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Abstract

Let > be a comparative probability relation on the set Bg of all subsets of a
finite state space §. This paper presents and discusses necessary and sufficient
axioms for several threshold models of >, whose general representational form
yields a probability measure P on Bg and a bivariate set function € > 0 on Bs X

- Bg such that for all 4, B € Bs, A B if and only if P(4) > P(B) + (4, B).
Several conditions such as skew-monotonicity and additive separability will be
imposed on the functional form of Q.

*Institute of Policy and Planning Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba,
Ibaraki 305-8573, Japan; Tel.0208-53-5547; Email:nakamura@shako.sk.tsukube.ac.jp



1 Introduction

The aim of this paper is to identify and discuss necessary and sufficient axioms for
several threshold models of a binary comparative probability relation >, read as is
more probable than, on the algebra Bg of all subsets of a finite state space S. Subsets
of S are called events. The most general representational form that we shall consider
yields a probability measure P on Bs and. a nonnegative bivariate set function 2 on-
Bg x Bg such that, for all A, B € Bg,

A B <= P(A) > P(B) + (A4, B),

where (I can be interpreted as threshold of probability numbers, i.e., event A is
more probable than event B if and only if the probability difference P(A) — P(B)
is greater than a nonnegative number Q(A4, B). '

Kraft, Pratt, and Seidenberg (1959) were the first to present necessary and suf-
ficient conditions for the existence of a probability measure P on Bg that strictly
agrees with > without threshold, ie., (A, B) = 0 for all A, B € Bg. The first
attempt to allow for imprecise probability judgments was made by Adams (1965)
and Fishburn (1969), who gave necessary and sufficient axiomatizations that result
in partial rather than strict agreement as folows: for all A, B € Bg,

A B= P(A) > P(B).

This one-way representation is undesirable, because we cannot infer any comparative
probability judgments among events from the probability measure #, In addition
to P, we need more information to recover all such judgments. Such an information
may be provided by threshold functions, since it will be shown later that the one-way
representation is tantamount to our general threshold representation. However, the
threshold function Q is too general for practical reason, since no restriction other
than nonnegativity is imposed. Thus it is important to examine axiomatic structures
that have more specific functional properties of 2.

Threshold representations were first explored by Fishburr (1969) and Domotor
and Stelzer (1971}, who introduced a constant threshold, ie., (4, B) = ¢ for all
A, B € Bg and some nonnegative number €, and provided necessary and sufficient
axioms for that representation. Fishburn (1969) also considered a univariate thresh-
old, i.e., 2(4,B) = w(B) for all A,B € Bg and a nonnegative set function w on
Bg. His axioms are sufficient but not necessary for the representation. Since then,
much progress on axiomatization of imprecise probability judgments has not been
done except Fishburn (1986), who examined several interval representations of > on
finite sets, but did not focus on specific structures of the threshold function §2.

We are concerned with three types of representational forms of 2 such as bivariate
(nonseparable) forms, (additively) separable forms, or univariate forms. Since it is
most likely that an individual would not regard event A as less probable than event
B when A properly includes B, it seems also likely that when event B'is a proper
subset of event A, event C would be more probable than B when C is more probable



than A, or A would be more probable than C when B is more probable than C.
We regard such inclusion monotonicity properties fundamental to any reasonable
comparative probabilty judgments, The inclusion monoctonicity is reflected by skew-
monotonicity of €2, which says that Q2 is decreasingly monotonic in its first argument
and increasingly monotnoic in its second argument.

The paper is organized as follows. Section 2 discusses axiomatizations of the
general threshold model and the skew-monotonic threshold model. Sections 3 and 4
respectively explore additively separable and univariate forms of Q. Then Section 5
deals with the cases that univariate thresholds are given by additive set functions.
All sufficiency proofs of the theorems are deferred to Section 6.

2 Bivariate Thresholds

A univariate set function @ on By is increasingly (respectively, decreasingly) mono-
-tonic if Q(A) > Q(B) (respectively, Q(A) £ Q(B)) whenever A O B, and additive
if, for all A, B € Bg for which AN B =1,

Q(AU B) + Q(8) = Q(4) + Q(B).

It is not generally assumed that Q(@) = 0. A probability measure P on Bg is an
increasingly monotonic and additive univariate set function with P(#) = 0 and
P(8)=1.

A bivariate set function  on Bg x Bg is skew-monotonic if it is decreasingly
monotonic in its first argument and increasingly monotoric in its second argument,
i.e., for all A,B,C € Bg for which A2 B,

Q(B,C) > (4, C) and Q(C, 4) > §(C, B).

Note that (8, 5) > Q(4, B) = (S, 8) for all A, B € Bg.
This section considers bivariate forms of threshold functions which lead to the
following general threshold representation for »-: for all A, B € Bg,

A» B <= P(A) > P(B)+ 824, B).

To formulate necessary and sufficient axioms, we define an indicator function I on
S x Bs by
1 ifse A

0 otherwise.

I(s;A)::{

The following theorem says that the one-way representation axiomatized by
Adams and Fishburn is equivalent to the strictly agreeing representation with bi-
variate threshold.

Theorem 2.1 (Adams, 1965; Fishburn, 1969) There exist a probability measure
P on Bs and a bivariate set function 2 > 0 on Bg % Bg such that for all A, B € Bg,

A > B<= P(A) > P(B)+ Q(A, B)
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if and only if the following aziom holds for all A1,A4q,...,B1,Bs,... € Bg and all
integers m = 1,

A2.1 ifforallse s, -
m m
D I(s;4) < 3" I(s; By),
=1 ’ ~i=1 o

then it is false that 4; » B; fori=1,...,m.

Proof. Since axiom A2.1 is necessary and sufficient for the one-way representation,
it suffices to prove that the one-way representation can be translated into a bivariate
threshold model. We define

0 if A» B,
Q(A’B)Z{ |P(4) - P(B)| ifA~B.

Then it easily follows that for all A, B € Bg,
A»> B = P(A) > P(B) + (A, B).
This completes the proof. O

Fishburn (1969) noted that A2.1 implies that A 2 B = not(B > A), and that > is
irreflexive, asymmetric, and acyclic, i.e., (A1 >~ A, Ag > As,..., Am_1 = An) =
A1 = Am. Also, A2.1 does not imply that S > @, or that » is transitive, or that
A C when A > B and BD C.

The inclusion monotonicity is defined in two ways as follows. We say that > is
upward inclusion monotonic if, for all 4, B,C € Bg,

ADBand By-C == A C;
and downward inclusion monotonic if, for all A, B,C € Bg,
A Band BD C == A» C.

Fishburn (1969) showed that the downward inclusion monotonicity and axiom A2.2
below, which replaces inequality in A2.1 by equality, are sufficient for the representa~
tion of Theorem 2.1, and noted that we could add the upward inclusion monotonicity
although the dwonward inclusion monotonicity and A2.2 do not imply the upward
inclusion monotonicity. However, the following theorem shows that the downward
and upward inclusion monotonicities together with A2.2 impose skew-monotonicity
on the threshold function 2.

Theorem 2.2 There ezist a probability measure P on Bg and a skew-monotonic
bivariate set function Q > 0 on Bg x Bg such that for all A, B € Bs,

A» B <= P(A) > P(B)+ A, B)
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if and only if = is upward end downward inclusion monotonic and the following
aziom holds, for all A1, As,..., B1,Bs,... € Bs and all integers m > 1,

A2.2 ifforallse §,

ZI(S; Ai) = ZI(S; B;),
=1

i=1
then it is false that A; - B; fori=1,...,m.

It easily follows from skew-monotonicity of {2 that the upward and downward inclu-
sion monotonicities are necessary for the representation of the theorem. To see the
necessity of A2.2, suppose that the hypotheses of the axiom holds and A4; >~ B; for
t=1,...,m. Then 32, P(4;) = T2 P(B;), since 1%, I(s; A;) = 07, I(s; By).
It follows from the representation that 370, P(A4;) > S P(B;) 4+ TR, Q(4;, Bs),
so 0 > 370, Q(A; B;), which contradicts nonnegativity of €. Therefore, A2.2 is
necessary for the representation.

If we add the condition of S > @, i.e., nonemptyness of >, then we must have
that O(S,0) < 1. Clearly, A2.2 itself is not sufficient for the representation of
Theorem 2.1, but A2.2 together with the downward inclusion monotonicity implies
A2.1. Since A2.1 implies A2.2, the upward and downward inclusion monotonicities
require that threshold function (2 in Theorem 2.1 be skew-monotonic. This suggests
that when > ageeing with the representation of Theorem 2.1 satisfies the upward
and downward monotonicities, the threshold function can be always modifies to be
skew-momnotonic. To see this, consider the following example.

Example 2.1 Suppose that > agrees with the representation of Theorem 2.1, i.e.
for all A, B € B,
A» B+ $(A,B)>0,

where &(A4, B) = P(A) — P(B) — (4, B). Suppose also that & is skew-monotonic.
Thus > is upward and downward inclusion monotonic. We note that € is not
necessarily skew-monotonic. We show below that € can be modified to be skew-
monotonic. To see this, let ¢ = max{2(4, B} : (4, B) < 0 and (4, B) € Bs x Bs},
and define a bivariate set function &' on Bg x Bs as follows: for all A, B € By,

, _ [ e if®A,B)<0,
Q (A:B) - { 0 otherwise.

It follows from the definition of ' and the upward and downward monotonicities
that €V is skew-monotonic. We obtain that, for all 4, B € Bg,
®(A,B)>0 = P(A)-P(B)>0
= P(4)-P(B) > (V(4,B),
®(A,B)<0 = P(A)-PB)<QA4,B)<¢
= P(4)- P(B)<Q(4,B),

so that the representation of Theorem 2.2 holds.



3 Separable Thresholds

In the rest of the paper, we shall consider (additive) separability of the threshold
function € in Theorem 2.1, i.e., there are two univariate set functions, ¢ and o~
on Bg such that for all ‘A, B € Bg,

A, B) =0 (A) +a¥(B).
Thus the numerical representation for > that we shall examine is given by
A> B P(A)—o~(4) > P(B)+c*(B).
Letting @ = P — o™, this representation is rearranged to give
A> B> Q(A) > Q(B) +0(B) +o7(B),

where ¢~ (B) + ¢T(B) = (YB,B) = 0. Since the threshold function turns out to
be univariate, separable thresholds require that > be an interval order. We note,
however, that @ may not be a probability measure, Recall that > on Bg is an
interval order if it is irreflexive and for all A,B,C,D € Bg, A~ Dor C » B
whenever A > B and C > D). Asymmetry and transitivity of » follow from the
definition of interval orders, so that > is a strict partial order.

Since 2 is nonnegative, we have that mino~ 4 mino™ > 0, where for * €
{+,—}, mino* denotes minaepr; o*(A) for short. We show that o~ and o+ can be
respectively modified to w™ and w™ in such a way that w™ 2 0, w* > 0, and for all
A, B € Bg, '

A» B<4+= P(A) —w(4) > P(B) +wt(B).

To see this, we define, for all A € Bg,
ct{A)+ mine~ ifming* > 0> mino™,

wt(A) = o (A)~minct ifming~ > 0> minct,
ot (A) otherwise,

7 ¢~ (A)—ming~ ifminct > 0> mino-,
w (4A) = { ¢67(A)+mineT if minc~ > 0> minct,
o~ (A) otherwise,

so that wT™ > 0 and w™ > 0. It readily follows from the definitions of w+ and w—
that for all A, B € Bg,

P(A)Y -0~ (A) > P(B)+0™(B)
<~ P(4)—-w (A)> P(B)+wH(B).

The most general representation that yields additively separable threshold in
this paper is given by the following theorem, which says that if > agreeing with the



representation of Theorem 2.1 is an interval order, then the threshold function Q in
Theorem 2.1 can be additively separable.

Theorem 8.1 There ezist a probability measure P on Bg and set functions, wt > 0
and w™ 2 0, on Bg such that for all A, B € Bs,

A» B< P(A)> P(B)+w (4) +w™(B)
if and only if = is an interval order and A2.1 holds.

Clearly, it is necessary that > is an interval order. To see the necessity of A2.1,
suppose that Y%, I(s; A:) < S5, I(s; B;) and A; = B; for i = 1,...,m. Then
Yoiz1 P(Ag)—Y a1 P(B;) <0, and the representation requires that P(4;) > P(B;)+
w™{As) +wt(B;) for i = 1,...,m. Summing over ¢ yields 7" P(A;) - 3%, P(B;) >
Ty (w(Ai) + wt(B;)) = 0. which leads to 0 > 0, a contradiction. Hence A2.1
must be necessary for the representation.

Now we consider the effect of inclusion monotonicity on the representation of
Theorem 3.1. It turns out that the resulting additively separable threshold is not
necessarily skew-monotonic as shown by the following theorem.

Theorem 3.2 (Fishburn, 1986) There ezist a probability measure P on Bs and
set functions, w™ 2 0 end w¥ > 0, on Bg such that P — w™ and P + wt are
increasingly monotonic, and for all A, B € Bg,

A > B <= P(A) > P(B) +w (A) +wH(B)

if and only if = is an interval order and upward end downward inclusion monotonic,
and A2.2 holds.

This theorem says that if > agreeing with the representation of Theorem 2.2 is an
interval order, then the threshold function §? in Example 2.1 in place of the one
in Theorem 2.2 can be additively separable. Fishburn (1986) called the threshold
model of the theorem an additive interval model, and showed that the representation
of Theorem 3.2 obtains if A2.1 in place of A2.2 holds. However, the weaker A2.2
suffices, since A2.2 together with the downward inclusion monotonicity implies A2.1.
The following theorem provides necessary and sufficient axioms for the skew-
monotonic threshold function of Theorem 2.2 to be additively separable.

Theorem 8.8 There erist o probability measure P on Bg, a decreasingly mono-
tonic set functionw™ > 0 on Bg, end an increasingly monotonic set functionw™ > 0
on Bg such that for all A, B € Bg,

A» B« P(A)> P(B) +w (A) +w¥(B)

if and only if > is en interval order and upward and downwanrd inclusion monotonic,
and. the following aziom holds for all Ay, As, ..., By, By,..., Cy,Cs,..., D1,Ds,... €
Bg, all integers m > 1, and all integers 0 < €< m,
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AB.3 if D; € Bi, Azwy € Ci, and not(C; = Dy) fori = 1,...,£ and some
permutation ® on {1,...,m}, and for alls € S,

m £ m £
S I(sA) + 3 K D) = Y Hs B + 3 1(s; G,
i=1 i=1 i=1 i=1

then it is false that A; > By fori=1,...,m,

We note that A3.3 is equivalent to A2.2 when £ = (. To show the necessity
of A3.3, suppose that D; C B;, Ay C Ci, not(C; = D;) for ¢ = 1,...,£ and
some permutation 7 on {1,...,m}, A; > B; for ¢t = 1,...,m, and for all s € 5,
Z?;I I(S; At) +Zf=1 I(S; D‘i) = Egl I(S5 B‘i) +2€=1 I(s; Cz) Thenfori=1,...,m
and j=1,...,4, we get

P(A) —w (4;) > P(B)+ w"‘(B,-),
P(Dg)+w*(Dy) 2 P(Cj)—w™(Cy).

Summing over ¢ and j, we get

m £
> (P(Argyy) — w™ (Aey)) + D> (P(D5) +wt(Dy))
=1 =1
m £ '
> Y (P(Bi) +wt(Bi)) 4+ > (P(Cy) = w™(Cy))-
i=] . i=1

Using 2721 I(8; Any) + iay 1(s; Di) = S8, I(s; Bi) + They I(s;C3), we get
2 m m I 4
DowT(D) =Y T (Ary) > D _wh(Bi) - Y w(Cy).
=1 i=1 i=1 =1

Since w™ 2 0, wt > 0, w (Agy) 2 w(Cy) and wt(D;) S wH (B} fori=1,...,¢,
we get a contradition, Hence A2.3 is necessary for the representation,

The following example shows that the conditions of Theorem 3.2 do not imply
A3.3, so that w™ and w* in Theorem 3.2 cannot be modified to be respectively
decreasingly and increasingly monotonic. As discussed in the preceding section,
those w™ and wt can be combined into a skew-monotonic bivariate set function £
without affecting the representability of ». In the sequel, given a univariate set
function @ on Bg, we shall write Q(s) and Q(s,t) in place of Q({s}) and Q{{s,t}),
respectively.

Example 8.1 Let § = {s1, sz, 83,54} with P(s1) = £, P(s3) = P(s3) = §, P(s4) =
% and w™ = wt = 0 except w™(s1,87) = % Then P—w™~ and P+w™ are increasingly
monotonic. We define > according to the representation of Theorem 3.2, Let m = 2,
£ =1, Ay = {s2,84}, A2 = {&1}, By = {83}, Bz = {s4}, C1 = {s1,82}, and
Dy = {s3} for A3.3. Then D; C By, A2 C C and I(s; A1) + I(s; Ag) + I(s; Dy) =
I(s; B1) + I(s; Ba) + I{s; C1). However, the representation of Theorem 3.2 requires
that Ay > By, Ag > Bg, and Cy ~ D;. This contradicts A3.3.



4 Univariate Thresholds

As discussed in the previous section, numerical representations with separable thresh-
olds are reduced to the representations with univariate thresholds, but we may not
have probability measures. This section considers the existence of probability mea-
sures with univariate thresholds.

To formulate necessary and sufficient axioms, we-shall use a binary relation »*
on Bg defined from > as follows: for all A, B & Bg,

Ar*B<4+= A» C~ B for some C € Bg.

Note that >* is an asymmetric weak order (see Fishburn, 1984).
The most general univariate threshold model is given by

Theorem 4.1 There exist a probability measure P on Bg and a set functionw > 0
on Bg such that for all A, B € B,

A > B & P(4) > P(B) +w(B)

if and only if > is an interval order, and the following axiom holds, for all Ay, As, .. .,
By, By, ... € Bg and all integers m > 1,

Ad.l ifforallse S,

m

S I(sds) < 3 1 (ss B),

=1 i=1
then it is false that A; »* B; fori=1,...,m.

Fishburn (1969) showed that the conditions in Theorem 4.2 below are sufficient
for the representation of Theorem 4.1, since the downward inclusion monotonicity
is not necessary. To illustrate this, consider the following example.

Example 4.1 Let § = {s;,s} with P(s1) = 04, P(s3) = 0.6, w(f) = 0.7,
w(s1) = 0.1, w(sz) = 0.1, and w(S5) = 0, and define > according to the representation
of the theorem. Then {s3} > {s1} since P(sy) > P(s1) + w(s1), but not({sz} > )
since P(@) + w(0) > P(s2). Thus the downward inclusion monotonicty fails to hold.
Note that w is not increasingly momnotonic.

To show the necessity of A4.1, suppose that the representation of the theorem
and the hypotheses of A4.1 hold. Assume that A; »* B; fori = 1,...,m. Then
for each ¢, there is a C; € Bg such that A; > C; ~ B;, so that P(A4;) > P(C;) +
w(C;} and P(C;) + w(C;) = P(B;). Thus P(4;) > P(B;). Summing over i and
using > 7inq I(s; A} < T, I(s; B;), we get 0 > 0. Hence Ad.1 is necessary for the
representation. We note that A4.1 implies A2.1.

The upward and downward inclusion monotonicities require that P + w in The-
orem 4.1 be increasingly monotonic as shown by the following theorem.
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Theorem 4.2 There exist a probability measure P on Bg and a set functionw > 0
on Bg such that P 4- w is increasingly monotonic, and for all A, B € Bg,

A B << P(A) > P(B)+w(B)

if and only if = is an interval order and upward and downdard inclusion monotonic,
and the following axiom holds, for.all A1, Ap,....., B1,Ba,... €.8Bs and all integers
mz21,

Ad.2 ifforallse S,

i=1

S 15 i) = 3108 By),
i=1

then it is false that A; »=* B; fori=1,...,m.

The necessities of A4.2, interval order, and upward and downward inclusion
monotonicities easily follow. We note that A4.2 implies A2.2. To see that the
conditions of Theorem 4.2 implies A4.1, assume that for all s € S, 372, I(s; 4i) <

i1 I{s; B;). Then there are Dy,..., Dy, € Bg such that B; 2 D; fori=1,...,m
and 3% I{s; A;) = 301t I(s; D). By A4.2, not(Ay »* Dy) for some ¢ < k < m.
Assume Ay, >~* By, so A = C ~ Bj, for some C € Bg. Thus Ay, > C ~ By 2 Dy.
By the wpward inclusion monotonicity, not{(Dy > C). Thus A; > C = Dy, so
Ay »* Dy, a contradiction. Hence it is false that 4; =* B; fori=1,...,m, so A4.1
obtains.

The following theorem requires that w itself in Theorem 4.2 be increasingly
monotonie.

Theorem 4.3 There exist a probability measure P on Bg and an increasingly
monotonic set function w 2 0 on Bg such that for all A, B € Bg,

A= B+ P(A) > P(B)+w(B)

if and only if not(d > 0), - is upward and downward inclusion monotonic, and the
following aziom holds, for all Ay, As,..., B1,Ba,..., C1,Ca,..., D1,Dq,... € Bg
and all integers m > 1,

A4.8 if D; C B; and not(Cy» D;) fori=1,...,m, and for alls€ S,
m m m m
Yo I(s;A) + > I D)= (s Bi) + Y I(s;Ci),
i=1 i=1 i=1 i=1

then it is false that A; = B; fori=1,...,m.

It is easy to see that the upward and dmﬁnward inclusion monotonicities are
necessary for the representation. We show the necessity of A4.3. Suppose that
Y l(s4s) + 2 (s Da) = T2 I(s;Bi) + iz I(81 i), A > By, Dy C By,
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and not(C; > D;) for ¢ = 1,...,m. Then for each ¢, the representation of the
theorem gives that

P(A)) > P(B)+wt(By),
P(Di) +w(D;) > P(Cy).

Summing over ¢, we get
m m m m m m
S OP(A)+ >3 PD) + > w(Di) > S P(B) + > P(Ci)+ > w(Bi).
i=1 =1 i=1 i=1 i=]1 =1

Using 3772 I(s; Ag) + Simq I(s; D) = oy Is; By) + o, I(s; C;), we get

iw(Di) > iw(B,;).
=1

i=1

On the other hand, w(B;) > w(D;) for all { since w is increasingly monotonic. This
is a contradiction. Hence A4.3 is necessary for the representation.

We note that when 572, I(s; As) + 02 I(s; Dy) < 0, I(s; By) + 00, I(5;Cy)
in A4.3, we can drop upward and downward inclusion monotonicities. It easily
follows that that A4.3 implies A3.3. To see this, simply adding m — £ times I(s; §)
to the both sides of the equation in the hypotheses of A3.3 and applying A4.3 yield
the desired resul.

The conditions of Theorem 4.3 imply those of Theorem 4.2. To see this, suppose
that 3700, I(s; A;) = ik I(s; B;) and A; »* B; for ¢ = 1,...,m. Then there
are C1,...,Cp such that A; = C; ~ B; for i = 1,...,m. Since T, I(s; 4;) +
Yim I(8C) = 3oL I(s; Ci)+ 301, I(s; By), it follows from A4.3 that not(A; > Cr)
for some k. This is a contradiction. Hence A4.2 holds.

"To check that > is an interval order, let m = 1 and (A1, D1) = (By, C1) = (4, 0)
for A4.3. Then A4.3 and not(d > @) imply not(4 = A), so > is irreflexive. We
assume next that A > B and C > D, but not{A ~ D) and not(C - B). Let m = 2,
(A]_,Ag,Dl, DQ) = (A,C,D,B), and (.Bl,Bg, Cl, 02) = (B,D,A, C) for A4.3. Then
by A4.3, it is false that A » B and C » D. This is a contradiction. Hence, A > D
or C' > B, so that > is an interval order.

To show that the threshold function w in Theorem 4.2 cannet always be modified
to be increasingly monotonic, consider the following example.

Example 4.2 Let § = {s),5g,53} with P(s1) = P(sg) = 0.25, P(s;) = 0.5,
w(B) = w(S) = 0, w(s1) = w(sz) = 0.05, w(ss) = 0.3, and w(s1,s2) = w(s1,s3) =
w(sz, s3) = 0.2. Since P 4w is increasingly monotonic, we define > according to the
representation of Theorem 4.2. Then {sy,s2} > {s1, s3}, since P(sq,s2) = 0.75 >
P(s1, 83)+w(s1, 83) = 0.7, and sy ~ s3, since P(sp) = 0.5 < P(s3)+w(s3) = 0.55 and
P(s3) = 0.25 < P(s2) +w(s2) = 0.55. On the other hand, let m = 1, 4; = {s1, 55},
By = {s1,83}, C1 = {52}, and D; = {s3} for Ad.3. Since D; C By, not(Cy » Dy),
and I(s; A1) + I(s; D1) = I(s; B1) + I(s; C1), A4.3 implies not{A4; > By). This is a
contradiction,
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Although > in the above example does not agree with the representation of
Theorem 4.3, it agrees with the representation of Theorem 3.3. To illustrate this,
we construct an increasingly monotonic ¢* and a decreasingly monotonic o~ for
which for all 4, B € Bg,

A B &= P(A) > P(B) + 0~ (4) + 0*(B).

Let o%(0) = 0, 6% (s1) = o+ (sg) = 0.05, 0(s3) = 0.2, 07 (s1,82) = o(s1,83) =
o(sg,83) = 0.2,07(8) = 02,07 (0) = 0.2, 0~ (57) = 0.2, 0= (s2) = 0.1, 0~ {s3) = 0.2,
o(s1,83) = 0.1, and o= (81,83) = 07 (8,83) = ¢~ (5) = 0. Therefore, > in the
example could have both representations of Theorems 3.3 and 4.2 which are not
reduced to the representation of Theorem 4.3. However, the following two examples
show that the representations of Theorems 3.3 and 4.2 do not generally imply each
other.

Example 4.3 Let § = {s1,82,83,84}. Suppose that > on Bg agrees with the
representation of Theorem 4.2 with P(s;) = 0.3, P(s2) = 0.2, P(s3) = 0.1, P(sy4) =
0.4, and w(A4) = 0 for all A € Bg except w(s1) = 0.2,w(sy) = w(sz) = wlsyg) =
0.1,w(s1, 82) = 0.06,w(s1, 53) = w(sg, 54) = w(s3,84) = 0.1. Let A3 = {83,843}, Ap =
{83}, By = {s1, 82}, Bo = 0,01 = {51}, and C; = {s3,84}. Then P+w is increasingly
monotonic. It follows that D1 C By, 42 € C1, D ~ Cy and I(s; A1)} + I(s;42) +
I(s; D1) = I(s; B1)+1I(s; Bo)+I(s; Cy) for all s € S, so that the hypotheses of A3.3
for m = 2 and £ = 1 hold. However, we have A; > By and Az = Bp. Hence A3.3
fails to hold.

Example 4.4 Let S = {53, 52, 53, 54, S5}. Suppose that > on Bg agrees with the
representation of Theorem 3.3 with P(s1) = 0.2, P(s) = 0.2, P(s3) = 0.15, P(s4) =
0.3, P(s5) = 0.15, and w(A) = w(A4) = 0 for all A € Bg except w= (@) = 0.15,
w(s1) = 0.15,w (s2) = w™(ss) = w(s2,83) = 0.125, and w(s4) = w(s3) =
w” (s4,88) = w(s1,83) = w™ (81, 85) = w (83, 85) = w81, 83,55) = 0.06. Then w™
is increasingly monotonic and w™ is decreasingly monotonic. Let Ay = {s1, 53,85},
Ay = {so}, A3 = {s4}, B1 = {s4,85}, By = {s1}, and Bz = {s2,s3}. 'Then
I(s; A1) + I(s; Ag) + I(s; A3) = I(s;B1) + I{s; Ba) ++ I(s; Bs) for all s € S, so that
the hypotheses of A4.2 for m = 3 hold. However, we have A; »* B; for i = 1,2, 3.
Hence A4.2 fails to hold.

5 Additive Thresholds

This section is concerned with additive univariate threshold functions, Recall that
a univariate set function w on Bg is additive if, for all disjoint A, B € Bg, w(4A U
B) 4 w(8) = w(4) +w(B). Then w(A4) = X w(si) — (n— (@) = Ty (wlss) —
w(B)) + w(@) whenever A = {s1,...,8n}. Therefore, given an additive univariate set
function w > 0, we define additive univariate set functions, o5 > 0 and ¢ > 0, on
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Bs and a constant € as follows: ¢ = w(@), 65(0) = 0 (8) = 0, and for all s € S,

_ _ e—w(s) ifw(s)<e,
05(s) = { 0 otherwise,

_ | w(s) —e ifw(s) > e,
oi; () { 0 otherwise.
Thus w(A) = 0 (A) ~ 05 (A) + € for all A € Bg. Clearly, w is increasingly (respec-
tively, decreasingly) monotonic if ¢ = 0 (respectively, of = 0) and € > 0.

The case that o; and ¢ vanish (i.e., a constant threshold model) is developed
by Fishburn (1969). We examine three cases below. The first case, which is dealt
with in the following theorem, is that ¢ and o, may not vanish, but it ratains
the inclusion monotonicity. The second and third are respectively concerned with
o =0and o, =e=0.

Theorem 5.1 There ezist a probebility meosure P on Bg and an additive set
function w > 0 on Bs such that P 4w is increasingly monotonic, and for all A,B €
Bs,

A > B <= P(4) > P(B) +w(B)

if and only if > is irreflerive and upwerd and downward inclusion monotonic, and
the following axiom holds for all A1, As,. .., By, Ba,..., C1,Cs,..., Dy, Dq,... € Bg
and all integers m > 1,

AB.1 ifnot(Cy> Dy) fori=1,...,m, and forall s € S,

S I(s;4) = iI(S;Cz’),
=1

i=1

SIEE) = 35D,
i=1

i=]
then it is false that A; » By fori=1,... m.

We do not explicitly assume that > is an interval order. To see that > is an
interval order, suppose that A » B, C » D, not(4 > D), and not(C = B). Let
(A1, 42) = (4, C), (B, B) = (B, D), (C1,C2) = (4,C), and (D1, Dy) = (D, B) for
A3.1, so that the hypotheses of A5.1 hold. Hence A5.1 requires that both of 4 - B
and C > D do not hold, a contradiction. Hence = must be an interval order, since
> is irreflexive,

It is easy to see that irreflexivity and upward and downward inclusion mono-
tonicities are necessary for the representation. To see that A5.1 is also neces
sary, suppose that TPy I(s; As) = S, I(s Gi), Sy I(s Bi) = Ty I(s; Dy),
and not(C; = D;) and A; > B; for i = 1,...,m. For each 7, P(4;) > P(B;) +w(B;)
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and P(D;) + w(D;) > P(C;). Summing over ¢, we get

iP(A1 ZP(B )+ Zw(B,),

'.c--l
ZP(D )+ Zw(D.,) > ZP(C,
. S . z—l
which are combined to give
Z‘P(A )+ ZP(D,) + zw(pz) > ZP(B )+ Zw(Bg) + ZP(Gz
i=] i=1 i=1 i=1

Smce P and w are additive, using 2‘4_1 I(s; A)) =Y I(s; Ci) and 302, I(s; B;) =
*, I(s; D;), we have

SP(A) = 3P,

i=1 ?.--1
S P(BY+ 3 w(B) = ZP(D1)+2w(D,),
i=1 i=1 i=1

which contradict the above strict inequality. Hence A5.1 is necessary for the repre-
sentation.

We note that A5.1 implies A4.2. To see this, assume that A5.1 and the hypothe-
ses of A4.2 hold, i.e, 372, I(sAs) = St I(s; B;) for all s € S. Suppose that
there are C1,...,Cn € Bg such that A; > C;~ B; fori=1,...,m, i.e.,, A; »* B,.
Since 3772 I(s; Ci) = o0 I(s;C;) for all s € S, it is false by AB.1 that 4; > C; for
t=1,...,m. This is a contradiction, so that A4.2 holds.

Note that the conditions of Theorem 5.1 excluding the downward inclusion mono-
tonicity are necessary and sufficient for the representation of Theorem 5.1 without
increasing monotonicity of P + w.

Although the conditions of Theorem 4.2 do not imply the representation of Theo-
rem 3.3 as shown by Example 4.3, the representation of Theorem 5.1 can be modified
to the representation of Theorem 3.3 as shown below. Suppose that Theorem 5.1
holds with an additive univariate threshold function w. Let € = w(@) > 0. Since
there are additive univariate set functions, ¢ = 0 and ¢} > 0, on Bs such that

o7 =05 (0) =0and w =0} — 07 + ¢, it follows that, for all A, B € Bg,
P(A) > P(B) + w(B)
= P(A)>PB)+o}(B)—0c;(B)+c¢
< P(A)—0,(A)> P(BY—0,(B)~o;(A)+0o}(B)+e
= Q(4) - w (4) > Q(B)+wt(B),

where @ = P — 07 + ¢, w™ = €— 0, and wt = g}. By the definitions of o
and o, we have that @ > 0, w™ > 0, wt > 0, w™ is decreasingly monotonic, and
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w? is increasingly monotonic. By an appropriate normalization of @, we obtain the
representation of Theorem 3.3. '
The case that o vanishes is covered by the following theorem.

Theorem 5.2 There exist a probability megsure P on Bs and an incressingly
monotonic additive set function w > 0 on Bg such that for all A, B € Bg,

A> B <= P(4) > P(B) +w(B)

if and only if not(d > B), and the following exiom holds for all A1, As,..., B1, B, ...,
C1,Co...., D1,Ds,... € Bg and cll integersm > 1,

AB.2 if not(Ci» Dy) fori=1,...,m, and for allse S,

S s A+ 3 (D) € S I(s B + 3 I(s 0,
i=} =1

i=1 =1

iI(S; B;) = if(é‘; Dy),
=1

i=1
then it is false that A; >~ B; fori=1,...,m.

We note that the conditions of Theorem 5.2 are sufficient for the representation of
Theorem 5.1 as shown below. It easy to see that A5.2 implies A5.1. Let m = 1,
A1 =A, By = A, Cr =0, and Dy = A for A5.2. Since not(@ > 9), A5.2 implies
not(A = A), so = is irreflexive. To see that > is upward inclusion monotonic, suppose
that A > B, B > C, and not(A > C). Thenlet m =1, 4; = B, By = D; = C,
and C1 = A for A5.2. Then by A5.2, not(B = C), a contradiction. To see that >
is downward inclusion monotonic, suppose that A = B, B D C, and not(4 » C).
Then let m = 1, Ay = Gy = A, By == B, and Dy = C for A5.2. Then by A5.2,
not(A = B), a contradiction,

The following two examples show that the representations of Theorem 5.1 and
4.3 do not generally imply each other,

Example 5.1 Let § = {51,357, 53} with P(s1) = 0.2, P(sp) = P(s3) = 0.4, w(0) =
w(s1) = 0.3, w(sz) = 0.1, and w(s3) = 0.4. Since P + w is increasingly monotonic,
we define > on Bg according to the representation of Theorem 5.1. Then {s3,s3} >
{51,82} since P(sg,83) = 0.8 > P(s1,83) + w(s3,82) = 0.7, and {81} ~ {s3} since
P(s1) = 0.2 < P(s3) + w(s3) = 0.8 and P(s3) = 0.4 < P(s1) +w(s1) = 0.5. On the
other hand, let m = 1, Ay = {2, 83}, By = {81,982}, C1 = {s3}, and Dy = {81} for
A4.3. Since not(Cy + Dy), I(s; A1) + I(s; D1) = I(s; Ba) + I(s; Cy), and Dy C By,
A4.3 implies not(A; > B;). This is a contradiction.

Example 5.2 Suppose that the representation of Theorem 4.3 holds with a prob-
ability measure P and an increasingly monotonic set fumction w > 0. Let § =
{s1,...,86} with P(s1) = P(s3) = P(s3) = 0.1, P(s4) = P(s5) = 0.2, P(sg) = 0.3,
w(s1) = 0.05, w(se) = 0.1, w(s1,83) = 0.3, and w(sz,83) = 0.1. Let Ay = {s4},
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Az = {s5,36}, C1 = {s5}, Co = {84, 56}, B1 = {51}, B2 = {s2,83}, D1 = {82}, and
Dy = {s1,s3}. Then we have

P(A1)=02 > P(B;)+w(B)=0.15,

P(42) =05 > P(Bp)+w(B,) =03,
P(D1)+w(D1) =02 > P(C1)=0.2,
P(Da)+w(Dz) =05 > P(C,)= 0.5,

so that A; > By, Az > Bz, not(C1 > Di), and not(Cy > Dy). However, I{s; A1) +
I(s; A2) = I{s;C1) + I(s;Ca) and I(s;B1) - I(s; Ba) = I(s;.D1) + I(s; D3) for all
s € §. This viclates Axiom AB.1.

The last case deals with ¢ = ¢ = 0 as follows.

Theorem 5.3 There ezist a probability measure P and an additive set function
w2 0 on By such thet w(B) = 0 and for all A, B € Bg,

A > B<= P(4) > P(B) + w(B),

if and only if > is irreflevive and upward inclusion monotonic, and the following
aziom holds for all A1, As,..., By, Bs,..., C1,Ca,..., D1, Dy,... € Bg, all integers
m 2 1, and all integers £ > 1,

AB.3 if not(Cy >~ D;) fori=1,...,¢ and for all s € 5,

m £
DI(siA) = > I(sCh),
i=1

i=1

m 2
D I(s;By) = > I(s;Dy),
then it is false that A; - B; fori=1,...,m.

It is easy to see that A5.3 implies A5.2. The downward inclusion monotonicity
follows from AB.3. To see this, suppose 4 = B, B 2 C, and not(4 = C. Let
A = A, By = .B, (01,02) = (A,@), and (D]_,Dz) = (C,B \ C) for A5.3. By the
upward inclusion monotonicity, not(Cy > Dg). Since not(Ci = Di), Ab.3 implies
not(A = B), a contradiction. Hence the downwaxd inclusion monotonicity helds.

6 Sufficiency Proofs

This section provides sufficiency proofs of the theorems in the preceding sections
except Theorems 2.1 and 3.2. The necessities of the axioms were noted in those
sections. Our sufficiency proofs use the following version of the familiar lemma for
the existence of a solution to a finite system of linear inequalities (see Fishburn,
1970). When a = (a1,...,an) and b = (by,...,by) are N dimensional vectors of
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real numbers, denote the inxner product by a-b = Eiﬂl aib;. A real vector is called
rational if each component is a rational number, and is called integral if each of its
components is an integer.

Lemma 1 Let al,...,aM be N dimensional rational vectors and 1 < K < M.
Then either there is an N dimensional integral vector p such that

p-af > 0 fork=1,.. K,
p-a*f > 0 fork:K—I—l,...,M,

or else there are nonnegative integers o, ..., car, with o > 0 for some k < K,
such that

M
> opaf=0forj=1,..,N.
k=1

Note that the last equations in the lemma are described in the vector form by

M
Z Ot]‘._ﬂ.k = O,
k=1

where 0 is an IV dimensional zero vector. Since this equation says that some of
aly...,a* are linearly dependent, we shall call it the linearly dependent (LD) equa-
tion.

Throughout the proofs we shall let n be the number of states in § with § =
{s1,...,8n} and Bg = {81,...,50n}. Let B% be the set of all subsets of Bg and

define indicator functions I on Bs x B% and J on Bg x Bg x B% x B% by

-« [1 ifAcA
I(4;4) = {0 otherwise.

L 1 it(4,B)eAxB
J(4,B; A, B) {0 otherwise.

For a univariate set function @ on Bg and a bivariate set function R on Bg x Bs,
we define an n dimensional row vector pQ a 22" dimensional row vector Pr, and a
2" dimensional row vector jg by

pg = (Q{si})...,Q{sn}));
PR = (R(SI)S].)J"'3R(51$52")1"-:-R(S.'Z“:Sl)!"'33(32"#82“))}
Pe = (Q(51),...,Q(S)).

For A, B € Bg, we define three column vectors, #{A)} with dimension n, §(A4) with
dimension 2", and 7(A, B) with dimension 22" by
0i(4) = I(siA) fori<ign,
0:(A) = I(Si{A}) for 1 <4<27,
Fon(j—ny+k(4, B) = J(Sj, Sk; {A},{B}) for 1<j<2%and 1 <k <2”
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Note that 8 and 7 are unit vectors. Given = on By, let

P = {(A,B)eBsxBs: A» B},
P = {(4,B)eBsxBs: A~ B},
S = {s€8:{s}~G},

P> = {(A,B)eBsxBs:AD B},

and enumerate P;. as (41, B1),..., (AL, Br,), half of P, as (C1, D1),...,(Cr;, Dr,)
by using only one of (4, B) and (B, A) when A ~ B, S% as s1,...,5%2, and P as
(EI)F].):"'J(EL4:FL4)' .

Sufficiency Proof of Theorem 2.2 We assume that > is upward and downward
inclusion monotonic and axiom A2.2 holds.

To specify our system of linear inequalities, suppose that the representation of the
theorem holds with a probability meausre P on Bg and a skew-monotone bivariate
set funciton 2 > 0 on Bg x Bg satisfying that '

(la) P(A) - P(B)— (A, B) > 0 for all A, B¢ Bg such that A > B,
(1b) P(B) — P(A) + A4, B) > 0 and P(A) — P(B) + SYB,4) > 0 for all
A, B € Bg such that A ~ B,

Then letting p = (op, i) be an (n + 22)-dimensional row vector, our system of
linear inequalities is stated as follows. '

| (a) 5. 9(:-4;21;’8§31) | 50 fori=1,...,Ly,
(b) . 9({3% - g()c:) 50 and
p_:e(gz-)D;g?i)' >0 fori=1,...,L,
(©) o [ 1N ] 5 fori=1,..., 5y
@ P :%(.F:;,SJ-)_O%(Ei,Sj) = -
e e |20 ST
(e) p.:;_(g’@) > 0.
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Inequalities (a) and (b) follow from (1a) and (1b), respectively. Nonnegativity of P
is reflected in (c), since the case of {s} > 0 is covered by (a). Inequalities (d) follow
from skew-monotonicity of 2. Nonnegativity of { follows from skew-monotonicity
and (e), since Q(0, ) = A4, B) > Q(S,0) for all A, B € Bg.

The sufficiency proof is completed by establishing that the system of linear in-
equalities (a) through (e) has a p solution. Suppose on the contrary that there is
no p solution. Then it follows from Lemma 1 that there are nonnegative integers,
ajfor ¢ =1,...,Ly, By for ¢ = 1,...,Lp and k = 1,2, v for ¢ = 1,..., L3, Sisk
fori=1,...,L4, = 1,...,2"% and k£ = 1,2, and e such that oy, > 0 for some
1< k< Ly, and

o [oy-eB) ], &, [amy~ecy] &, [ ecy-oD)
Zai[ — (A4 Bi) ]+;ﬁﬂ{ #(C, Di) }+Zﬂi2[ #(Ds, Cy) }

i=1 =1

L3 s" Ly 2n 0

i=1 i=lj=
Ly 2 0 0
t 2 b [ #(85, Bi) - 7(5;, F) J e [ #(5,0) } =0

In what follows, we show that Gy = 0 for i = 1,..., Ly and k = 1,2, When this is
the case, the first n rows of the LD equation give

L Ly
> enl8(A) - 0(Bi)) + > wf({s'}) = 0.
i=1 i=1

List the elements of P, and SO with a; repeats for (4;, B;) and v; repeats for s,
and enumerate them as (A 1hseeos (A, B} for Po and t1,...,t¥ for SO, where
m = EI_ o and K = Ez_l ¥;. Then we get

m K m
YIS ADN S I(s (£ = S I(s; BY).
i=1 i=1 i=1

Since, for each ¢ = 1,..., K, there is a 1 < k < m such that ' € B}, we can get rid
of one # at a time by reducmg a B} that contains the # to B\ {t‘} Continuning
this reduction process for all #, we arrive at a reduced B set {B ., B} for which
Bf 2 Bifori=1,...,m and

S I(si45) = 3~ I(s; BY).

=1 i=1

By the downward inclusion monotonicity, A; = B for i = 1,...,m, which violates
A2.2, so that there must be a p solution.
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Suppose that ED F, G2 H, E' 2 F', and G' 2 H'. If (F,G) = (E', H'), then

0

- 0
l 7(F,G)~ F(E,H) | T [ I, G') ~ KB, H') ]

0
= { HF', Gy = (B, H) } ’

where E 2 F' and G’ 2 H. Noting this fact, there are £ quadraples (E}, F}, G}, H}) €
Bs x Bg x Bg x Bg fori=1,...,£ such that for all ¢, Ef 2 F and G} 2 Hf, and

Lg 2n ) 0 Ly 27 0

i=17=1 i=1j=1

: 0
=3 | e st }

=1
Since ¥ is a unit vector, it follows from the LD equation that for each i = 1,...,4,
there is an 1 < 7* < Lj such that ap > 0 and (A, Be) = (FF,Gi); so that
F! ~ G}
Similaly, for each ¢ = 1,...,4, we have that either, for some 1 € j* < Lg and
some k=1,2, By > 0 and

¢ ey _ ) (Cy; D) when k=1,
(E‘L :I_I-: ) - { (Dj"l CJ*) When k: — 2’

or (B}, Hf) = (8,0). Suppose that (E}f, Hy) # (S,0). Then E} ~ Hf. On the other
hand, since £} 2 Fy »~ G} 2 H}, it follows from upward and downward inclusion
monotonicities that Ef - Hf. This is a contradiction. Hence (G, H;) = (§,0) for
alli=1,...,£. Thuswehavee=Ffand B, =0fori=1,...,Ipand k=1,2. O

Sufficiency Proofs of Theorems 3.1 and 3.8 We assume that > is an inter-
val order, and either axiom A2.1 for Theorem 3.1 holds or upward and downward
inclusion monotonicities and axiom A3.3 hold for Theorem 3.3.

"To specify our system of linear inequalities, suppose that there exist a probability
measure P on Bg and set functions, wt > 0 and w™ > 0, on Bg such that

(la) P(A)—-P(B)—-w (A}—w™(B) > 0 for all 4, B € Bg such that 4 > B,
(1b) P(B)-P(A)+w™ (A)+w™ (B} > 0and P{A) - P(B)+w=(B)+wt(4) >0
for all A, B € Bg such that A ~ B.

Then letting p = (pp, pu-, Bu~) be an (n+2711)-dimensional row vector, our system
of linear inequalities is stated as follows.

(2 0(4s) — o(B:)
o —-0(4;) >0 fori=1,...,Ly,
—8(B;)
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(b) [ 8(Dy) - 6(Cy)

p 0(Cx) >0 and
| D)
[ 6(Ci) - 6(Ds) | _

p- 8(D;) >0 fori=1,...,Ls,

- 8(Cy) " o
(c) _ [ 6({s'})
o 0 20 fort=1,..., La,
0

Inequalities (a) and (b} follow from (1a) and (1b), respectively. Nonnegativity of P

is reflected in (c), since the case of {s} > @ is covered by (a).
For Theorem 3.1, nonnegativities of w~ and w are reflected by

(d) 0]
pe| 8(S) | =0 and
[ 0
o
pel 0 |=0 fori=1,...,2%,
| 0(53) |

For Theorem 3.3, decreasing monotonicity of w™ and increasing monotonicity of w

are respectively reflected by

(e) 0 _
p- | O(F)—-6(E) | >0. and
O -l
0
- 0_ > 0. fori=1,...,Ly4,
0(E;) — 0(Fy) |

Together with (e), the following inequalities assure that w+ and w™ are nonnegative

(f) [0
p-| 8(8) | =o.
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The proof is completed by establishing that the system of linear imequalities
(a)-(d) for Theorem 8.1, and (a)—(c), (e), and (f) for Theorem 3.3 has a p solution.
Suppose on the contrary that there is no g solution. Then it follows from Lemma
1 that there are nonnegative integers, o; fori=1,...,L;, By fori = 1,...,Lp and
J=12,yfori=1,..., L3, G fori=1,...,2% and j = 1,2, s for i = 1,...,Ly
and j = 1,2, and &; for j = 1,2 such that o, > O forsome 1 < k< Ly, 5 =k, =0
for all 7; 4 in case of Theorem 3.1, §;; = O for all 4, § in case of Theorem 3.3, and o

Ly 0(A;) — 0(B;) L 6(D;) — 0(Ci) L2 9(Cy) — 6(Ds)
> o —6(A;) +> Ba 0(Cs) +> Ba 0(Ds)
=1 =1

—6(B;) 0(Dy) i=1 0(Ci)
o [00HT] = [0 ] 0
+> % 0 [+D 8| 6(S) |+ 8| O
i=1 0 =1 0 = 8(S:)
Ly . 0 - 71 0
+ Zfﬂ O(F;) ~ 0(E;) | + Z €z | 0 :
i=1 0 i=1 8(E;) ~ 8(Fy)
0 0
+r1 | B(S) | + K2 ~0 = (.
0 8(0)

List the elements of Py, Pw,, S9, and P~ with o; repeats for (4;, B;), fiz repeats for
(Ci, Ds), Bz repeats for (D;, C;), v; repeats for s°, ¢ repeats for (F, E;), and e
repeats for (E;, Fi), and then enumerate them as (4%, BY),..., (4%, , By, ) for Py,
(C1,D}),. ., (Chgs Ding) Tox Py £, 5 for O, (G4, H}), .., (G, HE,) for e
versely ordered pairs of P, and (EY, F{), ..., (B}, I}, ) for P, wherem; = Zf’,_ll g,
my = T2 (B + B), K = T8, &= 1w e, and fo = 3024, i,

First we show a sufficiency proof of Theorem 3.1, so that e = k5 = 0 for all , 7.
Suppose that my > 0. Then it follows from the LD equation that my > 1. For each
1<k < mg, there are 1 £ 1< my and 1 < j < my such that { # j, AY = Cg, and
B} = D;, so that

(A7) ~ 6(BF) B(A7) - 6(B;) 69(Dy) — 8(Cy)
—60(A}) + —6(A%) + -8(C})
~0(B}) ~0(B;) -6(Dy)
0(43) - 0(5;)
= -aay)
—0(B;)
Since - is an interval order, we have that A% > Bj. Thus we delete the pairs

(A}, Bf), (A}, B}), and (C}, Df) from the original sequence of the (4, B)- pairs.
Then we add the pair (4}, B}) as a new (A4, B)-pair, and reenumerate the remaining
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(A, B)-pairs and (C, D)-paixs, This process continues to delete all (C, D)-pairs, so
that the remaining (A, B)-pairs are enumerated as (44, B{),...,(4},, B}, where
m = my — Mg, Hence it follows from the first n rows of the LD equa.tlon that

=1

Z[G(A') — (B + Z[B({t‘})l =0,

which is equivalent to
m m
D I(s 4D <> I(s; BY).
i=1 i=1

Since A} > B} for i = 1,...,m, A2.1 is violated. Hence, there must be a p solution.

Now we show a sufficiency proof of Theorem 3.3, so that §;; = 0 for all ¢,j. By a
similar argument to the preceding paragraph, we assume with no loss of generality
that, for every 1 < k < mg, there exist no ¢, j such that A} = C} and B} = Dy,
Furthermore, we assume by appropriate cancellation that G‘* = Hj for no t,7,
E; = F} forno 4,7, Hy # § for all 4, and F} # 0 for all 4.

It fo]lows from the LD equation and rgnumbering the pairs (A}, Bf) for i =
1,...,m; and the pairs (C7,D;) for i = 1,...,mq that &1 + & > mg, k1 = kK,

my = mg+ K1, and there are permutations 7y on {1,...,m1} and mp on {1,...,my}
such that

AL @) Gi fori=1,...,4,

Cﬁzm = H} fori=1,...,4,

A;l(i) = ;2(1-) fori=41 +1,...,ma,

() fori=mp41,...,ms + Ky,

B = E} fori=1,...,4,

Dt = Ff fori=1,...,4,

B = Dp fori=1£o +1,...,may,

Bt = 0 fori=mg+1,...,mg+ kg,
so that Ap = B} for k = 1,...,my, and Cf ~ D}, Df € B}, and A;(i) C G} for
t=1,...,my and some permutation 7 on {1,...,m}.

By the first n rows of the LD equation, we get

ZI(S Af) —I-ZI(S D )—I-ZI(S {t'}) = %I(S;B;-*)—I-%I(S;Cf).
i=1 =1

i=1 i=1

Since, for each ¢ = 1,..., K, there is a 1 < k < mg such that either £ € B} \ D} or
the Gt \A”(L), we can get rid of one ¢ at a time by reducing either By, for which

t* € B \ D} to B \ {t'} or C} for which # € C} \ Ay to G\ {t}. Continuing

this reduction process for all if, we arrive at a reduced B set {B},..., B/, } and a
reduced C set {Cj,...,C,,} for which D} C B} and A*(;) C G; for i=1,...,mg,
and

m1
D oI(s;Af)+ ZI(S; D)= ZI(S; Bj) + ZI(s; Cl).
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Since A = Bf for i =1,...,m and B} 2 B} for j = 1,...,mq, and B} = Bj, for

k=ma+1,...,my, it follows from downward inclusion monotonicity that 4} > B!
fori =1,...,my. Since D} ~ Cf and Cf 2 Cl fori = 1,...,ma, it follows from
upward inclusion monotonicity that not{(C; » D}) fori=1,...,m2. Hence A3.3 is
violated, so that there must be a p solution. |

. Sufficiency Proofs of Theorems 4.1,-4.2,-and 4.3 - Assume that the conditions
of each of Theorems 4.1, 4.2, and 4.3 hold.

To specify our system of linear inequalities, suppose that there exist a probability
measure P on Bg and a univariate set function w > 0 on Bg such that

(1a) P(A) - P(B)—w(B)> 0for all A, B € Bs such that A - B,
(1b) P(B) - P(A)+w(B) 2 0and P(A) — P(B)+w(A) > 0for all 4, B € Bs
such that A ~ B,

Then letting p = (pp, f;) be an (n + 2")-dimensional row vector, our system of
linear inequalities is stated as follows.

(a) [ 6(A:) - 0(B:) ]| _ fori=1,...,01,
P - —'é(B-,_) >0 1
(b) 0. | G(D;")(BS(C” >0 fori=1,..., Ly,
[ 8(ci) - (D) ] fori=1,...,Lq,

ol e |20
(C) prg({gz})]zo fori=1,...,Ls,

Inequalities (a) and (b) follow from (1a) and (1h), respectively. Nonnegativity of P
is reflected in (c), since the case of {s} > 0 is covered by (a). Nonnegativity of w is
covered by (b), since A ~ A implies w(A4) > 0.

For Theorem 4.2, we add

(d) _ 6(E; \ F;) fori=1,..., Ly,
p'lé'(Ef)—é(ﬂ-)}zo 4

which cover increasing monotonicity of P +w. For Theorem 4.3, we add

(e) 0

fori=1,...,L4
- - >0 - RERFR LY
g [ 6(E:) — 0(Fy) } =
which covers monotonicity of w.
The sufficiency proof is completed by establishing that the system of linear in-
equalities (a)-(c) for Theorem 4.1, (a)—-(d) for Theorem 4.2, and (a)-(c) and (e)
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for Theorem 4.3 has a p solution. Suppose on the contrary that there is no p so-
lution. Then it follows from Lemma 1 that there are nonnegative integers, o for
= 1,...,L1, ﬁij fori = 1,...,L2 and J =12, 5 for i = 1,...,L3, and (5,'_3' for
t=1,...,L4 and j = 1,2 such that §;; = 0 for all ¢, j in case of Theorem 4.1, §;; =0
for all 7 in case of Theorem 4.2, §; = 0 for all i in case of Theorem 4.3, e > 0 for
some 1 < k £ Lj, and

[ -6y ] & oDy —-0(C) ] & 8(C:) — 6(D;)
;m‘ -9(.5' +Zﬁzl l: é(Di) } +§ﬁi2 [ Q(Ci) :l
L. T e(s) 0(E; \ Fy) e 0 3
+§%’[ J-i-z& [é(E:)—é(Fz) }4—;(552[@(1%)_5(1%) } =0.

List the elements of Py, Pa, 5%, and P~ with o; repeats for (A, B;), Bi1 repeats for’
(Cs, Dg), Big repeats for (D;, C), v repeats for s*, §;; repeats for (E;, F}), and 6
repeats for (&;, Fy), and then enumerate them as (A%, B),.. o3 (Apys B, ) for Py,
(CI*:DI) (C;'Lz!D:‘;lz) for 'P~, tl tK for SO (EI:FI )! s(E:ng}Ff:m) for PD:
where my = Yi2) oy, mo = Zf21(ﬁz1+5zz) K = Y12 1, and mg = 354 (6 +60).

First we show a sufficiency proof of Theorem 4.1, so that &;; = 0 for all £, 7.
Therefore, it follows from the first n rows of the LD equation that

Z:I(S A%) +ZI(S D} )+ZI(S {t'}) = ZI(S B*)—I—ZI(S Cy).

i=1 =1
Since 4 is a unit vector, it easily follows that m; = = mg and B} = Dy for
1= 1 .-,mq and some permutation ¢ on {1,...,m1}, so that 3io% I(s; Bf) =

37 I(s; Df). With no loss of generality, we assume that Bf = Difori=1,...,mq.
Hence, Ietting; ™ = my, we obtain that A} > Bf = D} ~ Cf (ie, A} =* C}) for
i=1,...,m, and

ZI(S‘ A*)-I-TI(S {#} i[(s Ci)-
=1

which violate A4.1, so that there must be a p solution.
Next we show a sufficiency proof of Theorem 4.2. so that 653 = 0 for all 4. Suppose
that Ff = £Z. Then we have

[ﬁf’(Eﬁ\,Fe*) }4_[ 8(Ej \ Fy) }__[ 0(Ef \ Fy) J
0(E}) — 6(F) Q(E*) - @(F* 6(E}) ~ B(F‘)

so that two pairs, (Ef, F) and (E%, Fy), are reduced to generate a new pair (5;, Fy)

1) T
with E; 2 Fj. This process contmues until such reduction becomes impossible.
With no loss of generality, a sequence of pairs, (E, Ff), ..., (B}, Fp,) is assumed

to have no reduction.
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It follows from the LD equation and appropriately renumbering (4, B)-pairs
and (C, D)-pairs that my = mg > mg, Bf = Ef, Ff = D} fori=1,...,m3, and
Bj = Dj for j = mg+1,...,m1. Therefore, letting m = my, it follows from the
first n rows of the LD equation that A} » Bf D D! ~Cf fori=1,...,m and

S Hsds)+ 5 D*)+ZI (s #0)+ 3 1(s B\ B)

i=] i=1 i=1

= Zf(s B})+ ZI(S C?),

i=1
which is rearranged to give

m K m
DI AN+ (s {#)) = I(s 8.
i i=1

=]

Since, for each i = 1,..., K, there is 2 1 < k < m such that # € Cj, we can get rid
of one t* at a time by reducing a Cj, that contains the ¢* to Cy \ {t*}. Continuing
this rsduction process for all £/, we arrive at a reduced C set {C}{,...,CL} for which
Ci2Cjfori=1,...,m and

iI(s;AS) = iI(S; Ch)-
i=1

i=]

By the upward inclusion monotonicity, D} & Cf for ¢ = 1,...,m. Since Af > B} D
Dj, the downward inclusion monotonicity implies that A* > D* Hence A} >-* Ci
for t=1,...,m, which violate A4.2, so that there must be ap solutlon

Last we show a sufficiency proof of Theorem 4.3, so that §;; = 0 for all i. By a
similar argument to the proof of Theorem 4.2, we arrive at

m m
Zl(s Al +ZI(S D¥) -{-Zf(s {#}) = =>"I(s;Bf)+ > I(s;Cp),

i=1 =1 i=1
where m = m1 = mgp and A} = Bf D Df ~ C} fori = 1,.

Since, for each 1 = 1,..., K, there isal<k<m a,uch tha,t teClortte Bz,
we can get rid of one t‘ at a time by reducing Cj or B} that contains the t* to
Cp\ {#} or Bf \ {#%}, respectively. We assume that 0< K <K, #,.., 5 a
conta,med in some C sets, and 5+, . ¥ are not contained in C sets but in some
B sets., Continuing this reduction process for t1,...,¢%, we arrive at a reduced C
set {C1,...,Ch} for which C; D Cl fori=1,...,m and

m

ZI(S Af) +ZI(S D}) + Z I(si{tH=>_1I (s;B§)+iI(s;C§).

i=1 i=K'+1 i=1 i=1
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Since tK'+1 .. t¥ are contained in some B} \ D, we also get a reduced B set
{Bi,...,B},} for which Bf D B! 2 Df fori=1,...,m and

S (s A+ 3 (5 DY) = 3 (s B + 3 (s G,
t=1

i=1 i=1 i=1

. By.the-upward inclusion monotonicity, D} = Cj for.¢ = 1,...,m. By the downward
inclusion monotonicity, Af > B for all ¢, which violate A4.3, so that there must be
a p solution. ]

Sufficiency Proofs of Theorems 5.1, 5.2, and 5.3 We assume that the con-
ditions of each of Theorems 5.1, 5.2, and 5.3 hold.

To specify our system of linear inequalities, suppose that there exist a probability
measure P, an additive set function w > 0 on Bg, and a nonnegative constant € such
that w(@) = 0, and

(1a) P(A)— P(B)~w(B)—¢> 0 for all 4, B € By such that A > B,
(1b) P(B) — P(A) + w(B} + ¢ > 0 and P(A) -~ P(B) + w(4) + € > 0 for all
A, B € Bg such that A~ B, )

Then letting p = (pp,pu,€) be a (2n + 1)-dimensional row vector, our system of
linear inequalities is stated as follows,

(a) [ 6(4:) - 8(B;) ]
o —8(B;) >0 fori=1,..., L,
A
(b) [ 6(Dsi) - 6(Cy) ]
p- 8(D;) >0 and
e l -l
[ 6(Ci) —6(Ds) ]
o H(C’z) =0 fOIi:l,---;sz
1
(c) F0({s'})
pe| 0 >0 fori=1,...,La,
0 -
(d) [ 0({s:}) |
o | 6({s;}) | =0 fori=1,...,n,
0

Inequalities (a) and (b} follows from (1a) and (1b), respectively. Nonnegativity of
P is refiected in (c), since the case of {s} > @ is covered by (a). Nonnegativity of
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w 4 € follows from (b) since A ~ A implies w(A) + € > 0. Increasing monotomnicity
of P+ w + € is reflected in (d).
For Theorem 5.2, we replace (d) by

(e) 0
p] 8({s:}) | =0 fori=1,...,n,

which covers increasing monotonicity of w + ¢

The proof is completed by establishing that the system of linear inequalities (a)-
(¢} for Theorem 5.3, (a)-(d) for Theorem 5.1, and {(a)-(c), and (e) for Theorem 5.2
has a p solution. We shall omit the sufficiency proof for Theorem 5.3, since it is
similar to the one for Theorem 5.1 by letting ¢ = 0. Suppose on the contrary that
there is no p solution. Then it follows from Lemma 1 that there are nonnegative
integers, a; fori=1,...,Ly, By fori=1,...,Lpand §=1,2, v, fori=1,..., L,
and §; for i =1,...,n and 7 = 1,2 such that ;3 = 0 for all  in case of Theorem
5.1, ;1 = 0 for all ¢ in case of Theorem 5.2, ¢, > 0 for some 1 < k < L1, and

Ly 0(A) - 6(B;) Ls 8(Dy) - 6(Cy) Lz 0(Ci) ~ (D)
> e —8(B;) +3 Ba 0(D:) +> B 8(Cy)
i=1 -1 i=1 1 i=1 ‘ 1
s [0{sH ] = 0({si}) n 0
+> 0 + G| 0{s}) |+ 6| 0({s}) | =0.
= 0 = 0 i=1 0 .

List the elements of P, Pn, and SO with o; repeats for (A, B;), Bi repeats for
(Ciy D;}, Bi repeats for (Dy, C;), v; repeats for s, &;; repeats for s;, and 6 repeats
for ¢;, and enumerate them as (43, Bf), ..., (A}, By,) for Py, (C}, D4),..., (Ck, DY)
for P, t!,...,t5 for O, and r1,.. ., L for S, wherem = 2, 0; = S22, (B +Bin),
K =37 v and L= 37 (61 + 6i2).

Fisrt we show a sufficiency proof of Theorem 5.1, so that &, = 0 for all i.
Therefore, it follows from the LD equation that

m m ig L m m
D ASAD) F D Is D+ Hs D)+ Isir) = Y I B+ I(s0),
=1 i=1 i=1

i=1 i=] i=1

L m
s, DY+ > I(sr') = > I(s;B}).

i=1 i=1

m
i=1

Subtracting the second from the first and reducing C sets by getting rid of one # at

a time, we get a reduced C set {C1,...,C},} for which C; 2 C} for i = 1,...,m and

iI(s;Az’f) = iI(s; ch.

i=1 i=1
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By the upward inclusion monotonicty, not{(C; > D}) for i = 1,...,m. Similarly, re-
ducing B sets by getting rid of one r* at a time, we get. a reduced B set {B,..., B, }
for which B D B for i = 1,...,m and

m

> I(siD}) = 3" I(s; BY).
i=1 i=1

By the downward inclusion monotonicity, A} = B! for i = 1,...,m which violate
A5.1. Hence there must be a p solution.

Next we show a sufficiency proof of Theorem 5.2, so that &;; = 0 for all <. Thus
it follows from the LD equation that

m m ' K m m
DS AN+ Y s D+ 3 I {t)) = S I B+ > I(s:C}),
i=1 i=1 =1

i=1 i=1
m L . .om
D I DN +Y Is 7)) = Y I(s;BY).
i=1 =1 i=]
Since not(Cy ~ Df) and A} » B} for i = 1,...,m, A5.2 is violated. Hence there
must be a p solution. G
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