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Abstract

Bose [2] proposed a construction of orthogonal arrays. The
construction uses linear transformations over a finite field. Fuji-
Hara and Miyamoto [3] generalized this method by considering
non-linear functions in stead of linear transformations and con-
structed combinatorial arrays such as orthogonal arrays and
balanced arrays. In particular, we constructed combinatorial
arrays by using quadratic functions over finite fields of even
prime power orders. In this paper, we construct combinatorial
arrays for odd prime power orders. Moreover we give some con-
structions of balanced arrays as an application of the results
obtained here.

1 Introduction

Let S be a set {0,1,...,5 — 1} of s symbols and let $* be the set of all ¢-
dimensional column vectors over S. A balanced array of strength ¢, denoted
by BA(N,k,s,t), is a k x N array A whose elements are from § satisfying
the following conditions:

(i) in any t-rowed subarray Ag of A, x € S* appears A(x) times in Aj,.

(ii) for any permutation ¢ on the coordinates of the vector z € 5%, A(o(z)) =
Az).

If AM(z) = M(y) for every =,y € S*, then the array is called an orthogonal
array of strength t, and denoted by OA(N,k,s,t), where N = As*. It is
known that a balanced array is equivalent to a nested (r, A)-design, shown
in Kuriki and Fuji-Hara (§].



Let G be a k x n matrix over GF(q), a finite field of order q. Bose
[2] showed that if any ¢ rows of G are linearly independent, then the k-
dimensional column vector space {Gzx ; € GF(g)"} is an OA(¢g"™,%,q,t)
with A = ¢**.

As a generalization of Bose’s method, Fuji-Hara and Miyamoto (3] pro-
posed a collection A of k-dimensional column vectors. Let fi, fa,..., fr be
distinct multivariate functions with a domain W (C GF(g)") in common.
We define the collection A as

filz)

fz(-ﬂf) Csew b

fkim)

denoted by A(fi, f2,..., fr; W) for convenience. We may regard it as an
array with an arbitrary order of vectors. Using A(f1, fo,..., fr; W), Fuji-
Hara and Miyamoto [3] constructed an OA(¢%,¢%,¢,2) and a BA(g*(g —
1),¢% q,2) for any even prime power q. In this paper, for any odd prime
power ¢, we construct a BA(q%(g—1),¢2, ¢, 2). Moreover we give a BA(g® —
¢, 4%, ¢%,2) for any prime power ¢ as an application of the results obtained
here.

2 Generation of non-linear functions

In a finite projective geometry PG(n,q) of n dimension over 2 GF(g), the
points are represented by (n + 1)-tuples = = {zq,%1,...,%s)', where z; €
GF(q) for i = 0,1,...,n. The (n + 1)-tuples tz = (tzy,tz1,...,tT,)" is
regarded as the same point as z for any non-zero ¢ € GF(g) and the null
(n + 1)-tuples (0,0,...,0) is not a point of PG(n,q). A projectivity « :
PG{n,q) — PG(n,q) is a bijection given by a matrix T: if P! = P2, then
tz' = Tz, where ' and = are vector representations of points P’ and P
respectively, and a non-zero element ¢ € GF(g).

Now we use quadratic forms over GF(g) and projectivities in order to
find a number of multivariate functions in Section 1. Let f be a quadratic
form, that is, f(z) = 2'Qz = 3 gi;ziz;, where Q is a triangular matrix
over GF(g). Then a variety V(f) = {z € PG(n,q); f(z) = 0} is called
a guadric. In this paper, we consider non-degenerate quadrics in PG(3, ¢),
which are the following canonical forms:

Elliptic quadric : V(dz2 + zoz1 + 22 + z023), where

geven: de{te GF@2Y); D) =t+ 82+ +2" =1}
godd: d € {t € GF(g); 1 — 4¢ is a non-square }



Hyperbolic quadric : V{zez1 + 2223).

An elliptic quadric and a hyperbolic quadric consist of g?+1 and (g+1)?
points in PG(3, q), respectively. I a plane of PG(3, q) meets an elliptic
quadric at one point, it is called a tangent plane. In a hyperbolic quadric, if
3 plane meets it in two lines, the plane and lines are called a tangent plane
and generators, respectively. i R ’ :

From the definition of the balanced arrays, in order that A(fy, fo,..., fx; W)
is a balanced array, it is necessary that |V (f;) N V(f;}| is independent of
choice of i,7, 1 # 7 in the domain W. Therefore we use a projective group
on PG(3,¢) to generate varieties systematically as many as possible. Let
V(f) be a quadric in PG(3,¢) and T’ = {a; = 1,0, -, 5} a projective
group of order g on PG(3,q). For any o; € T, V(f;) = V(f)™ is given
by fi(z) = @'T:QT;x for i = 1,2,...,9, where f(z) = z'Qx and T; is a
matrix representation of ;. Then we can construct g quadrics:

Vi V(f2)y-+, V(fo)isuch that [V {fi)} = [V(f;)],i # J.

In order to satisfy a condition |V(f;) N V(f;)] = p, i # j, we define a
projective group on PG(3, ¢) as follows:

Let a1y be a projectivity on PG(3, ) which fixes a plane 7 pointwise
and a point V € n linewise. There are g such projectivities on PG(3, ¢) for
given m, V. The set of g projectivities forms a projective group I'¢y vy of
order g. Moreover, we define I'(; sy = Uve: T(x,v), wherelis aline on 7. It
is also a projective group of order g{g + 1) — g = ¢°. Then we can generate
¢* quadratic functions G = {f1, f2,..., f;2} by using P(»5y. In next section
we will ind G = {f1, fa,..., fy2} is useful to construct a balanced array,
where V(f;)’s are elliptic or hyperbolic quadrics.

3 "Constructions

The quadratic character ¥ of GF(q), ¢ an odd prime power, is defined by

0 ifz=0
x(z) == 1 if « # 0 is a square
—1 otherwise.

Then for any a # 0,
S= Y x(zx(z-a)=-1 (1)

zEGF(q)

We consider the set N = {(x(z),x{z — a)); ¢ € GF(g)} for an element
o € GF(g). Let z, y, 2, w be the numbers of elements of N with (1,1),
(1,-1), (-1,1), (-1, -1), respectively. Then we have the following lemma.



Lemma 3.1 When g =1 mod 4,

w= 122 ifqis a square
z=w=2% ifqis a non-square

Proof. If a is a square, x(—a) = 1. Each of (1,0) and (0, 1) appears exactly
-- once-in N-- Hence we-have-the following system of-equations:

=1

z+w=21L
z+z+1=93
y+w=I3

c+w+l=y+z

The last of the above equations is from the equation (1). Its unique solution
sr=y=z=97L 4 =28
y=z=17,w=17
If ¢ is a non-square, x(—a) = —1. Similarly we have the following
system of equations:

z+y=L2
itw+l=91
T4+z=122

2
y+w+l=%21
z+w+t+l=y+z

Thus we have the unique solution z = 5:—5, y=z=wes 9-:—1.

Lemma 3.2 When g =3 mod 4,

z=y=w=22 z=2L {fq isa square

m=z=w=51—3, y=94—1 if o is a non-square

Proof. This follows from the same manner as Lemma 3.1 and Ny = ~Nj1
for g = 3 mod 4. | |

Now we consider the following three cases to construct arrays A(fi, fa,..., fi; W).
Construction 1

Gi = {1, fay. .., f2 } is given by an elliptic quadric V{f1) in PG(3, ¢) and
T(xo,1)» where [ is an external line and mp is a tangent plane through
Lot V(f1).

W = my — I, where m; is a non-fixed tangent plane of V(f;).
Construction 2

G1 = {f1, fa,..., fy2} is given by an elliptic quadric V{f,) in PG(3,¢) and
T'(no.1y, where ! is an external line and #p is a tangent plane through
Lof V{fi}.



W is a coset of L(mp) distinct from L{m;), where L(mg} = {tz; t €
GF(q), = € mo}.

Construction 3

Gz = {f1,f2,..., fs2} is given by a hyperbolic quadric V(f1) in PG(3, q)
and [z, n, where [ is a generator and g is a tangent plane through
Lof V(f1).

W o is a coset of L{mg) distinct from L(mp).
Without loss of generality, we may assume that f; of Gy or G5y is given by
(i) filz) € G1 ; filz) = dzi + zoz1 + 22 + 2923 OF
(i) fi(z) € G2 ;5 filz) = ToTy + T23
and a projective group I'(y, 1y is represented by
0
Ya,b € GF(g),

O O
o= OO0
= OOoOO

1
b
0

where | = {(1,0,0,0)' U (¢,1,0,0)'; t € GF(g)}, w0 = {(%0,%1,%2,%3) €
PG(3,q); 2 = 0}. Then the quadratic forms which are constructed by the
above projective group is expressed by

(i) fi(z) € G1 ; filz) = dad + zozr + (b + 2ad)zpz2 + 2
+ (@ + 2b)z1 7 + (ab + b + a’d)zd + zoxs,

(ii) fi(z) € G2 ; fiz) = zoz1 + bzoZ2 + az1 22 + ab2l + zo23,
‘and W, and W, aré given by

W, = {z = (%0, %1,%2,33)' € GF(g)*; z2 =1, 23 =0},

W, = {z = (z0,71,%2,%3)" € GF(g)*; z2 =1}

‘We can say that the number of solutions to the system of equations for x

{ file) = a
fil®) = B
is equal to the number of solutions to
{ fifz) = «a
fulz) = B

by using linear transformation ,where k € {2,3,...,¢*} and 4,5 = 1,2,...,¢%,

i # .



Here we show that the construction 1 gives a balanced array. We ar-
range the collection A(f1, f2,..., fr; W) for the following:

A* = UwGGF(q)' w.A.

where GF(g)* is the non-zero elements of GF(g). Then A* is described
as A*(fi, fay .- o W) over GF(q)*.~To show A*(f1, f2,..:, iy W) is 2
balanced array, we may count the number of solutions to the system of
equations

Alz) = dai+zez; + 22 + 2073 = wa
filz) = da} + zez1 + (b+ 2ad)zozs + 23
+(a + 2b)z1 72 + (ab + b? + a*d)z2 + z223 = WP

depending on values of the parameter w € GF(g)*.

Theorem 3.1 Let Wy =m — 1 and fu,..., fx quadratic functions of Gy.
Then A*(f1y fay. -y Ju; W) is e BA(g*(g—1),4%,4,2), for odd prime power
q with

0 if a=f=0

(e, B) = ; :; ;ni Oﬁf;t {;Jrﬁ is 0 ()

g+1 if a#B#0
Proof. It is sufficient to show the number of elements in
UueGF(q- 12 € Wi f{(z) =0 and ff(z) =0}

satisfies the above assertion (2) for any «, 8, where

(@) = dz + 2071 + 22 — wozd + 125 =0, (3)
filz) = deb+z03; + (b+ 2ad)zozs + 27 + (2 + 2b)z 20
+(ab+ b + a®d — wh)a2 + zozs = 0. (4)

By subtracting the equation (3) from the equation (4} and putting
Tg = 1, we have
(b+ 2ad)zy + (a + 2b)z1 +u +w(a — ) = 0,. (5)

where u = ab + b + a®d. From the equation (3) and (5), we obtain the
quadratic equation for zo .

u(1 = 4d)zh + a(l — 4d)(u + w(a — B))zo
+ wela + 2b)° — (v + wla — 8))% =0. . (6)



The discriminant A of (6) is
A = (1 — 4d)(a + 2b)*((u + w(e — B))? — dvway).

In order to have a solution to {6), A must be zero or a square element of
GF(q). Thatis A’ = (u+w{c—f8))? —4uwa should be zero or a non-square.
‘We-consider the number ‘of solutions for-zg tothe equation {6} depending
on values of the parameter w.

Casel,a=p8=0
From A' = u? and u # 0, the equation (6) has no solution.

Case 2, a=00r3=10 ,
If o = 0, then A’ = (u —wf)?. So the equation (6) has one solution
when w = uf~!. Similarly, if 8 = 0, the equation (6) has one solution
when w = ua™l.

Case 3, a=0+#0
There are two solutions to the equation {6) when the w is one of 9—;—1
different values such that A’ = 4% — 4uwe is a non-square. Moreover
there is one solution when w = u{4a)~! such that A’ is zero. Hence
there exist totally ¢ solutions in the domain W;.

Cased,a# F#0 ,
When we put a = 1, A’ = (u+w(1 —§))? —4uw. Consider a solution
to (1—-8)%w? —2u(l+F)w+u?—A’ = 0 for w. Then the discriminant
A" = (1 - 8)?A! + 484® must be zero or a square element of GF(g).
If A’ = 0 and 3 is a square, then A" = 48u? becomes a square. So
there are two solutions for w.

Next consider the case of A’ a non-square. Let
Ny = [{A' € GF(g)";x(A") = —1 and x((1 - B)A’ + 4pu?) = 0},
Nz = [{A' € GF(g)*; x{(A') = —1 and x((1 - B)?A’ +48u2) = 1}.

In case of g = 1 (mod 4), N; = 1if 8 is a non-square and Ny = 0 if
8 is a square. From Lemma 3.1 and x{{1 — 8)?A’) = x(A’) for all
A' € GF(g), Ny = 3%, When w is one of L3 x 2+ 1 = £} different
values and J is a non-square, the equation (6) has two solutions.
When w is one of 5;—1 x 2 different values and S is a square, the
equation (6) has also two solutions. Hence there exist g+ 1 solutions
in the domain W, when 8 is a non-zero element of GF(g).

In case of ¢ = 3 (mod 4), Ny =0 if 3 is a non-square and N, = 1 if
f is a square. From Lemma 3.2, Na = 9—}1 if B is a non-square and
Ny = 222 if B is a square. When w is one of 21 x 2 = £ different



values and 8 is a non-square, the equation (6) has two solutions.
When w is one of 5;—3 x2+1= 9;—1 different values and 8 is a
square, the equation (6} has two solutions. Thus in both cases , j
is a square or a non-square , we have totally g + I solutions in the
domain W .

We-complete the proof for any-«, 8 € GF(g). : |

Next we consider the construction 2 and 3. We will find that these
constructions give orthogonal arrays and balanced arrays. The following
result is from [9] which is a generalized case of the theorem of Bézout:

Result 3.1 If the intersection of V(f1) and V(fa) is a curve C, then the
degree of C is nins, where ny and ny are the degree of fi and fa, respec-
tively.

This is useful to show next two lemmas. The parameters of the OA(q%, 42, ¢, 2)
in Lemma 3.3 and 3.4 are not new. The orthogonal arrays are not a linear
subspace themselves, although they may be cosets of a linear subspace.

Lemma 3.3 Let W, be o coset of L(m,) distinct from L(mp) and fi,..., fe
quadratic functions of G1. Then A(f1, fa,..., fr; W2) is an OA(q3, ¢%, q,2),
for any prime power ¢ with A = gq.

Proof. We will show that the number of solutions to the system of equa-
tions for =

filz) = dei+zoz + 2tz =a
filz) = dzg+ zom1 + (b + 2ad)zo22 + 27 (7
+(a + 2b)z1 72 + (ab+ b2 + a2d)z2 + zo03 =

is g for any e, B € GF(g). Since we put the domain W3 = {& = (24,21, T2, Z3)' €
GF(q)*; 32 = 1}, it is the same as the number of solutions to the system
of equations for @

fi(@) = dal+zoz1 + 2} — a2 +a2025=0
fHz) = dzg +zoz1 + (b + 2ad)zoz2 + 22
+(a + 2b)z1 72 + (@b + b* + a®d — B)zd + za23 = 0.

Hence it is sufficient to consider the intersection of elliptic quadrie V()
and V(f}) in PG(3,q). Extend the space PG(3,¢) to PG(3,¢?%), then V(f})
becomes a hyperbolic quadric in PG(3,4%). In the quadratic extension
PG(3,4%) of PG(3, g), the tangent plane mp of the hyperbolic quadric V(ff)
intersects V(f{') in two lines !; and ly. Since my is fixed by ['(x, 1) pointwise,
1 and {3 lie in V(f#). So V(/f) and V(f}) already have two lines I; and
Iy of PG(3,¢?) in common.



From Result 3.1, V(f7) and V'(f}') intersect in a curve of degree 4. Since
the curve of degree 4 already contains two lines I; and !5, the remaining
part of the intersection in PG(3,4¢?) is a curve of degree 2. The curve of
degree 2 is the union of two lines or a conic in a plane. But each of V(f})
and V'(f}) contains no line of PG(3, ¢). Therefore, in PG(3, ¢), V(f;) meets
V(f7) in a conic which consists of ¢ points and the fixed point Iy Nly. Thus
the number of solutions to the system of equations (7) is ¢ in W for any

a,8 € GF(g). |

Lemma 3.4 Let W be a coset of L(mg) distinet from L(mp) and fi,..., fr
quadratic functions of Ga. Then A(f1, fa, ..., fo; W2) is an OA(¢%,¢%,q,2),
Jor eny prime power g with A = gq.

Proof. Similar to Lemma 3.3, we will show that the hyperbolic quadrics
V(f{) and V(f) have 3¢ + 1 points of PG(3, ¢) in common , where

ff(®) = zom — ax’z" + xox3 =0,
fi(@) = oz + bxozs + az122 + (ab — Bzl + zaz3 = 0.

V(ff) and V(f}) are hyperbolic quadrics also in the quadratic extension
PG(3,4%). By using the same argument of the previous proof, the inter-
sections of V(fy) and V(f) consist of two lines /;, i on mp and a curve
of degree 2 in PG(3,¢?). If the curve is the union of two lines, then one of
them is the line {; or l>. Hence in both cases, V(f}) meets V{(f) in 3¢+ 1
points of PG(3,¢g). Therefore the number of solutions in W3 to the system

of equations { ;1((3 Z g for « is ¢ for any «, 8 € GF(g). ]

Moreover, we consider a domain W3 on PG(3,4¢%). Let #y = {x €
PG(3,¢%) ;= € mo} and L{7) = {tx; t € GF(¢?), ¢ € T}. Then we
define W3 as a coset of L(#,) distinct from L(#,). Next two theorems are
immediate from Lemma 3.3 and 3.4.

Theorem 3.2 Let W, be o coset of L(mg) distinet from L(my), let W3 be
a coset of L(®o) distinct from L{#o) and fi,..., fr quadratic functions of
G1. Then A(f1,fay-- - f; W3 — W3) is a BA(q® ~ ¢°,4%,¢%,2), for any
prime power g with ;

2 _ .
ple, B) ={ ! g ¢ 4 wbe Gl

if otherwise

Proof. From Lemma 3.3, the number of solutions to the system of equa-
tions (7) in Wy is ¢® for any ,8 € GF(g?) and the number of solutions
to the system of equations (7) in Wy is ¢ for any «, # € GF(q). Therefore



the number of solutions to the system equations (7) in W3~ Wy is¢? — ¢
for any a, # € GF(q). [ ]

Theorem 3.3 Let Wy be a coset of L(my) distinct from L{iy), let Wy be
a coset of L(#y) distinct from L{y) and fi,..., fr quadratic functions of
GZ- Then A(fl:f2" .. ’fk; Wj — W2) isa BA(q6 - 43:(12:‘12:2): fOT‘ any
prime power q with

_[ #—-q if afeGFg
#(a,ﬁ)—{ a® if otherwise

Proof. Similar to Theorem 3.2. [ ]
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