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Abstract
This paper presents a discrete-time optimal stopping problem with a finite planning horizon. For a search
cost s, a random offer, w ~ F{w), will be found for each time. Offers appearing subsequently are allowed
to be not only accepted or passed up but also “reserved” for recall later. To reserve an offer with value
w, a reserving cost r(w) is incurred with each reserved offer expiring % periods after. The objective is to
maximize the expected discounted net profit with the provision that an offer must be accepted. The major
finding is that an offer reserved during the search process must not be accepted prior to its maturity of
reservation, however, it may be accepted on the maturity.

1 ~Introduction

Suppose that a piece of land must be disposed of by a certain date in the future (the deadline).
It costs a certain amount of money, say advertising costs, to find a buyer, and offers made by
buyers are considered to be random samples from a known distribution. Now, suppose that the
asset holder has aimed at a selling price so high that all buyers appearing prior to the deadline
have been rejected and the deadline has come. At this point, the land owner will have no choice
but to sell to that buyer who appears on the deadline however low the price he offers. This
situation is quite dire. However, if a too low selling price is accepted early in the time frame
because of the fear of the risk, there is every chance that better buyers who may have appeared
later would be missed. To avoid these two extremes, the owner of the land should have a rule
to guide to the best action on a daily basis.

Such a problem can be well explained by using the so-called optimal stopping problem. Thisisa
stochastic decision problem of determining an offer to accept among offers appearing sequentially
and randomly. In terms of future availabilities of offers once passed up, almost all optimal
stopping problems presented so far can be classified into three models: Models with recall
(Bjbrn [1] and Kang [4}), without recall (Bjérn [1] and Sakaguchi [9]), and with uncertain recall
(Ikuta [2}, and Karni and Schwartz [5]). In the first model, an offer once passed up is assumed to
be available forever, in the second, it is instantly lost and unavailable forever, and in the third,
it may become unavailable with a certain probability. In all of the models, actions the decision
maker can take for each offer appearing are limited to accepting or rejecting it. As a result,
whether an offer will be available in the future or not is determined to be out of the decision
maker’s reach.

However, what if the decision maker can keep offers available by reserving them for certain
periods in exchange for paying some money? Rose [6] [7] and Saito [8] tried to answer this
question. In Rose [7], each offer is allowed to be held for & periods in return for a cost bk where
b is a given nonnegative number, where only one offer can be held at a time and it is prohibited
to renew the reservation of an offer at the time of its maturity. Rose [6) deals with a similar
model in which & = 1 and renewals are permitted. In these two papers, offers are estimated not



by absolute values but by relative ranks, and the cbjectives are to maximize the probabilities
to accept the best offer. In Saito [8], a reserving cost depends on the offer value and more than
one reserved offer can be held at a time, where once an offer is reserved, it is available forever,
that is, the reserving period is infinite.

In the current paper, although the reserving cost depends on the offer value, the reserving
period is restricted to be a given finite number &, independent of the offer value. In the land
selling problem, for example, the owner is assumed to be allowed to make agreements with each
buyer to sell the land to him in the following & days at the price he offers. The major finding in
this paper is that an offer reserved during the search process must not be accepted prior to its
maturity of reservation, however, it may be accepted on the maturity.

The precise description of the model is provided in Section 2. In Section 3, three basic as-
sumptions of the model are described. In Section 4, the model is formulated mathematically.
Section 5 is only devoted to the analysis for clarifying the optimal decision rule, which is sum-
marized in Section 6. In Section 7, some numerical examples are given. Section 8 treats the
case without the third assumption stated in Section 3. Section 9 deals with the case that the
planning horizon is infinite.

2 Model

Suppose a person periodically searches for offers and must accept one of them up to the deadline.
He can find an offer at each time if a search cost s > 0 was paid at the previous time, however,
he does not know in advance what offer will come out. The only information available is the
distribution function F(w) of offer value w where values of subsequent offers w, w’, -+, are
stochastically independént. For the most recently found offer, the so-called current. offer, he
is allowed not only to accept or pass up but also to reserve. Reserving an offer with value w,
simply referred to as offer w later on, gives him a right to recall and accept it in the future,
but this right is effective for only k periods and a reserving cost r(w) is incurred. On the other
hand, he can never return to any of offers passed up or expired.

His problem here is to find a rule to guide him to which action should be taken for each offer
appearing so as to maximize the total expected discounted net profit obtainable in the process
ahead, that is, the expectation of the present discounted value of an accepted offer minus that
of the amount of search costs and reserving costs paid over the periods from the present point
in time to the termination of the search by accepting an offer.

3 Assumptions and Preliminaries

We make the following three assumptions in this paper.

Assumption 1: The offer value distribution function F satisfles F(w) = 0 for w < @, 0 <
F(w) < 1fora <w<b,and F(w) =1 for b < w where a and b are such that 0 < ¢ < b < o0,
and p denotes the mean of Fw).

Assumption 2: The reserving cost »(w) is nondecreasing and continuous with 0 < r{w) < co.

Assumption 3: a < a where o = Sy — s and § is a per-period discount factor with 0 < 8 < 1.
The case o < a will be discussed in Section 8.

The following two functions and their properties are often used throughout the paper.
b
S(z) = f max{w, z}dF(w), (3.1)
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b
K(z) = ﬁ/ max{w,z}dF(w) - ¢ —s = BS(z) - —s. (3.2)
Let & denote the root of equation K(z) = 0, whose existence is verified in the lemma below.

Lemma 3.1

(a) S(z) is continuous, conver, and nondecreasing in z and strictly increasing for a < 2.
(b) S(z)=p forz<a, 2< S(z) forz<b and S(z) =z forb< w.

(¢) K (z) is continuous, conver, and nonincreasing in x and strictly decreasing for z < b.
(d) 8 exists uniquely with a <8< b. And, a < 8 if and only if a < .

(e) 8 is continuous and strictly increasing in .

Proor. See Ikuta [3]. N

In general, let 5 denote the maximum element of a vector p, and p; denote the vector de-
fined by removing the i-th element p; from p, that is, if p = (p1,p2,---,0x) € R*, then
b = (pla s Di-1 Pigty o 1pk) € Rk_l-

4 Optimal Equation

Let the time points ¢ be taken equally spaced and numbered backward from the deadline ¢t = 0,
hence % also represents the number of periods remaining. Suppose that we are at time ¢ and w;
is an offer found ¢ periods ago, or at time ¢ + 7, and let

w;, if the offer w; was reserved,
= (4.1)

0, if it was not reserved.

Since each reserved offer is available for only & periods, the vector @ = (24,22, --,21) € RF
represents all available reserved offers where z; = 0 can be regarded as a fictitious reserved offer
and the best offer of = is Z, that is,

% = max{z1,22, -, 2x} (4.2)

We call the vector @ the reserved offer vector and the offer # the leading offer. The relation
among reserved offer vectors at the previous, present, and next time point can be depicted as in

w
(previous) . \
at time ¢4 1 T = (331, sty Ei=1, Tiy Tigl, vty Tk ﬂ?},)
- \\\\\\\\\\
at time ¢ = (), @5, vy Ty, @, @i, oty Xh_y, x}) expired
fnext) \\\\\\\\\\
at time T -1 = (:U 242, Tty w, 1> 11, g.{.l" T wk 12 mk) explred

(w, w’, and w” are offers found at times ¢ + 2, £ + 1, and ¢, respectively)

Figure 4.1: Reserved offer vector =



Figure 4.1.

For convenience in later discussions, we define

Y=z = (mlam'Z:' ' ')mk—l)) (43)

and use expressions (w,y) = (w,z1, -, 2x~1) and (0,y) = (0,21, -+, Zr-1).

For each time except for the deadline, we have four choices: Accepting the current offer w
and stopping the search (AS), reserving w and continuing the search (RC), passing up w and
stopping the search by accepting the leading offer £ (PS), and passing up w and continuing the
search (PC). Of course, at the deadline, only decisions AS or PS can be taken.

Then, letting v;(z) denote the maximum expected net profit attainable by starting from time
t with a reserved offer vector z, we have

(@) = f:ma,x{ o }dF(w) = 5(2), (4.4)
AS ¢ ow,
we) = | " max we ;’"("‘”)‘3“3”‘-1(“”1")’ dF(w), t>1.  (45)
PC @ —s+ fv_1(0,y)
Let us define the two functions
2 (z) = max{&,—s+ Pr—1(0,y)}, t>1, (4.6)
A(w,y) = maxfw,—r(w)- s+ Bua(w,y)}, 12 1, (47)

z5(z) = %, and z§(w,y) = w. From Eqs. (4.4) and (4.5), we know that 2{(z) and 2] (w,y) stand
for the expected net profits from deciding, respectively, to pass up the current offer w and not
to pass it up at time ¢, provided that an optimal decision rule is applied after that. Then, v;(z),
t > 0, can be rewritien as

ve(z) = _/: max{z;(w,y), 20 (z)}dF{(w), t>0. (4.8)

Let us denote the set of current offers not to be passed up, or either accepted or reserved, by

Wi(z) = {w| z{(z) < 7{(w,9)}, t20. (4.9)

Additionally, we define
gi(zilm:) = —s+ Bui(0,y) - o, t>1, i<k, (4.10)
flwly) = —r(w)-s+Pfua(w,y)—w, t>1, (4.11)

and let 8i(z;) and A:(y) be the respective roots of gi(z;]z;) = 0 and fi(w|y) = 0, if any. Then,
8i(z;) represents the indifferent point in terms of z; between accepting it and continuing the
search under a given @; € R*~1, and X;(y) the indifferent point in terms of w between accepting
it and reserving it under a given y € R* L.

Therefore, the optimal decision tule is characterized by 8i(z;), M\i(y), and Wi{z).



5 Analysis

In light of the context, without loss of generality, we can consider w and z; to be in (—00,b].
Throughout the paper, we shall merely write w and z; in the sense of w < b and z; < b,
respectively. Hence, £ € b and § € b everywhere.

Lemma 5.1

(a) v(z), thus z{(x) and z{(w,y) are continuous, conver, and nondecreasing in = and nonde-
creastng in t.

(b) p < ’t)g(.’B) for any w, & < w(x) for £ < b, and v{x) = b for & = b.

(¢) Let &® be such that &t = z; for a < z; and 2f = a for 2; < a. Then v{z) = 'ut(:c )

(A} Ifo<g <qand v:(p,Q) = vz(p: ), fhen ”Ut(P q) = u(p, 7 ).

(e) For any given n, if 2! and z? satisfy ! = 2zl = 22 = £* and 2} = 2} for i < n, then
v(xl) = vy(2?).

(f) Suppose t < k and let ' and x? be such that max{z} | i £ k -t} = max{2? | i < k- t}
and that ¢} = 2? for k —t < i. Then n(2!) = w(a?).

ProoF. (a) Easily shown by induction starting with Eq.(4.4) and Lemma 3.1(a} as to = and
with vi(z) > [? max{w,3}dF(w) = vo(z) as to ¢.

(b) First, clearly v(x) > ff wdF(w) = p for all ¢. Secondly, if & < b, then & < S(&) = vo(z) <
v1(z) < --- from Lemma 3.1(b), Eq.(4.4), and assertion (a).

Finally, if & = b, then vo(z) = b by Eq.(4.4) and Lemma 3.1{b). Assume the assertion to be
true fort—1 and let & = (b,--+,b) € R*"1. If 3 = b, then y < b, thus vy—y(w,y) < ve_1(w,b) = b
for any w > 0 from (a) and the assumption. Hence, if & = b, then max{---} in Eq. (4.5) becomes
equal to b, thereby, v:(z) = b.

(c) Clearly £ < £° for any ®. If 4 < 2; for at least one ¢, then & = 2*. Hence, by contraposition,
if # < &2, then z; < ¢ for all 7, thus 2% = a.

For t.= 0, the assertion is clear from Eq. (4.4) and Lemma 3.1(b). Assume the assertion to be
true for t — 1. Then, for any w > «a, since (w,y)* = (w,y®*), we have v;—y(w,¥y) = v;—1(w, y*)
by the assumption, thus z{(w,y) = 2{{w,y") for any w > a by Eq.(4.7). Since v;—1{(0,y) <
v1-1(0,¥%) < vi—1{a,y*) due to (a), and v;-1(0,y) = vi—1(a,y*) by the assumption, we get
v3-1{0, %) = v¢—1(0, ¥®). Hence, if & = 2%, then z{(z) = z{(2*) by Eq.(4.6). Even if & < 2%, we
also get 2f(z) = z{(2®)since § < I* =a < a=—s+0p £ —s+Pv_1(0,y) = —s+ B, (0,4%)
by Assumption 3 and (b). Consequently, from Eq.(4.8), we get v{z) = v(2?).

(d) If 0 < ¢’ < g, then u(p,0) < v(p,q") < vi(p,q) due to (a). Hence, if v(p,q) = u(p,0),
then vi(p, g) = w(p, q’).

(e) Since #' = #2, the assertion proves true for ¢ = 0 from Eq.(4.4).

Assume the assertion to he true for ¢ — 1. Choose z! and z® satisfying the condition of the

assertion with n < k and let p! = (w,y?) and p? = (w, y?) with any w > 0. Then, pl = w = p}
and p} =z} | =2?  =pffor2<i< n+l. Hence if w <2l =zl then p! = 2l =22 = p?,
or else p! = w = p%. Accordingly, since p! and p? satisfy the condltlon with n 4+ 1 or 1, we
get ve—1(w,y!) = vi_1(w,y?) for any w > 0 by the assumption. Hence, since &! = 42, we get
ve(z!) = ve(2?) by Eq.(4.5). If n = k, since ' = 22, the assertion holds true.

(f) Easily shown by notmg #! = 4% and applying an argument similar to that in the proof of

(e). W



Lemma 5.2
() gi(zilm;) is strictly decreasing in x; for each i and any z;, and f,(wl|y) is strictly decreasing

inw for any y.
(b) 8i(z;) exists uniquely with 8}(z;) € [@,b) for each i and any z;, and so also does M(y) with

Auly) € [a — 7(b),b) for any y.
(c) We(z) # ¢ and Wy(z)° # ¢ for any z.

Proor. (a) We first show the assertion as to gi(z:]a:).

If ¢ = k, since y is independent of zy, so also is 4;~1(0,¥), thus the assertion proves true.

Fix any ¢ < k. If § = b, then § = b for any z;, thus v,-1(0,y) = b for any =z; because of
Lemma 5.1(b), hence the assertion holds. For §; < b, choose z', ?, and 2 with z} < 2? <
z? = band z} = 2} = &% < bfor j # i,k. Then, §* < 72 < §* = b, and by Lemma 5.1(a,b),
v-1(0,) is convex in z;, v-1(0,¥%) = b, and z} < §* < v;1(0,y'). Hence,

1
o

Ll (5.1)
?

v-1(0, %) — v-1(0, 1) v3-1(0,%°) — -1 (0, %*) b
<
F ) <F b—al <F3

5 -
1 -
Consequently, Bve_1(0,9") — 2} > Bv,_1(0,%?) — 22, which also leads us to the assertion.

By noting Assumption 2, the assertion as to fi(w|y) can be verified in a like manner.

{b) Since gé(a[m;} = B (vi—1(0,y)— p) > 0 and g{i(b]cc,-) <(f—1)b—s <0 by Lemma 5.1(b),
we conclude that g}{z;|z;) = 0 has a unique root #i{z;) € [@,b) due to (a).

By noting Assumption 2, we obtain the assertion as to A:{y) in the same way.

(c) Since v;-1(0,%) < v:—1(b, y) = b due to Lemma 5.1(a,b), we get 2{(z) < max{b, —s+ b} =
b = max{b, —r(h) — s+ b} = 2] (b,y), or b € Wy(z). Hence, Wi(z) # ¢.

By Lemma 5.1(a,c), we get v:—1(0,3) < v-1(a,¥) < v:-1(a, %%} and v,—1(0,y) = v,m1(a, ¥%),
thus v-1(a,y) = v-1(0,y), implying ~7r(a) — s + fvi—1(a,y) < —s + Bv,—1(0,y). Hence,
since a < —s + fp < —s + fv-1(0,y) by Assumption 3 and Lemma 5.1(b), we get z{(a,y) <
-8+ fv_1(0,y) < zf(z), or a € Wi(z). Therefore, Wi(z)* £ ¢. 1

Remark 5.3 We have a < o < 8i(z;) for every ¢ from Assumption 3 and Lemma 5.2(b), while
A(y) < a occurs since, if 7(a) > fb— s — a, then fi{a|y) < —r(a) —s+ fb—a < 0.

Corollary 5.4  For each i and any x;, thus for any vy,
< —s4Pu1(0,y), i 2 < Oiw),
(@) =z ¢ = —s+Pu1(0,y), i i =0i(zi),
> =5+ PBva(0,y), i 6i(xi) < 7.
< —r(w) = s+ fria(w,y), Fw < Adly),
(b) w { = —r(w)—s+foa(w,y), f w=Ay),
> —r(w) = s+ Bo-r(w,y), i Aly) < w.

Proor. Clear from Lemma 5.2(a). &

Theorem 5.5
(a) For each i < k, if z; is such that §; < 6, then 0i(z;) = 6.
(b) If y is such that § < 8, then § < 0F(y) = —s + fvy_1(0,y) < 4.



(¢) If y is such that § < 0, then Ai(y) < 9.
(d) 0f(y) and A(y) are continuous and nondecreasing in y and nondecreasing in t.

PROOF. Assertions (a-c) are shown together by induction. First, from Eq.(4.4) we have vo(z) =
S(6) for any = with & = 8. Assume v»_4(z) = 5(8) for any = with z = 4.

(a) Choose any ¢ < k and any =; with ¢ < 8. If ; = @, then § = 4, so vt._l(O,y)'z 5(8) by
the assumption, thus gi(6|x;) = K(8) = 0. Hence, #i(z:) = 6 by the uniqueness of 8i(z;).

(b) Since %._1(0,¥) is independent of zf, we get 85 (y) = —s + fvi_1(0,¥). Hence, if § < 9, it
follows that §f(y) > —s + Bue(0,y) = K(§) + § > § by Lemmas 5.1(a} and 3.1(c), furthermore,
v1-1(0,9) £ 2-1(0,0,---,8) = $(0) by Lemma 5.1(a) and the assumption, from which #5(y) <
—s+85(8)=K(@)+6=09.

(c) Since v;_1(f,y) = S(8) for any y with § < & by the assumption, we get fi(f]y) = —r(8) +
K(8) = —r(8) < 0. Hence, from Lemma 5.2(a) we claim \(y) < 6. '

(a-c) To complete the proofs we show v(z) = S(8) for any = with & = 6.

Since § < 8, by (b) we get —s + fBv;-1(0,%) < 8, thus 2f(z) = £ = 4.

Since § < 8, if w < 8, then v,y (w,y) < v—1(8,y) = 5(f) by Lemma 5.1(a) and the assump-
tion, s0 ~7{w) — s + fvi—y1(w,y) < —s+ B5(9) = K(9)+ & = 9, thus 2 (w,y) < max{, 8} = 6.
If § < w, then A(y) < & < w by (c), thus 2] (w,y) = w by Corollary 5.4(b). Thereby, from
Eq.(4.8), we conclude that, if £ = 4,

vw(z) = fal;nax{z{(w,y),@}df'(w) = /:ﬁ‘dF(w) +/:wdF(w) = 5(8). (5.2)

(d) By Lemma 5.1(a), both gf(z¢|y) and fi(wly) are continuous and nondecreasing in y. From
this and Lemma 5.2(a), the assertion as to y holds. Similarly, we get the assertion asto¢z. 1

Lemma 5.6

(a) If 8 < %, then z(2) = &, z[(w,y) < & for w < &, 2T(w,y) = w for & < w, and
ve(z) = S(&). :

(b) If 8 < &, then w(x') < vi(x) for any =’ such that &' < .

ProoF. (a) All of them are obvious for ¢ = 0 by their definitions. Assume v;_1{z) = S(&) for
any = with 8 < %.

Suppose § < 6. If 8§ < &, then 2f(z) = max{%,8f(y)} = & by Theorem 5.5(b). In the proof
of Theorem 5.5(a-c) we have 2] (w,y) < # for w < 8 and zI{w,y) = w for § < w, from which,
if 8 < &, then 2{{w,y) < & for w < & and 2[(w,y) = w for 2 < w by considering three cases:
w<d,8d <w< & and & < w. .

Suppose & < §. Then, for any w, we have § < max{w,§}, thus v (w,y) = S(max{w, §}) by
the assumption, from which and Lemma 3.1(c),

-5+ Pvi_y(w,y) — max{w, §} = K(max{w, §}) < 0. (5.3)

Setting w = 0 in Eq.(5.3), we get —s + fv_1(0,y) < § < 3, thus 20(z) = . Eq.(5.3) yields
~r(w) — s+ fo_1{w,y) < max{w, 7} < max{w, 4%}, hence zJ(w,y) < max{%,4} = % for w < %,
and z{(w,y) = w for £ < w.



Finally, we complete the proof by showing, for any @ with § < %,
b z b
o) = ] max{z] (w, ), 3} dF(w) = / BdF(w) + / wdF(w) = 5(3). (5.4)
a @ T

(b) Suppose 8 < &. Let =’ be such that &' < & and choose z” such that max{#,3'} < 3" < 2.
Since a < @ < # by Assumption 3 and Lemma 3.1(d), we get a < 8 < 2" < &, thus w(2") =
§(2") < 5(%) = vi(z) by (a) and Lemma 3.1(a). Hence, if v(z) < viz’), then v:(z") < vi(a’),
contradicting Lemma 5.1(a). So, the assertion proves true. &

Corollary 5.7 Let 8 £ &. If w < %, then max{---} in Eq.(4.8) becomes &, or else w.

Proor. From Lemma 5.6(a), if w < &, then z](w,y) < 2{(z) = &, or else z{(z) < 2z} (w,y) =
w. N

Here, define

:B;L = (ml,"',$,‘,0,"',0)ERk,
& = (03"'?0>wi+1a""$k) € Rka
Xi(es) = {ai| w(z) = v(=f}

where clearly = max{&F, )} for i <k, and § = max{§¥, 47} for ¢ < k.
Lemma 5.8  For any given i, if z; € Xi(z:), then v(z) = v(xf).

PRrOOF. Suppose £ > 0. If & = &%, then v, () = 5(2) = S(&F) = v(zf) by Lemma 5.6(a). If
& > &%, then vi(z) > vi(af) by Lemma 5.6(b). Therefore, since v,(z) = v(2f) if and only if
& = &, we get Xi(z;) = {#: | # = 3F}. Hence, if 2; ¢ Xi(z;), then z > 2%, 50 2 = 2F > 4,
thus v(z) = §(&) = 5(2F) = v, (2f).

Let 8 > & below. If & = 28, then vy(z) = wy{zl). Suppose # > 2F. If ¢ > &, then
vo(z) = vo(2ft) (= u) by Lemma 3.1(b), or else vy(x) > vo(zR) by Lemma 3.1(a). Hence,
Xi(z:) = {w: | & = 3F or a > ). I 2; ¢ Xi(w;), then & > &F, thus & = 2P, from which
vo(z) = vo(xF). Consequently, the assertion holds true for ¢ = 0.

Assume the assertion to be true for { — 1. Note that the assumption with ¢ = 1 is that, if

z1 & X}t ((21) = {21 | v—1{21,21) = v,-1(0, 21)}, then ve—1(21,21) = v—1(21,0), equivalently,
w§ Xpa(y) = {w] vie1(w,y) = v-1(0,3)} = v-1(w,¥) = v_1(w, 0). (5.5)

To begin with, we let = and @’ be such that =z > 2’, so ¥ > ¥, and show
v() = w(2') = Z(z) = (') (5.6)

If § < w, ther v—3(w,y) = vi—1(w,y’) by Lemma 5.1(e) with n = 1. If w ¢ X} ;(y), then
v-1(w, ¥} = v_1{w,0) by Eq.(5.5), from which and Lemma 5.1(d) we also get v;_3(w,y) =
v—1(w,y’). Hence,if § < wor w & X} (v), then 2] (w,y) = 2{(w,y"). Conversely, if w < § and
w € XL (y), then w < & and v_1(w,y) = 1,-1(0,%) by Eq. (5.5), thus 2] (w, v) < max{#, —s+
Bvi—1{0,y)} = 2f{z). Thereby, any w satisfies 2] (w,y)} = z{(w,y’) or z(w,y) < 2{(x). From
this and Lemma 5.1(a),

zZ(w,y) # 2z (w,v) == 2z[(w,y) <2 (w,y) < 2(z). (5.7)

8



Suppose zP(z) = z2(x’). Then, max{z](w,y),2{(z)} = max{z{(w,y),2{(z')} for any w
from Eq.(5.7), thus w(z) = w(a’) by Eq.(4.8). Conversely, suppose z{(z) > z{(z'). Since
any w ¢ W) satisfies 20(z) > 2} (w,y) 2 z{{w,y') by Eq.(4.9) and Lemma 5.1(a), we get
max{z] (w,y),2{(x)} = z2(x) > max{z[{w,y), 2/ (")} for any w € Wi(z), thus v,(z) > v(z)
by Eq.(4.8). Therefore, we have confirmed Eq. (5.6).

Next, we shall prove the case 7 < k by (i) showing

Xf(m,-) = {z; | Bf(y) < zp or ; € Xfi'%((),y,v)}, i<k, (5.8)

and then (ii) verifying v (z) = v(z}) for z; ¢ Xi(=;).
(i) Since having supposed & < 8, so § = max{§}, §} < 4, from Theorem 5.5(b),

z(z) = max{t, 0f(y)} = max{f, 2, Of(¥)} = max{zy, 0i(y)}, (5.9)
Z(zF)= max{sF, 0f(yF)} = max{§F, 0, Of(¥F)} = Of(yF), (5.10)
2(2f)= max{sf, 0F(yf)} = max{§f, oy, 05(yF)} = max{zy, 6f(yF)}.  (5.11)

N

It follows from the assumption that, for each ¢ < &,
zi @ Xi00,9;) = {o: | v1-1(0,9) = va(0,9F)} == v1(0,y) = w1 (0,3F).  (5.12)

If 8f(y) < =k, then Bk(y ) < 88(y) < =z from Theorem 5.5(d). If z; € X'T1(0,y;), then
2-1(0,%) = v-1(0, %) by Eq.(5.12), thus 8f(y) = 6F(yF) by Theorem 5.5(b). Hence, if
05 (y) € 2y or 2; € Xit10,,), then 2f(x) = 2f(=f) by Eqs.(5.9) and (5.11).

If z; ¢ XiT10,y;), then v.e(0,%) > v-1{0,y! ) by Eq.(5.12), thus 85(y) > 85 (y®). Hence,
if 65(y) > zx and z; & X T1(0,,), then 22(z) = 05(y) > z¢(2F) by Eqs. (5.9) and (5.11).

Hence, 20(z) = 22(2f!) if and only if 6*(y) < 24 or 2; € X;1}(0,y;). Due to this fact and
Eq.(5.6), we have confirmed Eq. (5.8).

(i) If &; ¢ X*1(0,9;), then v—1(0,y) = v—1(0,yF) by Eq.(5.12), thus 65(y) = 95(yF).
Hence, if z; ¢ Xi(z;), that is, if z; < 6F(y) and z; € X/ T1(0,y,), then z2(z) = z2(zF) by
Egs. (5.9) and (5.10). This and Eq. (5.6) complete the proof for i < %.

Finally, if i = &, since & = ¥, we claim the assertion without considering XF(y). N

Theorem 5.9
(a) If 2 < 22, then Wi(z') D Wi(z?).
(b) Ift < k and w < max{z; |1 <k — i}, then w & We(x).

Proor. (a) Choose w such that w € Wi(=?) and w < Ai(y?). Then, by Egs. (4.6) and (4.9) and
Corollary 5.4(b), we get —s + Fvt-1(0,3%) < 20(z?) < 2[(w,y?) = —r{w) — s + Pvi=1(w,y?),
from which 0 < r(w) £ 8 (ve—1(w, ¥?) — »-1(0,%?)), implying vi—1(w,y?) > v-1(0,%%). So,
by Eq.(5.5), we know w € X} 1(v?), thus v_1(w, y?) = vs—1(w,0), from which v;—1(w, y?) =
vi_1(w, y') by Lemma 5.1(d). Hence, 2 (w,y?) = 2} (w,y?).

Whether w € Wy{z?) or not, if \(y?) < w, since A(y') < Ai(y?) due to Theorem 5.5(d), we
get z1 (w,y?) = 27 {w,y?) (= w) from Corollary 5.4(b).

From Lemma 5.1(a), Eq.(4.9), and the above facts, if w € Wy(z?), then 22(2?) < 22(z?) <
#Z (w0, y?) = 21 (w,y'), yielding w € Wi(z'). This proves the assertion.

(b) If t = 0, then max{z; | i <k — 0} = & and Wy(2) = {w | £ < w} by Eq.(4.9). Hence, if
w < max{z; | i < k — 0}, then w ¢ Wy(a). So, the assertion holds for ¢ = 0.
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Suppose 0 < t < k and w < max{z; | ¢ < k — ¢}, thus w < %, and let p! = (w,y) and
p° = (0,y). Then,

max{p} |1 <k—-(t—-1)} = max{w, T1,**,Tr_4}
= max{0,zy, " ,Zp—¢} = ma,x{p,?[igk—(t—-l)}

and p} = 2;.1 = p? for k— (¢t —1) < <. So, p! and p? satisfy the condition of Lemma 5.1(f) with
t =1, thus vy (w,y) = v,-1(0,%). Hence, 2] (w,y) < max{&, ~r(w) — s+ fui—1(0, )} < 22(z),
orw ¢ Wi(z). 1

Lemma 5.10

(2) I § < M(0), then A(y) = A0), and if (0) < 7, then A (y) & Wi(z).
(b) If w € Wi(=), then either w < A(0) or A(y) < w.

Proor. (a} If § < A(0), it follows from Lemma 5.1(e) with n = 1 that v;_1(A\(0),y) =
v1-1(A¢(0), 0}, implying fi(A:(0)|y) = £i(A:(0)|0) = O, thus A(y) = A(0). The latter part is
proven by contraposition. Suppose A;(y) € Wy(z). Then, § < & < 20(x) £ 27 (Me(v),y) = Ai(y),
yielding A:(y) = A¢(0) in exactly the same way as above. Hence, if M(y) € Wi(z), then
§ < Aly) = A(0).

(b) Since either w < A(0) or A¢(0) < w for any w, the assertion holds for § < A¢(0) from (a).

The proof for A:(0) < § is by contradiction. Choose z* with A;(0) < $? and suppose that a
certain w € Wy(x?) satisfies A;(0) < w < A((y?). Then, by Theorem 5.5(d) and the intermediate
value theorem, there is an ! such that z! < 2% and w = A(y!). Since A;(0) < w = A(zy?),
we get A(0) < #' by the contraposition of the former part of (a), thus w = A(y!) € Wi(2?!)
‘by the latter part of (2). Hence, if there is a w € Wi(2?) such that A,(0) < w < A(y?), then
w ¢ Wy(=!) for a certain 2! with ! < =2, which contradicts Theorem 5.9(a). This complete
the proof. K

Corollary 5.11 For any w € Wi(z), we have w < A(y) if and only if w < \(0).

ProOF. Any w € Wi(z) such that w < M\(y) satisfies w < A;(0) since A(0) < w < Ai(y)

is impossible for w € Wy(=) from Lemma 5.10(b), and any w € Wi(z) such that A\(y) < w
satisfies A;(0) < w since A(0) < Ay(y) by Theorem 5.5(d). K

6 Optimal Decision Rule

From Corollary 5.4, the optime}l decision rule can be generally prescribed as follows:

Optimal Decision Rule: Suppose you are at time ¢ with a reserved offer vector @ and have
just drawn an offer w. The choices are:
(a) X we Wyz)and A(y) < w, accept the current offer w {AS).
{b) I we Wy(x) and w < A{y), reserve the current offer w (RC).
(c) If w¢g Wi(z), pass up the current offer w, and then:
(1) If 6i(z:) < z; = & for a certain 7, accept the leading offer z; (PS).
(ii) If a; < 6i(=;) for all 4, continue the search (PC).
In this section, we shall reveal properties of the above optimal decision rule.
1. For each time t with any x, an offer w € Wy(z) must be reserved if and only if w < X (0).
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The result is immediate from Corollary 5.11. Note that, whatever = we have, we only have to
compare an offer w with A;(0) to decide whether to accept or reserve it.

Besides, since every offer w satisfles a < w, the case A;(0) < @ stated in Remark 5.3 only
implies that no offers should be reserved.

2. If you have a reserved offer vector ® such that 8 < & and have just drawn an offer w, accept
the more lucrative between the leading offer & and the current offer w.

The result is the restatement of Corollary 5.7.

As seen in the next result, however, no reserved offer vector @ ever satisfies § < # except for
the case that such @ is given as an initial proposal before entering the search process.

3. An offer reserved during the search process must not be accepted prior to its maturity of
reservation, however, it may be accepted on the maturity.

From Assumption 1, 3, and Lemma 3.1(d), we have 0 < a < a £ 6, thus 0 < 8, yielding
A¢(0) < 8 for every t by Theorem 5.5(c). Consequently from Result 1, all offers to be reserved
throughout the search process have less value than 8. Hence, if the search starts with a reserved
offer vector  such that Z < @, the inequality holds forever, or z; < § for all 7 for every t. So,
¥ < 8 and §; < ¢ for all i < k for every ¢. In this case, 8}(x;) = @ for i < k by Theorem 5.5(a),
thus 8}(z;) < z; never happens for i < k. However, 8%(y) < z;, is possible. In fact, for example,
in the case that k = 2 (s0, ¥ = (21) and 2 = z3), s = 1/10, 8 = 9/10, r(w) = w/1000, and
F(w) = 0 for w < 1/4, 1/4 for 1/4 < w < 2/4, 2/4 for 2/4 < w < 3/4,3/4for 3/4 < w < 1,
and 1 for 1 < w, we can have, without any computational error, (z1,22) = (0,1/2) at t = 1 and
then 67(z,) = 03(0) = 74/160 < 1/2 = z,.

The above facts suggest that no reserved offer z; must be accepted if it is still available at
the next time, or ¢ < k, and that only the offer z), which is at maturity, has the chance to be
accepted. This can be interpreted as follows: Since an offer once reserved is assumed not to
deteriorate in its value over the reserving period, it seems a waste to accept an offer while some
reserving periods still remain.

This is one of points different from the results obtained in Saito {8] which dissuades us from
accepting any reserved offer prior to the deadline. However, since the reserving period in Saito [8]
is assumed to be infinite, any reserved offer available at a certain time ¢ is still available at the
next time ¢ — 1, so no offer reaches the maturity. For the reason, the result in Saito {8] does not
contradict Result 3 in the current paper.

What is to be emphasized here is that, although in the case of an infinite reserving period,
offers are reserved only to prevent the risk at the deadline as stated in Section 1, in the case of a
finite reserving period, we reserve offers so as not only to prevent that risk but also to facilitate
stopping the search whén we see no reason to pursue it further.

4. If a is better, the range of offers to be passed up should be wider.
This is clear since Theorem 5.9(a) is equivalent to Wi(z!)¢ C Wy(2?)¢ for z! < z2.
5. Although every offer should be passed up if it is inferior to any of the reserved offers which

will be still available ot the deadline, it may prove wise to reserve even an offer inferior to
some of the reserved offers which will expire prior to the deadline.

Theorem 5.9(b) indicates the result. In fact we have a case that, with a reserved offer z;, an
offer w is to be reserved despite w < #; (see Table 1 in Section 7).

In Saito {8], an offer to be reserved must be superior to the leading offer at each time. This is
different from our Result 5 but can be taken as consistent with it from the viewpeint that each
reserved offer is assumed to be available at the deadline in Saito [8].
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We should notice that, although it seems better to accept a reserved offer z; than to reserve an
offer w with w < =z;, it can be optimal to reserve such an offer w if it is close to z;. Undoubtedly
such a w will not be recalled and accepted while the z; is available, but it is to be reserved as
further insurance against any unfortunate situation after the expiration of the z;.

Now, from Results 1 to 5, the optimal decision rule can be rewritten as follows:

Optimal Decision Rule: Suppose you are at time ¢ with a reserved offer vector @ and have
just drawn an offer w. The choices are:

(A) In the case of £ < §:
(a) If w e Wi(a} and X(0) < w, accept the current offer w (AS).
(b) If we Wy(z) and w < Ay(0), reserve the current offer w (RC).
(c) If w g Wi(z), pass up the current offer w, and then:
(i) If 0f(y) < =4 = %, accept the leading offer zj (PS).
(ii) If z < 6§ (y), continue the search (PC).
(B) In the case of § < :
(a) If # < w, accept the current offer w (AS).
(b) If w < %, accept the leading offer & (PS).

7 Numerical Examples

We here depict the optimal decision rule by using some numerical examples.

Figure 7.1 illustrates the optimal decision rule for ¢ = 1, calculated on the condition that F{w)
is the uniform distribution on [1,2], 8 = 0.95, k£ = 2, s = 0.005, and »(w) = 0.002w.

If £ = 2, all offers to be considered for each time are two reserved offers z; and 22, and a
current offer w. Hence, optimal decision rules with & = 2 can be schematized in 3-dimensional
diagrams like Figure 7.1.

The left of Figure 7.2 is the cross section of Figure 7.1 with 22 = 1.3 and the right is the one with
£1 = 1.4, where the areas above the bold lines represent W; (21, 1.3) and Wi(1.4, 22), respectively.
Either of the diagrams indicates the optimal decision rule for ¢ = 1 with (zq,22) = (1.4, 1.3):
If a current offer w is such that w < 1.410, pass it up, if 1.410 < w < 1.570, reserve it, and if
1.570 < w, accept it.

Here, it can be shown that the set of offers to be reserved is given by a union of disjoint sets
and so also is the one to be passed up. This phenomenon depends on the shape of r(w).

Figure 7.3 illustrates the optimal decision rule for ¢ = 1 with (z1,z2) = (0,0), calculated on
the same condition as that used in Figure 7.1 except for r{w) = 0.002 for w < 1.15, 0.4w — 0.458
for 1.15 < w < 1.20, and 0.022 for 1.20 < w. Since z£(0,0) = z(a,a) and 2{(w,0) = 2{(w, a),
the rule with (z1,22) = (0,0) is equivalent to the one with (z1,22) = (a,4). Hence, the diagrams
tell that, if w < 1.070, pass up w, if 1.070 < w < 1.185, reserve w, if 1.185 < w < 1.220, pass
up w again, and if 1.220 < w < 1.535, reserve w again. Let us call such a property the Multiple
Critical Value Property. According to the many numerical calculations the author made, the
phenomenon tends to happen when r(w) is flat or increases slightly until a certain w and then
rises rapidly. It was theoretically proven that, if r(w} is concave, the phenomenon never happens.
The result is also described in Saito [8].

Finally, we shall show a scenario of a search. Table 1 is calculated on the same condition
as that used in Figure 7.1. If (21,23) = (0,0) at ¢ = 4 and an offer w = 1.55 appears, the
offer should be reserved, so the next search (¢ = 3) starts with (z1,22) = (1.55,0). If an offer
w = 1.54 is found at ¢ = 3, it should be reserved in spite of w < z; (Result 5). Since decision
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Figure 7.2: Cross sections of Figure 7.1

PC should be taken at ¢ = 2 if w = 1.50, we reach { = 1 with (z1,%3) = (0,1.54). If w = 1.50
at £ = 1, the reserved offer x; = 1.54 should be accepted (Result 3).

Table 1: A scenario of a search process

(z1 2 )} 8  8(z1) Wiz1,22) X(0) 1w  Decision

(0 ,0 ) 1580 1.569 1.545<w 1575 1.55 RC (Reserve w = 1.55)
(1.55,0 ) 1.580 1.566 1.535<w 1.575 1.54 RC (Reserve w = 1.54)
(1.54,1.55) 1.580 1.560 1.515<w 1.575 1.50 PC

(0 ,1.54) 1580 1.422 1510<w 1570 1.50 PS (Accept zs = 1.54)
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Figure 7.3: Cross sections of the other example

8 The Case Void of Assumption 3

We here assume a < ¢, the converse of Assumption 3. Note that the assumption is not used at
all in Corollary 5.4(b), Theorem 5.5(b,c), and Corollary 5.7.

Suppose & < 8, 50 § < . Since —s + fv;—1(0,) < 6 by Theorem 5.5(b), we get zf(z) <
max{d, 8} = 8 by Eq.(4.5). Since @ < @ implies § = o < & due to Lemma 3.1(d), we have
A{y) < 8 € a by Theorem 5.5{(c). Hence, if a < w, then a < 2z{(w,y) = w by Eq.(4.7) and
Corollary 5.4(b). Thereby, for any w > a, weget £ < § < a < wand z{(2) < <a < 2](w,y) =
w. That is, if & < 8, any offer w satisfies & < w and should be accepted immediately.

Combining this fact and Corollary 5.7 for the case 8 < &, we conclude that, if Assumption 3 is
invalid, or if @ < @, it is optimal to quit the search immediately by accepting the more lucrative
between the leading offer £ and the current offer w.

9 Infinite Planning Horizon

Theorem 9.1  Ast — oo, we have vi(z) — v(z) = max{(+5)/8, 5(2)}, Wi(z) — W(z) =
{w)max{8, £} < w}, and M\(y) — My) < max{f,§} < max{6,%}.

ProoF. Use an argument similar to the proof of Theorem 7.1 in Saito [8]. 1
Theorem 9.1 presents the optimal decision rule with infinite planning horizon: Accept an offer
w if max{@, £} < w, or else continue the search. This is the same as the result in Saito [8].
The point to notice is that no offer needs to be reserved if the planning horizon is infinite.
Now, if § < £, the optimal decision rule (B) as stated in Section 6 can be applied. If & < 8,
then max{#,&} = #. Thereby, we can arrange the above rule as follows: Accept the more
lucrative between the leading offer £ and a current offer w if # < max{Z,w}, or else continue.

This is substantially the same as the rules for the case of infinite planning horizon in models
with recall, without recall, and with uncertain recall (Bjérn [1j and Ikuta [2]).
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