 + v2:/V2) — 6183), (5)

where &, = (3/4 -+ v/17/12), 6 = (3/4 — v/17/12), and vy; and vy; are indepen-
dently distributed as the standard normal distribution.

Let B be the number of bootstrap replications. To distinguish each of B
bootstrap samples, I introduce a subscript and a superscript to observations in
bootstrap samples and denote the bth bootstrap sample by X3 = {(logp?, 2}) :
i=1,...,N}={(h(z;) +€t,2) :i=1,... N}, forb=1,... ,B.

Let T'(X) denote the estimator of interest, which is a column vector of a
certain dimension, defined as a function of a sample X. A bootstrap covariance

matrix estimator V,oop for T(X) is given by

B
- 1
Vnoor = 'B? ;(Tb - TU)(Tb - TO)Ta (6)

where Ty = T'(Xo) and T; = T(X,) for b=1,..., B.

III. AN APPLICATION: OFFICE RENTS IN THE TOKYO
CBD

This section presents an empirical application ir order to show how much better
the CLSE defined in the previous section is than the OLSE with the following
criteria: how small estimated variances are, and how accurately out-of-sample

predictions work.

Data

For estimating an HPF, the OLS and the CLS are applied to the office rent
data in the Tokyo central business district. The data set is a subset of the
data set used by Nagai, Kondo, and Ohta (1997). They found that the office
rent discount in transaction is not ignorable and that the discount rate is much

higher for new offices than for used offices, and it is more so in the period of the



asset deflation than in that of the bubble. So I use the data set consisting of
only used offices for the time period 1985-1986 in the beginning of the bubble
to avoid a high discount rate in this paper. According to their estimation result,
the estimated discount rate is at most 3% for this sample period. The number
of observations is 550.

The dependent variable, RENT, is the monthly office rent per square me-
ter (yen/m?). The continuous variables of characteristics are as follows: DIST
(10 m) is the distance of the shortest route fro/m the office building to the nearest
station of any one of the railroads and the subways; ACCT and ACCS (minutes)
are the times required to go by the shortest route from the nearest station to
Tokyo Station and to Shinjuku Station, respectively, by train or subway; AGE
(year) is the length of time which has passed since the building construction was
completed; DENS (1000 men/km?®) is the employee-density of the ward where
the office locates; FLOSP (1000 m?) is the total floor space of the whole building
in which the office is; and VOLM (absolute number) is the cubic restriction of
the building volume to the lot size. The dummy variables are defined as follows:
FONE is unity if the office is on the first floor, and is zero otherwise; MAJOR is
unity if the lessor is one of the large companies, and is zero otherwise; and D86
is unity if the observation is of 1986, and is zero otherwise.

The main data source is Survey Tables of the Circumstances of Buildings
(Biru Jittai Chésa Hyé, in Japanese), the 1985 to the 1987 fiscal year edi-
tions, edited and published by the corporate juridical person named Tokyo
Building Owners and Managers Association (Shadan Héjin Tékyd Birujingu
Kydkai, in Japanese). This data source gives us data of RENT, AGE, FLOSP,
FONE, MAJOR, and the time dummy D86. DIST is measured on the map
in Housing Map (Jitaku Chizu, in Japanese), edited and published by Zen-
rin Co., Ltd., 1990. The data sources for ACCT and ACCS are Attached Line
Maps of Weekly Housing Information (Shikan Jitaku J6hé Huzoku Rosenzu,
in Japanese), edited and published by Recruit Co., Ltd., July 1, 1992, and
Time Tables of railroads and subways. The data sources of DENS and VOLM
are, respectively, Establishment Census of Japan 1986 (Jigydsho Tékei Chésa
Hokoku 1986, in Japanese), edited by Statistics Bureau of Management and Co-
ordination Agency (S6muchd Tékeikyoku, in Japanese), 1993, and Map of City



Planning of Tokyo Metropolis (Tékyé Toshi Keikakuzu, in Japanese), edited by
Toicyo Metropolis and published by Kokusai Chigaku Kyékai Co., Ltd., 1994.
Among the above nine characteristics, DIST, ACCT, and ACCS indicate
transportational conveniences, and AGE, DENS, FLOSP, VOLM, FONE, and
MAJOR indicate the benefit of agglomeration or the performance of the office
building. DIST, ACCT, ACCS, and AGE are disutility-bearing characteristics
while DENS, FLOSP, VOLM, FONE, and MAJOR are utility-bearing character-
istics. AGE, DENS, FLLOSP, and VOLM are positive for all the observations by
their definition so that we can take the logarithms of them. Summary statistics
of the variables are shown in Table 1. For a2 more detailed explanation of the

data set, see Nagal, Kondo, and Ohta (1997, section 2 and appendix).

Preliminary Estimations and Tests

For selecting a specification of the HPF, the four linear-in-parameter models
are considered: linear in characteristics’ levels (LV), linear in the logarithms of
characteristics(LL), quadratic in characteristics’ levels (QV), and quadratic in
the logarithms of characteristics (QL). In the models LL and QL, characteristics
that can take nonpositive values are included in levels. When the disutility-
bearing characteristics, DIST, ACCT, ACCS, and AGE, are included as regressors;
their signs are negated so that all the imputed prices should be positive. For AGE
in the models LL and QL, I will negate its sign after taking its logarithm.

All the four models have the intercept term. The dummy characteristics
FONE, MAJOR, and D86 are included as intercept-term type and their quadratic
terms are not constructed. All the calculations reported in this subsection are
done with TSP version 4.4.

The testing results are presented in Table 2. All the models are estimated
by the OLS. First, to check whether there are higher-order nonlinearity in char-
acteristics or not, two RESETs were performed for each model. One, called
RESET2, has the squared fitted value as an additional regressor, and the ¢
value for its coefficient is used as a test statistic. The other, called RESETS,
has the squared and the cubed fitted values as regressors, and the usual F-test
is used. According to these criteria, higher-order nonlinearity was detected for

the model LL at the 1% significance level.



Second, to check whether the continuous characteristics should be included in
level or in logarithm, I performed a non-nested test called J-test (Davidson and
MacKinnon, 1993, 381-383). The testing procedure for the null hypothesis LL
against the alternative LV is as follows: first, estimate the model LV and obtain
fitted values; second, estimate the model LL with including the fitted values as
an additional regressor; and finally, perform the standard t-test for the coefficient
of the fitted values. According to this criterion, the models LV and QV were
strongly rejected é.ga.inst LL and QL, respectively. In contrast, the model LL
was not rejected against LV and QL was not rejected against QV at the 1%
significance level.

As a result, the model QL was selected because a higher-order nonlinearity

was not detected and it was not rejected against QV.

Estimation Performance for Imputed Prices of Characteristics

Ffbr notational simplicity, let wcHar denote the imputed price of the character-
istic called CHAR: for example, ';TD.|5T is the imputed prices of DIST.

The model QL, which were selected by specification tests in the last subsec-
tion, were estimated both by the OLS and by the CLS. The number of bootstrap
replications for estimating the variances of the CLSE is 2500. All the caleula-
tions reported in this subsection and the next section are done with MATLAB
version 5.1. To save space, only the selected results are reported in Table 3.
Both the OLS and the CLS provide quite good fits, judging from the R-squares
and considering that cross-section data are used. _

Since the imputed prices of characteristics depend on levels of characteristics,
I first report the estimates of the imputed prices evaluated at the sample mean
of characteristics; those evaluated at all the observation points are reported
later. Each of the standard errors estimated by the CLS is smaller than the cor-
responding standard error estimated by the OLS. Among the seven continuous
characteristics, the OLSEs of maccr and maces at the sample mean are negative
so that they violate the monotonicity of the HPF, while all the CLSEs of the
imputed prices of characteristics are nonnegative by their definition. Based on
the results of the OLS, the imputed prices are not significantly different from
zeros for the four characteristics DIST, ACCT, ACCS, and DENS. In contrast,

10



the CLSEs of mpisT and mpens are larger than the OLSEs of them and each of
their standard errors by the CLS is smaller than the corresponding standard
error by the OLS so that npist and wpens are significantly different from zeros.

For the estimated results of the OLS, the monotonicity restrictions are vi-
olated at almost all the observation points; they are satisfied at only 3.82%
of the observation points. Table 4 shows how many observation points satisfy
the monotonicity restrictions. Looking at the results for each characteristics
separately, the partial monotonicities for DIST, ACCT, ACCS, and DENS are
violated at more than a half of the observation points. In contrast, the partial
monotonicities for AGE, FLOSP, and VOLM are satisfied at almost all the obser-
vation points. Figure 1 shows how the estimates of the imputed prices evaluated
at all the observation points are distributed. From the Figure 1 and Table 3,
it is observed that the constrained estimators have smaller estimated standard
errors than the OLS estimators and that, most CLSEs of the imputed prices
of the transportational conveniences by train or subway (ACCT and ACCS) are

nearly equal to zeros.®

Out-of-Sample Prediction Performance

By construction, the in-sample R-square of the OLS must be greater or equal
to that of the CLS. This relation, however, does not hold between their out-of-
sample prediction errors. The CLS can outperform the OLS by the following rea-
sons: (i) the monotonicity restrictions can limit the influence of potentially erro-
neous or unrepresentative observations; and (ii) the estirnated residuals within
sample possibly forecast the out-of-sample errors with bias. Excessively opti-
mistic results of error estimates would be obtained by using the observations
in a single data set both for fitting a model and for evaluating the gopdness of
fit. A solution to this problem is dividing a sample into two parts (the sample
observations and the out-of-sample observations). As a method of the cross
validation, one part is used to fit a model and the other is used to evaluate the
goodness of fit.

Let I and O denote subsets of the index set {1,...,N } such that TUO =

5Fhis weakness of the characteristics related to transportational convenience for explaining

price variation is similar to that Nagai, Kondo, and Ohta (1997) found.
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{1,...,N} and INn O = §. Given a pair of I and O, the corresponding sample
observations and out-of-sample observations can be written as {(logpi, 2:) : 7 €
It and {{(logp:, z:) : © € O}, respectively. The mean squared error of the out-
of-sample prediction is given by - ’

157 2 logp: = Fr(as))?, ¢

i€0

where |O| is the number of elements of the set O, and 7;(-) is an estimate of the
regression function estimated with the sample observations. Only with a single
partition, the mean squared error would be large or small by chance. The mean
squared error should be calculated with all possible partitions conceptually. A
number of random partitions, however, is used because the number of all possible
partitions is quite huge. Then the root mean squared error (abbreviated to
RMSE) is defined as

: R 1/2
RMSE = (mio‘l > > (logp; — P, (Zi))z) ; (8

r=1{g0,
where R is the number of random partitions, I,. and O, are the index sets for

the sample observations and the out-of-sample observations, respectively, for
the rth random partition, r = 1,... | R.

To evaluate not the absolute performances of the OLS and CLS but the
relative performance of them for cut-of-sample prediction, Table 5 presents the
ratio of RMSE by OLS to that by CLS. Five sizes of sample observations, 20%,
35%, 50%, 65%, and 80% of all the observations, are examined. For each case,
the number of random partitions is 1000.

Ag these results show, the CLS outperforms the OLS much for the sample
observations of 20% and 35% of all the observations. For 50%, 65%, and 80%
cases, the OLS and the CLS produce similar levels of out-of-sample prediction
errors. Thus, we can say that the CLS outperforms the OLS in the out-of-sample
prediction (the OLS displays 11.86% higher RMSE than the CLS, on average).

IV. A MONTE CARLO EXAMINATION OF PERFOR-
MANCE FOR ESTIMATING IMPUTED PRICES

Empirical applications in the last section show the possibility that the CLSEs

provide smaller variances than the OLSEs. From the viewpoint of the statisti-
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cal decision theory, however, the mean squared error (abbreviated to MSE) is a
more appropriate criterion than the variance because the CLSE is a biased esti-
mator. Calculating the MSE requires true parameters to be known. Therefore,
I examine the performance of OLS and CLS for estimating imputed prices of
characteristics by Monte Carlo experiments.

A key point to determine the relative performance of the OLSE and the
CLSE is the probability that the OLSE violates the monotonicity restrictions;
the CLSE, by definition, provides estimation results almost identical to the
OLSE if such a probability is nearly equal to zero. To control the probability of
violation, I generate 75 cases. These consist of all the combinations of the five
different vectors of parameters, the three levels of R-square, and the five matri-
ces of regressors that display different degrees of multicollinearity. Of course,
the relative performance of the OLSE and the CLSE partly depends on other
factors such as the number of observations and the stringentness of monotonicity
restrictions.’ Nevertheless, I hold these factors constant in order to concentrate
on the influence of the changes of R-square and that of multicollinearity on the

relative performance.

Generation of Data

To make the Monte Carlo experiments realistic, artificial data are generated so
that various features of the observed data are, if possible, kept intact except
for the factors to be controlled. The utility-bearing characteristics used for the
experiments are the six continuous characteristics, DIST, ACCT, AGE, DENS,
FLOSP, and VOLM, while ACCS, FONE, MAJOR, and D86 are discarded. The
discarded variables are dummies or characteristics having the imputed price
nearly equal to zero in the empirical application of the last section. Therefore,
the original data matrix X of characteristics has the ith row z; such that z; =
[-DIST;, -ACCT,, —log(AGE;}, log(DENS;}, log(FLOSP;), log(VOLM;)]. Let N

and £ denote the number of observations (N = 550), and that of characteristics

SWhen the true parameters locate close to the boundary of the vector of parameters sat-
isfying monotonicity restrictions, the probability of violation rises so that the CLSE has a
much smaller variance and a much larger bias than the OLSE. If, on the other hand, the true

parameters lie far from any boundary point, the bias of the CLSE will be close to zero.
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(£ = 6), respectively. After discarding three characteristics and the time dummy,
the predicted values of log(RENT) are constructed with the CLSEs of parameters
in the last section. These predicted values are used to set up the true parameters
in Monte Carlo experiments by regressing them on artificial regressors.

To control the degrees of multicollinearity, the five matrices of characteristics
with the condition numbers 10, 20, 30, 50, and 70 are generated as follows:”
(i) Scale each column of X to unit length by letting ¥ = XD~! with the
diagonal matrix D whose jth diagonal element is the square root of the sum
of squared elements in the jth column of X; (ii) Performing the singular value
decomposition of Y, obtain the matrices I/, V, and S such that they are.N %N,
£ x £ and N x £, respectively, Y = USVT, U and V are unitary matrices,
the matrix consisting of the first £ rows of .9 has the singular values s1,...,8;
of ¥ as the main diagonal elements, and the other elements of S are all zercs.
The singular values s1,... , s¢ are descendingly ordered. Note that s; /s, is the
condition number of ¥ and that Eﬁ=1 57 = ¢; (ifi) Construct A;’s representing
the relative position of s; between s; and s; so that s; = s¢ + A;(s1 — s2)
for j =1,...,£ (iv) Given a condition number, say ¢, find ¢1,... ,#; satisfying
Wite=c b =te+X{ti—t)forj=1,...,¢ and Ej-=1 t3 = £. Then, construct
an NV x £ matrix T such that the first £ rows of T is diag{t;,...,t;} and the
other elements are all zeros; and (v) Perform the singular value decomposition
and scaling in reverse so that the matrix of artificial characteristics Z with a
condition number ¢ is given by Z = (UTVT)D.

By the above procedure, the five matrices of artificial characteristics are
generated. Then, adding their cross-products and a constant term to them, the
five different matrices of artificial regressors are constructed. The fitted values
of log(RENT) are regressed on the generated regressors by CLS in order to set up
the five different vectors of parameters. The error terms are independently and
identically distributed as a normal distribution with zero mean. The variance
of the error terms is set so that the average R-square for OLS regressions is
equal to a controlled level for each of 75 cases. The three levels of R-square to

be examined are 0.5, 0.7, and 0.9, which covers the typical range for hedonic

"The procedure conducted here to generate not all regressors but characteristics (a part of

regressors) is very similar to what Gilley and Pace (1995) used to generate all regressors.
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studies. The number of Monte Carlo replications is 1000.

For all the CLS estimations to construct parameters above and to estimate
parameters in Monte Carlo replications, the same monotonicity restrictions are
used. The restrictions are constructed so that the domain of the HPF is given by
a hyper rectangular whose extreme points have the maximum or the minimum
of the artificial characteristics as their components. This construction of the
monotonicity restrictions has advantages that the computational burden will
be reduced because the number of constraints is small (2¢ = 64), and that we
can concentrate on examining the influences of two factors to be controlled (the

degrees of multicollinearity and R-square) by keeping other conditions fixed.

Results of Simulations

To summarize the estimation performances of the OLS and the CLS, the average
relative RMSEs about the imputed prices of the six characteristics are reported
below. The imputed prices are evaluated at all the artificial data points and
then averaged.

Table 6 presents the average relative RMSEs about the imputed prices of
the six characteristics for each degree of multicollinearity, where the averages
are taken across the 15 cases, all the combinations of the three levels of R-
square and the five vectors of the true parameters. As the table shows, all the
average relative RMSEs (OLS/CLS) are larger than unity, that is, the CLSEs
of imputed prices have smaller RMSEs than the OLSEs. The average relative
RMSEs are larger as the condition number becomes larger, except for a reverse
relation for wpgt between the condition numbers 10 and 20.

Table 7 presents the average relative RMSEs about the imputed prices of
the six characteristics for each level of R-square, where the averages are taken
across the 25 cases, all the combinations of the five degrées of R-square and the
five vectors of the true parameters. As the table shows, the CLSEs of imputed
prices have smaller RMSEs than the OLSEs. The average relative RMSEs are
smaller as the R-square becomes larger.

As a whole, improvements by the CLS about RMSEs are considerable. In
addition, the influence of the condition number and the R-square appears as

expected: there is a large margin of improvements by the CLS about RMSEs if
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the probability that the OLSE violates monotonicity restrictions is a high level.

V. CONCLUDING REMARKS

This paper has studied the performance of the CLS for estimating the HPF.
The constraints are inequalities which represent monotonicity restrictions on
the HPF. Throughout our empirical application and Monte Carlo experiments,
the CLSE outperforms the OLSE in the following sense: (i) Estimated variances
of the CLSE are smaller than those of the OLSE; (ii) out-of-sample prediction
errors by the CLSE are much smaller than those by the OLSE when a sample
used for estimation is a half or smaller sample from the original data set, while
out-of-sample prediction errors by the CLSE are only a little larger than those
by the OLSE when a sample used for estimation is larger than a half sample
from the original data set; and (iii) the CLSE has a much smaller mean square
error than the QOLSE.

Not only the CLS provides more accurate estimation results than the OLS
but also the CLSEs of imputed prices of utility-bearing characteristics are guar-
anteed to be nonnegative by definition. Even if its computational burden is
taken into consideration, therefore, the CLS should be a useful estimation

method for hedonic price models.
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Table 1: Data Summary

Variable Mean Std.Dev. Minimum Maximum
RENT (yen/m?) 7334908 3251.940 1815.808 22330.822
DIST (10 m) 21.583 23.844 0.0c0 168.000
ACCT (minutes) 7.956 6.146 0.000 26.000
ACCS (minutes) 15.085 7.185 0.000 43.000
AGE (year) 16.602 - 10.132 1.500 62.500
DENS (1000 men/km?) 50.551 22.858 6.433 73.590
FLOSP {1000 m?) 24.575 37.830 0.308 190.595
VOLM (abs. num.) 7.351 1.648 2.000 10.000
FONE (dummy) 0.069 0.254 0.000 1.000
MAJCOR (dummy) 0.338 0.474 0.000 1.000
D86 (dummy) 0.482 0.500 0.000 1.000

Note: Mean of the dummy (FONE, MAJOR, or D86) is equal to the ratio of the
number of cases where the corresponding dummy takes the value unity to the
total number of observations, 550,

Data Sources: See Section III.
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Table 2: Results of Model Selection: RESET and J-test

Model AR?  RESET?2 RESET3 J-test

Linear in Level 574 1509 [.132) 2.731 [.066] 9.130 [.00O]
Linear in Log 626 3.739 [000] 7.098 [.001] 1.155 [.249]
Quadratic in Level ~ .697 —1.807 [.071] 2.435 [.089] 5.323 [.000]
Quadratic in Log 708  1.318 [.188] 2.734 [.066] 2.511 [.012]

Note: The column labeled “A.R?” is adjusted R-squared. The columns labeled
“RESET2” and “RESET3” are the test statistics for the RESETs, respectively,
with including the squared fitted value and with including the squared and
cubed fitted values. The column labeled “J-test” is the test statistic for the

J-test. The figures in square brackets are P-values. All the calculations are

done with TSP version 4.4.
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Table 3: Estimates of Imputed Prices of Continuous Characteristics

OLS ' CLS

Estimate Std. Err.  ¢-value Estimate Std. Err.  #-value
DIST 2.235 8.327 0.268 22.855 5.765 3.964
ACCT —85.366 43.555 —1.960 36.439 24,075 1.514
ACCS ~27.129 24.765 -1.095 3.792 12.100 0.313
AGE 39.003 13.570  2.874 40.317 9.581  4.208
BENS 10.021 0.824 1.020 14.569 5.814 2.506
FLOSP 49.163 5442  9.033 40.976 4784  8.565
VOLM 1137.600 120.081 9.474 680.112 72.279 9.410
R-square 0.7279 0.6768

Note: The estimates of imputed prices are obtained by evaluating the esti-
mated functions at the sample mean. Disutility-bearing characteristics, DIST,
ACCT, ACCS, and AGE, are negated their signs before estimations, and so all

the imputed prices are to be nonnegative.
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Table 4: Local Monotonicity of HPF: The Percentage of Observation Points

Char. DIST ACCT ACCS AGE DENS FLOSP VOLM Al
Ratio 46.91 48.73 47.27 9745 4364 99.09 9545 3.82

Note: Each of the reported figure is the percentage of the observation points
where the HPF is locally monotonic within all the observation points. The
column labeled with “All” is of monotonicity in all the characteristics, and the

other columns are of partial monotonicity in each of characteristics.
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Table 5: Relative Performance for Out-of-Sample Prediction Errors

In-Sample Ratio 20.0% 350% 50.0% 65.0% 80.0% Average
RMSE(OLS/CLS) 1.4687 1.1256 1.0307 0.9919 0.9750 1.1186

Note: “In-Sample Ratio” is the number of sample observations divided by the
total number of observations, 550, in percentage. “RMSE(OLS/CLS)” is the
ratio of RMSE by OLS to that by CLS. The column labeled with “Average” is

the simple arithmetic average of the five relative RMSE.
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Table 6: The Relative RMSEs for Each Condition Number

Cond.Num. 10 20 30 50 70
DIST 2.0664 2.0532 2.0729 2.1144 2.1879
ACCT 2.7815 2.8309 2.9214 3.1684 3.4030
AGE 1.5057 1.5445 1.6993 1.8819 1.9803
DENS 1.8919 2.6212 2.9919 3.6597 4.1856
FLOSP 1.3762 1.5114 1.5900 1.6611 1.7438
VOLM  1.3358 1.6754 1.9859 2.3964 2.8057

Note: Reported figures are the average relative RMSEs (OLS/CLS) about the
imputed prices of characteristics. The label “Cond.Num.” means the condition

numbers.
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Table 7: The Relative RMSEs for Each R-square

R-square 0.5 0.7 0.9
DIST 2.3033 1.9304 1.5497
ACCT 3.3096 2.8143 2.2064
AGE 1.6795 14770 1.2949
DENS 3.1255 2.6144 1.9392
FLOSP 1.6185 1.4010 1.1619
VOLM 23170 1.9519 1.4770

Note: Reported figures are the average relative RMSEs (OLS/CLS) about the

imputed prices of characteristics.
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Figure 1: Distributions of Imputed Prices at All the Observations
The probability densities of the imputed prices of characteristics are estimated
by the density histogram. Thin lines are of the OLSEs of the imputed prices,
and thick lines are of the CLSEs of them.
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