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Abstract

Let M be a set of a few integers. We consider a set of varieties in PG(n, ¢) such
that each variety contains p poinis and the number of points in the intersection
of two distinct varieties is contained in M. Such set is called a set of mutually
M-intersecting varieties. In this paper, it will be shown that there exist new sets
of mutually M-intersecting varieties by using Hermitian varieties in PG(2,4%) and
a unitary group of order ¢ + 1.

Let f be a homogeneous polynomial. The set of points = of PG(n,q)
satisfying f(z) = 0 is called a veriety and denoted by V(f). In a previous
paper [4], we proposed a problem called mutually M-intersecting varieties.
It is a set of varieties V(f1), V(f2), *-- , V(fs) which satisfies the following
three conditions:

(i) M is a set of non-negative integers.
i) [V(f)l=p for1<i<s.
(i) [V(f)NV{fl e M for 1 <4,j <s,i#J.

We will use V(p, M) to denote the set and V(p, #) when M is a singleton
{u}. Note s = [V(p, M)|. '

Some results on mutually {g}-intersecting varieties are shown in [4].
Using quadrics and a projective group on PG(3, ¢), we obtained V(g% 41, ¢+
1) consisting of ¢* varieties and V((g + 1)%,3¢ + 1) of ¢* varieties. Finding
V(p, M) which consists of a number of varieties is an interesting problem.
V(p, M) is useful to construct combinatorial designs such as (r, A)-design
and arrays like orthogonal, incomplete orthogonal or balanced arrays (2],
[3]. In this paper, we will use results on intersections of Hermitian varieties
shown by Kestenband [8] and construct new sets of mutually M-intersecting
Hermitian varieties in PG(2, ¢?) with M of a few integers.



1 Hermitian variety

A (n+1) x (n+ 1) square matrix H = (h;;) with elements from GF(g?)
is called a Hermitian matriz if hi; = hg-,- for all 4,5. Let A(@ = (agj) for a
matrix A = (a;;), aij € GF(g?). A Hermitian variety (abbreviated to HV) is
defined as {z € PG(2,¢%) ; f(z) = 27 Hx'?) = 0}, where H is a Hermitian
matrix. Here we use V(H) instead of V(f) to denote the Hermitian variety.
Two Hermitian matrices H and G are said to be equivalent if there exists
a nonsingular matrix P over GF(q?) such that PTHP® = G. When H is
a rank r Hermitian matrix, V(H) is called a rank r HV. A rank n + 1 HV
in PG(n,¢?) is also called a nondegenerate HV. The properties of a HV in
PG(2,¢%) have been studied [1], [8]. A HV in PG(2,¢%) contains ¢% + 1,
¢ +¢® + 1 or ¢° + 1 points, according to the rank 1, 2, or 3, respectively.
It is also known that any non-singular Hermitian matrix is equivalent to a
unit matrix 1. ‘

Kestenband [8] has showed a classification of V(H) in PG(2,¢%) with
respect to intersections with V(). Note that the minimal polynomial m(z)
of a matrix H satisfies m(H) = 0 and m/(H) $# 0 for any polynomial m/(z)
with deg(m/(z)) < deg(m(z)).

Result (B.C. Kestenband)
Let H be a non-singular Hermitian matrix. Let m(z) and g(z) be minimal
and characteristic polynomial of it respectively. V(H) NV (I) contains

(1) (g+1)? points, if m(z) = g(z) = (z - a)(z - B)(z - ), @, B, 7 distinct
elements of GF(qg).

(2) ¢® + g + 1 points, if m(z) = g(z) = (z — a)(z — )%, «, B, distinct

elements of GF(g).

(3) g+1 collinear points if m(z) = (z — a)(z - B) , a, B, distinct elements
of GF(q).

(4) ¢+1 points, if m(z) = g(z) = (z—a)p(z), @ € GF(q), p(z) : irreducible
over GF(g).

(5) ¢% + 1 points, if m(zx) = g(z) = (z — A)®.
(6) one point if m(z) = (z — \)%.

(7) ¢* — ¢ + 1 points, no three of which are collinear, if g(x) is irreducible
over GF(g?). '



In addition to the above result, Kestenband [7] generated a set x consist-
ing of ¢ +¢+1 Hermitian matrices with irreducible characteristic polynomi-
als over GF(g). The set of varieties from  directly forms V(g*+1, ¢ —g+1).
Since x is isomorphic to PG(2,¢), the incidence matrix of the varieties
V(¢® +1,¢% — ¢+ 1) and the points on PG(2,¢?) contains ¢ — ¢ + 1 copies
of PG(2,¢). In the next section, we use a Hermitian matrix with minimal
polynomial (z — 1)* and construct new mutually M-intersecting varieties
which are different from the result of Kestenband.

2 Constructions

We assume in the rest of this paper that g is an even prime power. A matrix
U is unitary if UTU(® = I. Consider the following unitary matrix U and
group U of order g + 1 over GF(g?).

oo

U= , where ot =1, & # 1 over GF(g?),

OO

0
(83
0 2

Q

U={LUU... U%.

Let H be a non-singular Hermitian matrix with minimal polynomial m(z) =
(z — 1)®. Without loss of generality, we can put

1 a 0
H=|a? 1 b|, wherea,beGF(g®)\ {0}, a%+57"=0.
0 1

Using above unitary group U, we define a set of HV’s by
H o= {V(H),V(Hy), ... ,V(He1)} ;where H; = U HU'D, Uieu.
Then H; is expressed by
1 ac®? 0
Hi=|a% 1 boM
0 bt 1

Note that any V(H;) € H is a nondegenerate HV and it contains @ +1
points.

Theorem 1 Let ¢ be an even prime power. Then H is a set of mutually
M-intersecting varieties V(g® + 1,¢° + 1), where [V(¢® +1,¢* + 1) = ¢+ 1.

3



Proof. We will show that any distinct two HV’s V(H;) and V(H;) of
H have ¢ + 1 points in common. We can say that |V(H,) NV(H;)| =
WV U HUAD) 0 v (oIt HUID)| = (VUi HUHDY 0 V)] for some
k such that U** = I. So we only show that the number of points of
V(H;) N V(H) for any V(H;) € H, H; # H is ¢® + 1. Moreover we have
[V(H;) NV (H)| = [V(PTHP@)NV(I)], where P is a non-singular matrix
such that PPHP@) = I

1 a% a%%

P=|[0 ¢t b2 ], wheret?(a®"! + 1) =1 over GF(¢?).
0 0 ¢t

The characteristic polynomial of PEH;P(®) is det(PH;P@) — z]) =

det(P*H; P — z P*HP®D) = det(PT) det(H; — zH;) det(P®) = det(H -
zH;) = (z — 1)%. When the first row of PtH;P( 951 is expressed by p%

(1, atq(l—i—cx’)q abt(1+a')?), the (1,1)-entry of (PtH; P9 —I)2 is pr(9)+1 =
14 @TLIH (1 4 )9 . @@ 1pr et (1 4 0f) 0 1 = g2tE(1 +at)il £ 0
by t9t1(1+59+1) = 1. Since (PtH; P(®) —I)2 3 0, the minimal polynomial of
PTH; P is (z —1)3. Hence we have |V (H;) N V(H)| = ¢> + 1 from Result
given by the previous section. [

Next consider two non-singular Hermitian matrices H and H' both hav-
ing the minimal polynomial m(z) = (z —1)3. Then as we mentioned before,
we can define two sets as follows:

Hap = {V(H), V(Ha),... ,V(Hp1)}, where H; = UTHUY?, Uiy,
He = {V(HL, V(HY), ... ,V(HL)}, where Hy = UF H'UFD, vl ey,

where

1 a 0 1 ¢ 0
H=1]a? 1 b}, H=}|c 1 d},
0 B 1 0 d1 1

a,b,¢c,d € GF(g?)\ {0}, 9"} +89* =0, ot 4ot =0,

In order to have H,p and H. g which are disjoint, we have to restrict a,b,c,
and d. Let w be a primitive element of the multiplicative group GF(qz)\{O}
of order g% —1. Let K = {1,w?},... ,w%?~1} be a multiplicative subgroup
of order g+ 1 and K3 = K - w® for A: cosets of K, 0 < k < g — 2. Suppose
a € K, 0 <! < q—2. Then the (2,2)-entry aa’® of H; is also an element of
K since e is included in K. So for 1 € ¢ < g+ 1, ac’? runs over all elements
of Kj. From a?*! + b9+l = 0, b must be contained in K;. Hence we must
choose ¢ and d from cosets Ki, k # I, to satisfy Hop N Heq = ¢.
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Theorem 2 Let g be an even prime power. If a and c belong to different
cosets Ky and K respectively, then Hop U Heqg is a set of mutually M-
intersecting varieties V(¢®+1, M), where M C {g>+1,(g+1)?} and [V(g®+
LM)|=2(g+1).

Proof. From Theorem 1, H,p and Hyq4 are both V(¢® + 1,¢> +1). So
we have to consider the number of points in the intersection of V' (H;) and
V(H}) for H; € Hop and H} € Heg. It is easily seen that |V (H;) NV (Hj)| =
|V(H) NV(Hj,,;)| for some k such that U*** = I. And we have |V(I-I) N
V(H))| = V() N V(PTH] ' P(9)|, where P is a non-singular matrix such
that PP HP(@) = I. The characteristic polynomial g(z) of PLH; P is (z —
1)(2? + 6z + 1), where § = (ac? + bd?)a® + (alc + b9d)o?. The quadratic
equation 22+ 62+ 1 = 0 has one solution over GF(g) if § = 0. Then we have
g(z) = (z — 1) and (P*H; P9 — zI)? # 0. Hence the minimal polynomial
m(z) of P‘Hj’-P(‘I) is m{z) = (z—1)%. When the equation z2+6z+1 = 0 has
- two solutions, m{z) = g(z) = (z—1){(z—B)(z—7), where 1 # 8 # v € GF(qg).
When the equation has no solutions, m(z) = g(z) = (z — 1)(z? + 6z + 1);
that is, z? + 6z + 1 is irreducible over GF(g). Therefore V(P'H} P9} and
V(I) intersect on ¢ + 1 points or (g + 1)? points. n

In the proof of Theorem 2, if § = 0, the minimal polynomial m(z) of
P'HPW@ is (z — 1)° When a = b and ¢ = d, we always obtain § = 0.
Smce [V(H)NV(H})| = ¢* +1 for H; € Hyp and H} € Hq, we can show
the next Corollary.

Corollary 1 Let ¢ be an even prime power. Ifa = b and ¢ = d then
Hap U Heg is @ set of mutually M-intersecting varieties V(g® + 1,¢* + 1)
consisting of 2(q + 1) varieties.

Finally we want to collect a set of Hermitian varieties H,p as many as
possible by choosing the values of @ and b of H.

Theorem 3 Let g be an even prime power. There exists a set of mutually
M-intersecting varieties V(g° + 1,¢> + 1) consisting of ¢* — 1 varieties.

Proof. Let J ={1,w,...,w? 2} be a set of representatives of the cosets
Kp = Kuw*, 0 € k < ¢ —2. Consider a set of varieties Uycy Mae. If we
choose a,c € J, a # ¢, then Hg o UM, is V(g® + 1, g° +1) by Corollary 1.
Hence Uyes Haya is V(g® + 1, ¢% + 1) consisting of (¢ + 1)(¢ — 1) varieties. m



Theorem 4 Let ¢ be an even prime power. There ezists a set of mutually
M-intersecting varieties V(¢*+1, {g®+1, (g+1)2}) consisting of (g-+1)%(q—1)
varieties.

Proof. Let J = {1,w,...,w? %} be a set of representatives of the cosets
K. Let L= {(a,b); a?*14+b9*1 = 0,0 € J,b € GF(¢?)}. Then L consists of
(g—1){(g+1) elements and H, pNH,g = ¢ for (a,b), (c,d) € L, (a,b) # (c, d).
Therefore Uy pyez Ha,p is V(¢* + 1, {¢® + 1, (¢ + 1)?}) by Theorem 2. |

We remark that we can add V(1) to V{p, M) in all theorems because we can
show |V (H;) N V(I)| = g% + 1 for any V(H;) € H.
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