No. 755

A New View on Statistical Inference Part IV Tow Action Problems

bу

Yoshiko Nogami

October 1997

A New View on Statistical Inference Part IV

Two Action Problems

Yoshiko Nogami

October, 1997

Abstract.

Let $I_{\Lambda}(x)$ be an indicator function such that for any set λ $I_{\Lambda}(x)=1$, if $x \in A$; =0, if $x \notin A$.

We consider two action problems under the density

 $f(\mathbf{x}|\theta) = \mathbf{C}^{-1}\mathbf{I}_{[\theta+\eta 1, \theta+\eta 2)}(\mathbf{x}), \qquad \forall$

where $c=\eta_2-\eta_1(>0)$ and real numbers η_1 and η_2 .

§ 1. Two action problem.

Let $\Omega=(-\infty,\infty)$ be a parameter space and let Ω_0 and Ω_1 be the subspace of Ω such that $\Omega_0 \cup \Omega_1 = 0$ and $\Omega_0 \cap \Omega_1 = \emptyset$. In this paper we consider the two-action problem of testing hypotheses $H_0: \theta_1\Omega_0$ versus $H_1: \theta_1\Omega_1$, provided the random observations X_1 , ..., X_n from the population with density $f(x|\theta)$. Assume that α_1 denotes the action deciding in favor of H_1 (i=0,1). Let $L(\theta,\alpha)$ be the loss function such that

(1)
$$L(\theta,a_0) = \begin{cases} 1, & \text{if } \theta \epsilon \Omega_1 \\ 0, & \text{if } \theta \epsilon \Omega_0 \end{cases}$$

and $L(\theta,a_1)=1-L(\theta,a_0)$.

Let $Y \doteq Y(X_1,...,X_n)$ be the underlined statistic with density $g(y|\emptyset)$. We denote by $\delta(y,\cdot)$ a decision rule showing the probability distribution on $\lambda = \{a_0,a_1\}$. Namely,

(2) $\delta(y,a_0) + \delta(y,a_1) = 1$.

For given y, the loss function of & is given by

(3)
$$L(\theta, \delta(y, \cdot)) = E_{\delta(y, \cdot)} (L(\theta, a))$$
$$= \int L(\theta, a) d\delta(y, a), \quad \forall \theta.$$

The risk function $R(\theta, \delta)$ is of form

(4)
$$R(\theta,\delta) = E_{Y+\alpha}(L(\theta,\delta(Y,\cdot)) = \emptyset \qquad L(\theta,a) \quad d\delta(Y,a) \quad g(Y|\theta) \quad dY.$$
 Namely, for $\theta \in \Omega_0$

(5)
$$R(\theta, \delta) = E_{Y_1, \sigma}(\delta(Y, a_0) L(\theta, a_0) + \delta(Y, a_1) L(\theta, a_1))$$
$$= \int \delta(Y, a_1) \quad g(Y|\theta) \quad dY = E_{\sigma}(\delta(Y, a_1)).$$

In the same way, for $\theta \in \Omega_1$

(6) $R(\theta,\delta)=E_{Y^i,\delta}(L(\theta,\delta(Y,\cdot)))=\{$ $\delta(y|a_0)=g(y|\theta)=dy=E_{\delta}(\delta(Y,a_0)).$ Hereafter, we let $\Omega_0=\{\theta_0\}$ with real number θ_0 , and $\Omega_1=\{\theta:\theta\neq\theta_0\}.$ We also let $\delta(y,a_i)=\{\theta:\theta\neq\theta_0\}.$

In this paper we consider the decision rules of form

(7)
$$\delta_1(y) = \begin{cases} 1, & \text{if } y \leq y_1 \text{ or } y \geq y_2 \\ 0, & \text{if } y_1 \leq y \leq y_2 \end{cases}$$

and $\delta_0(y)=1-\delta_1(y)$, where y_1 and y_2 are real numbers such that $y_1 < y_2$.

In the next section we consider the distribution with density of form $f(x|\theta)=c^{-1}I_{\{\theta+\eta,1,\theta+\eta,2\}}(x)$.

§2. $f(x|\theta) = c^{-1}I_{(\theta+\eta_1, \theta+\eta_2)}(x)$ (x)—Case.

In this section we consider the population with density

(8)
$$f(x|\theta)=c^{-1}I_{(\theta+\eta 1, \theta+\eta 2)}(x), \qquad \text{for } \theta \in (-\infty, \infty)$$

where η_1 and η_2 are real numbers with $c=\eta_2-\eta_1(>0)$.

Let $X_{(1)}$ be the i-th smallest observation of $X_1, ..., X_n$, taken randomly from the population with density $f(x|\emptyset)$. In this section we use an unbiased estimator $Y=(X_{(1)}+X_{(n)}-\eta_0)/2$ $(\eta_0=\eta_1+\eta_2)$ to get the optimal decision $\delta_0(y)$ for deciding a_0 . Applying variable transformations $Y=(X_{(1)}+X_{(n)}-\eta_0)/2$ and $Z=X_{(1)}$ to the joint density of $(X_{(1)},X_{(n)})$ and taking marginal probabiltiy density function (p.d.f.) of Y as follows:

(9)
$$g(y|\theta) = \begin{cases} nc^{-n}(c-2|y-\theta|)^{n-1}, & \text{for } -c/2 < y-\theta < c/2 \\ 0, & \text{elsewhere.} \end{cases}$$

To get the optimal interval (y_1,y_2) for deciding a_0 we minimize $y_2-y_1(>0)$, provided that for a real number g with 0 < g < 1 and for all $\theta \in (-\infty,\infty)$,

(10)
$$E_{\theta}(\delta_{0}(Y)) = P_{\theta}[y_{1} \langle Y \langle y_{2}] = \begin{cases} y_{2} \\ y_{1} \end{cases} g(y|\theta) \quad dy = 1-\alpha.$$

Since $g(y|\theta)$ is symmetric at θ , we take $y_1=\theta-r$ and $y_2=\theta+r$, and obtain

(11)
$$r=c(1-e^{i/n})/2$$

(We note that the optimal region (Y-r,Y+r) satisfies that for all $\theta \in (-\infty,\infty)$,

(12)
$$P_{\sigma}[\theta \in (Y-r,Y+r)] = 1-\alpha.$$

Letting

and $\delta_0'(y)=1-\delta_1'(y)$, we get

(14)
$$R(\theta, \delta^{o}) = E_{o}(\delta_{1}^{o}(Y)) = \alpha, \qquad \theta \in Q_{o}$$

$$R(\theta, \delta^{o}) = E_{o}(\delta_{0}^{o}(Y)) = 1 - E_{o}(\delta_{1}^{o}(Y)) = 1 - \alpha, \qquad \theta \in Q_{1}.$$

If we especially let

(15)
$$\delta_1^*(y) = \delta_1^{00}(y)$$
 and $\delta_0^*(y) = 1 - \delta_1^{00}(y)$,

then

(16)
$$R(\theta_0, \delta^*) = E_{\theta,0}(\delta_1^*(Y)) = \alpha,$$

and

(17)
$$R(\theta,\delta^*)=E_{\sigma}(\delta_0^*(Y))=1-E_{\sigma}(\delta_1^*(Y))\underbrace{1-\alpha}\underbrace{E_{\sigma}(1-\delta_1(Y))}=R(\theta,\delta), \qquad \text{for } \theta\neq \theta_0,$$
 because
$$E_{\sigma}(\delta_1^*(Y))\underbrace{2\alpha}. \qquad \text{So, if } D=\{\delta\colon R(\theta_0,\delta)=\alpha \text{ and } \delta_1(Y) \text{ is of form (7)}\},$$
 then δ^* is of best among all $\delta_{\delta}D$.