No. 759

Mutually M-intersecting Hermitian Varieties

by

Ryoh Fuji-Hara and Nobuko Miyamoto

October 1997

Mutually M-intersecting Hermitian Varieties

Ryoh Fuji-Hara and Nobuko Miyamoto (fujihara@sk.tsukuba.ac.jp) (nmiyamot@sk.tsukuba.ac.jp)

Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 305

Abstract

Let M be a set of a few integers. We consider a set of varieties in PG(n,q) such that each variety contains ρ points and the number of points in the intersection of two distinct varieties is contained in M. Such set is called a set of mutually M-intersecting varieties. In this paper, it will be shown that there exist new sets of mutually M-intersecting varieties by using Hermitian varieties in $PG(2,q^2)$ and a unitary group of order q+1.

Let f be a homogeneous polynomial. The set of points x of PG(n,q) satisfying f(x) = 0 is called a *variety* and denoted by V(f). In a previous paper [4], we proposed a problem called *mutually M-intersecting varieties*. It is a set of varieties $V(f_1)$, $V(f_2)$, \cdots , $V(f_s)$ which satisfies the following three conditions:

- (i) M is a set of non-negative integers.
- (ii) $|V(f_i)| = \rho$ for $1 \le i \le s$.
- (iii) $|V(f_i) \cap V(f_j)| \in M$ for $1 \le i, j \le s$, $i \ne j$.

We will use $\mathcal{V}(\rho, M)$ to denote the set and $\mathcal{V}(\rho, \mu)$ when M is a singleton $\{\mu\}$. Note $s = |\mathcal{V}(\rho, M)|$.

Some results on mutually $\{\mu\}$ -intersecting varieties are shown in [4]. Using quadrics and a projective group on PG(3,q), we obtained $\mathcal{V}(q^2+1,q+1)$ consisting of q^2 varieties and $\mathcal{V}((q+1)^2,3q+1)$ of q^2 varieties. Finding $\mathcal{V}(\rho,M)$ which consists of a number of varieties is an interesting problem. $\mathcal{V}(\rho,M)$ is useful to construct combinatorial designs such as (r,λ) -design and arrays like orthogonal, incomplete orthogonal or balanced arrays [2], [3]. In this paper, we will use results on intersections of Hermitian varieties shown by Kestenband [8] and construct new sets of mutually M-intersecting Hermitian varieties in $PG(2,q^2)$ with M of a few integers.

Hermitian variety

A $(n+1) \times (n+1)$ square matrix $H = (h_{ij})$ with elements from $GF(q^2)$ is called a Hermitian matrix if $h_{ij} = h_{ji}^q$ for all i, j. Let $A^{(q)} = (a_{ij}^q)$ for a matrix $A = (a_{ij})$, $a_{ij} \in GF(q^2)$. A Hermitian variety (abbreviated to HV) is defined as $\{x \in PG(2, q^2) : f(x) = x^T H x^{(q)} = 0\}$, where H is a Hermitian matrix. Here we use V(H) instead of V(f) to denote the Hermitian variety. Two Hermitian matrices H and G are said to be equivalent if there exists a nonsingular matrix P over $GF(q^2)$ such that $P^T H P^{(q)} = G$. When H is a rank r Hermitian matrix, V(H) is called a rank r HV. A rank r HV in $PG(n, q^2)$ is also called a nondegenerate HV. The properties of a HV in $PG(n, q^2)$ have been studied [1], [8]. A HV in $PG(n, q^2)$ contains $q^2 + 1$, $q^3 + q^2 + 1$ or $q^3 + 1$ points, according to the rank 1, 2, or 3, respectively. It is also known that any non-singular Hermitian matrix is equivalent to a unit matrix I.

Kestenband [8] has showed a classification of V(H) in $PG(2, q^2)$ with respect to intersections with V(I). Note that the minimal polynomial m(x) of a matrix H satisfies m(H) = 0 and $m'(H) \neq 0$ for any polynomial m'(x) with deg(m'(x)) < deg(m(x)).

Result (B.C. Kestenband)

Let H be a non-singular Hermitian matrix. Let m(x) and g(x) be minimal and characteristic polynomial of it respectively. $V(H) \cap V(I)$ contains

- (1) $(q+1)^2$ points, if $m(x) = g(x) = (x-\alpha)(x-\beta)(x-\gamma)$, α , β , γ distinct elements of GF(q).
- (2) $q^2 + q + 1$ points, if $m(x) = g(x) = (x \alpha)(x \beta)^2$, α , β , distinct elements of GF(g).
- (3) q+1 collinear points if $m(x)=(x-\alpha)(x-\beta)$, α , β , distinct elements of GF(q).
- (4) q^2+1 points, if $m(x)=g(x)=(x-\alpha)p(x)$, $\alpha\in\mathrm{GF}(q)$, p(x): irreducible over $\mathrm{GF}(q)$.
- (5) $q^2 + 1$ points, if $m(x) = g(x) = (x \lambda)^3$.
- (6) one point if $m(x) = (x \lambda)^2$.
- (7) $q^2 q + 1$ points, no three of which are collinear, if g(x) is irreducible over $GF(q^2)$.

In addition to the above result, Kestenband [7] generated a set χ consisting of q^2+q+1 Hermitian matrices with irreducible characteristic polynomials over GF(q). The set of varieties from χ directly forms $\mathcal{V}(q^3+1,q^2-q+1)$. Since χ is isomorphic to PG(2,q), the incidence matrix of the varieties $\mathcal{V}(q^3+1,q^2-q+1)$ and the points on $PG(2,q^2)$ contains q^2-q+1 copies of PG(2,q). In the next section, we use a Hermitian matrix with minimal polynomial $(x-1)^3$ and construct new mutually M-intersecting varieties which are different from the result of Kestenband.

2 Constructions

We assume in the rest of this paper that q is an even prime power. A matrix U is unitary if $U^TU^{(q)} = I$. Consider the following unitary matrix U and group U of order q + 1 over $GF(q^2)$.

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix}, \quad \text{where } \alpha^{q+1} = 1, \ \alpha \neq 1 \text{ over } GF(q^2),$$
$$\mathcal{U} = \{I, U, U^2, \dots, U^q\}.$$

Let H be a non-singular Hermitian matrix with minimal polynomial $m(x) = (x-1)^3$. Without loss of generality, we can put

$$H = egin{pmatrix} 1 & a & 0 \ a^q & 1 & b \ 0 & b^q & 1 \end{pmatrix}, \quad ext{where } a,b \in \mathrm{GF}(q^2) \setminus \{0\}, \quad a^{q+1} + b^{q+1} = 0.$$

Using above unitary group U, we define a set of HV's by

$$\mathcal{H} = \{V(H_1), V(H_2), \dots, V(H_{q+1})\}$$
, where $H_i = U^{iT} H U^{i(q)}, \quad U^i \in \mathcal{U}$.

Then H_i is expressed by

$$H_i = egin{pmatrix} 1 & alpha^{iq} & 0 \ a^qlpha^i & 1 & blpha^{iq} \ 0 & b^qlpha^i & 1 \end{pmatrix}.$$

Note that any $V(H_i) \in \mathcal{H}$ is a nondegenerate HV and it contains $q^3 + 1$ points.

Theorem 1 Let q be an even prime power. Then \mathcal{H} is a set of mutually M-intersecting varieties $\mathcal{V}(q^3+1,q^2+1)$, where $|\mathcal{V}(q^3+1,q^2+1)|=q+1$.

Proof. We will show that any distinct two HV's $V(H_i)$ and $V(H_j)$ of \mathcal{H} have q^2+1 points in common. We can say that $|V(H_i)\cap V(H_j)|=|V(U^{iT}HU^{i(q)})\cap V(U^{jT}HU^{j(q)})|=|V(U^{i+kT}HU^{i+k(q)})\cap V(H)|$ for some k such that $U^{j+k}=I$. So we only show that the number of points of $V(H_i)\cap V(H)$ for any $V(H_i)\in \mathcal{H}$, $H_i\neq H$ is q^2+1 . Moreover we have $|V(H_i)\cap V(H)|=|V(P^TH_iP^{(q)})\cap V(I)|$, where P is a non-singular matrix such that $P^tHP^{(q)}=I$:

$$P = \begin{pmatrix} 1 & a^q t & a^q b^q t \\ 0 & t & b^q t^q \\ 0 & 0 & t^{-1} \end{pmatrix}, \text{ where } t^{q+1} (a^{q+1} + 1) = 1 \text{ over } GF(q^2).$$

The characteristic polynomial of $P^tH_iP^{(q)}$ is $\det(P^tH_iP^{(q)}-xI)=\det(P^tH_iP^{(q)}-xP^tHP^{(q)})=\det(P^T)\det(H_i-xH_j)\det(P^{(q)})=\det(H_i-xH_j)=(x-1)^3$. When the first row of $P^tH_iP^{(q)}$ is expressed by $p^T=(1,at^q(1+\alpha^i)^q,abt(1+\alpha^i)^q)$, the (1,1)-entry of $(P^tH_iP^{(q)}-I)^2$ is $p^Tp^{(q)}+1=(1+\alpha^{q+1}t^{q+1}(1+\alpha^i)^{q+1}+a^{q+1}b^{q+1}t^{q+1}(1+\alpha^i)^{q+1}+1=a^{q+1}(1+\alpha^i)^{q+1}\neq 0$ by $t^{q+1}(1+b^{q+1})=1$. Since $(P^tH_iP^{(q)}-I)^2\neq 0$, the minimal polynomial of $P^TH_jP^{(q)}$ is $(x-1)^3$. Hence we have $|V(H_i)\cap V(H)|=q^2+1$ from Result given by the previous section.

Next consider two non-singular Hermitian matrices H and H' both having the minimal polynomial $m(x) = (x-1)^3$. Then as we mentioned before, we can define two sets as follows:

 $\mathcal{H}_{a,b} = \{V(H_1), V(H_2), \dots, V(H_{q+1})\}, \quad \text{where } H_i = U^{iT} H U^{i(q)}, \quad U^i \in \mathcal{U},$ $\mathcal{H}_{c,d} = \{V(H_1'), V(H_2'), \dots, V(H_{q+1}')\}, \quad \text{where } H_j' = U^{jT} H' U^{j(q)}, \quad U^j \in \mathcal{U},$ where

$$H = egin{pmatrix} 1 & a & 0 \\ a^q & 1 & b \\ 0 & b^q & 1 \end{pmatrix}, \qquad H' = egin{pmatrix} 1 & c & 0 \\ c^q & 1 & d \\ 0 & d^q & 1 \end{pmatrix},$$

 $a, b, c, d \in GF(q^2) \setminus \{0\}, \quad a^{q+1} + b^{q+1} = 0, \quad c^{q+1} + d^{q+1} = 0.$

In order to have $\mathcal{H}_{a,b}$ and $\mathcal{H}_{c,d}$ which are disjoint, we have to restrict a,b,c, and d. Let w be a primitive element of the multiplicative group $GF(q^2)\setminus\{0\}$ of order q^2-1 . Let $K=\{1,w^{q-1},\ldots,w^{q(q-1)}\}$ be a multiplicative subgroup of order q+1 and $K_k=K\cdot w^k$ for k cosets of K, $0\leq k\leq q-2$. Suppose $a\in K_l$, $0\leq l\leq q-2$. Then the (2,2)-entry $a\alpha^{iq}$ of H_i is also an element of K_l since α is included in K. So for $1\leq i\leq q+1$, $a\alpha^{iq}$ runs over all elements of K_l . From $a^{q+1}+b^{q+1}=0$, b must be contained in K_l . Hence we must choose c and d from cosets K_k , $k\neq l$, to satisfy $\mathcal{H}_{a,b}\cap\mathcal{H}_{c,d}=\phi$.

Theorem 2 Let q be an even prime power. If a and c belong to different cosets K_k and K_l respectively, then $\mathcal{H}_{a,b} \cup \mathcal{H}_{c,d}$ is a set of mutually M-intersecting varieties $\mathcal{V}(q^3+1,M)$, where $M \subseteq \{q^2+1,(q+1)^2\}$ and $|\mathcal{V}(q^3+1,M)| = 2(q+1)$.

Proof. From Theorem 1, $\mathcal{H}_{a,b}$ and $\mathcal{H}_{c,d}$ are both $\mathcal{V}(q^3+1,q^2+1)$. So we have to consider the number of points in the intersection of $V(H_i)$ and $V(H'_j)$ for $H_i \in \mathcal{H}_{a,b}$ and $H'_j \in \mathcal{H}_{c,d}$. It is easily seen that $|V(H_i) \cap V(H'_j)| = |V(H) \cap V(H'_{j+k})|$ for some k such that $U^{i+k} = I$. And we have $|V(H) \cap V(H'_j)| = |V(I) \cap V(P^T H'_j P^{(q)})|$, where P is a non-singular matrix such that $P^t H P^{(q)} = I$. The characteristic polynomial g(x) of $P^t H'_j P^{(q)}$ is $(x-1)(x^2+\delta x+1)$, where $\delta = (ac^q+bd^q)\alpha^{qi}+(a^qc+b^qd)\alpha^i$. The quadratic equation $x^2+\delta x+1=0$ has one solution over GF(q) if $\delta=0$. Then we have $g(x)=(x-1)^3$ and $(P^t H_j P^{(q)}-xI)^2\neq 0$. Hence the minimal polynomial m(x) of $P^t H'_j P^{(q)}$ is $m(x)=(x-1)^3$. When the equation $x^2+\delta x+1=0$ has two solutions, $m(x)=g(x)=(x-1)(x-\beta)(x-\gamma)$, where $1\neq \beta\neq \gamma\in GF(q)$. When the equation has no solutions, $m(x)=g(x)=(x-1)(x^2+\delta x+1)$; that is, $x^2+\delta x+1$ is irreducible over GF(q). Therefore $V(P^t H'_j P^{(q)})$ and V(I) intersect on q^2+1 points or $(q+1)^2$ points.

In the proof of Theorem 2, if $\delta=0$, the minimal polynomial m(x) of $P^tH_j'P^{(q)}$ is $(x-1)^3$. When a=b and c=d, we always obtain $\delta=0$. Since $|V(H)\cap V(H_j')|=q^2+1$ for $H_i\in\mathcal{H}_{a,b}$ and $H_j'\in\mathcal{H}_{c,d}$, we can show the next Corollary.

Corollary 1 Let q be an even prime power. If a = b and c = d then $\mathcal{H}_{a,b} \cup \mathcal{H}_{c,d}$ is a set of mutually M-intersecting varieties $\mathcal{V}(q^3 + 1, q^2 + 1)$ consisting of 2(q+1) varieties.

Finally we want to collect a set of Hermitian varieties $\mathcal{H}_{a,b}$ as many as possible by choosing the values of a and b of H.

Theorem 3 Let q be an even prime power. There exists a set of mutually M-intersecting varieties $V(q^3+1, q^2+1)$ consisting of q^2-1 varieties.

Proof. Let $J = \{1, w, \dots, w^{q-2}\}$ be a set of representatives of the cosets $K_k = Kw^k$, $0 \le k \le q-2$. Consider a set of varieties $\bigcup_{a \in J} \mathcal{H}_{a,a}$. If we choose $a, c \in J$, $a \ne c$, then $\mathcal{H}_{a,a} \cup \mathcal{H}_{c,c}$ is $\mathcal{V}(q^3+1, q^2+1)$ by Corollary 1. Hence $\bigcup_{a \in J} \mathcal{H}_{a,a}$ is $\mathcal{V}(q^3+1, q^2+1)$ consisting of (q+1)(q-1) varieties.

Theorem 4 Let q be an even prime power. There exists a set of mutually M-intersecting varieties $\mathcal{V}(q^3+1,\{q^2+1,(q+1)^2\})$ consisting of $(q+1)^2(q-1)$ varieties.

Proof. Let $J = \{1, w, \dots, w^{q-2}\}$ be a set of representatives of the cosets K_k . Let $L = \{(a, b); a^{q+1} + b^{q+1} = 0, a \in J, b \in GF(q^2)\}$. Then L consists of (q-1)(q+1) elements and $\mathcal{H}_{a,b} \cap \mathcal{H}_{c,d} = \phi$ for $(a, b), (c, d) \in L$, $(a, b) \neq (c, d)$. Therefore $\bigcup_{(a,b)\in L} \mathcal{H}_{a,b}$ is $\mathcal{V}(q^3+1, \{q^2+1, (q+1)^2\})$ by Theorem 2.

We remark that we can add V(I) to $\mathcal{V}(\rho, M)$ in all theorems because we can show $|V(H_i) \cap V(I)| = q^2 + 1$ for any $V(H_i) \in \mathcal{H}$.

References

- [1] R.C. Bose and I.M. Chakravarti, Hermitian Varieties in a Finite Projective Space $PG(N, q^2)$, Can. J. Math. 17 (1966), 1161-1182.
- [2] R. Fuji-Hara and N. Miyamoto, Balanced Arrays from Quadratic Functions, submitted to J.S.P.I.
- [3] R. Fuji-Hara and N. Miyamoto, A Construction of Combinatorial arrays from Non-linear Functions, submitted to Utilitas Math.
- [4] R. Fuji-Hara and N. Miyamoto, Mutually M-intersecting Varieties, Congressus Numerantium (to appear).
- [5] J.W.P. Hirschfeld, *Projective Geometries over Finite Field*, Oxford University Press, New York (1979).
- [6] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, New York (1985).
- [7] B.C. Kestenband, Projective geometries that are Disjoint Union Caps,
 Can. J. Math. 32, No.6 (1980), 1299-1305.
- [8] B.C. Kestenband, *Unital Intersections in Finite Projective Planes*, Geometriae Dedicata 11 (1981), 107-117.

