No. 751

A new view on statistical inference.

——Part III——

Case of the retreated distributions ———

by

Yoshiko Nogami

October 1997

A new view on statistical inference. ---Part III---

----Case of the retreated distributions -----

Yoshiko Nogami

October, 1997

Abstract_

This is a modified version of some part of Nogami(1997,May). In Nogami(1997,May), the author uses the retreated distributions over the interval $[\theta+\delta_1,\theta+\delta_2)$ with density

(1)
$$f(\mathbf{x}|\theta) = \begin{cases} c^{-1}, & \text{for } \theta + \delta_1 < \mathbf{x} < \theta + \delta_2 \\ 0, & \text{otherwise} \end{cases}$$

where $\theta_{\ell}(-\infty,\infty)$ and $c=\delta_2-\delta_1(>0)$ with real numbers δ_1 and δ_2 .

Let $X_1,...,X_n$ be a random sample of size n from $f(x|\theta)$. Let $X_{(1)}$ be the i-th smallest observation of $X_1, ...,X_n$. In this paper, the author uses an unbiased estimator $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ $(\delta_0=\delta_1+\delta_2)$ to find the optimal confidence interval (C.I.) for θ (see §2) and check its goodness by using the falsely-covering probability (see §3) and the optimal property of the shortest C. I. at $\theta=\theta_0$ (see §4).

\$1. Introduction.

This is the paper of a modified-version of some part of Nogami(1997, May). Let $I_{\Lambda}(\mathbf{x})$ be a indicator function such that $I_{\Lambda}(\mathbf{x})=1$, if $\mathbf{x}_{\ell}\lambda$; =0, if $\mathbf{x}_{\ell}^{\dagger}\lambda$, for a set λ . In this paper the author considers the retreated distribution over the interval $[\theta+\delta_1,\theta+\delta_2)$ with density

(1) $f(x|\theta)=c^{-1}I_{\{\theta+\delta_1,\ \theta+\delta_2\}}(x)$, $\forall \theta$ where $\delta_1(i=1,2)$ are the real numbers and $c=\delta_2-\delta_1(>0)$.

Let X_1 , ..., X_n be a random sample of size n from $f(x|\theta)$. Let $X_{(1)}$ (i=1,2, ...,n) be the i-th smallest observation such that $X_{(1)} < ... < X_{(n)}$. We try to construct an optimal confidence interval (C.I.) for θ .

As a literature the author's research in this direction was firstly explored in 1992 (see, for example,Nogami(1992)). In Nogami(1992) the author obtained the optimal C. I. for θ when the underlined-distribution is $f(x|\theta)$ with $\theta_1=0$ and $\theta_2=1$. Although at this time the author had been noticed that the unbiased estimator $Y=(X_{(1)}+X_{(n)}-1)/2$ for θ could be a good estimator(see p.1 in (1992)), miscalculation had prevented the author from reaching the right direction. Later(Nogami(1995)), this Y is used to obtain the optimal C. I. for θ . This paper is a generalized version of Nogami(1995) to $f(x|\theta)$ in (1). Let θ be a real number such that $0<\theta<1$.

In this paper the author uses an unbiased estimator $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ $(\delta_0=\delta_1+\delta_2)$ to get the optimal shortest C. I.(Y-r,Y+r) with $r=c(1-\mathfrak{g}^{1/n})/2$, where r is determined by

 $(2) 1-P_{\theta}[\theta \in (Y-r,Y+r)]=a.$

(in Section 2). In Section 3, she computes the probability $\xi(\theta)$ of falsely covering $\theta_0(\sharp \theta)$ when the true parameter is θ , as a function of θ , and checks that it is a concave (from below) function of θ . In Section 4, we check the optimal property for the C. I. (Y-r,Y+r) at $\theta=\theta_0$.

Let = be a defining property.

§2. Shortest C. I..

In this section we use the statistic $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ $(\delta_0=\delta_1+\delta_2)$ to get the shortest C. I. for θ at confidence coefficient $1-\alpha(=1)$. We first find the probability density function (p.d.f.) of Y. Applying the variable transformations $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ and $Z=X_{(1)}$ to the joint density of $(X_{(1)},X_{(n)})$ and taking the marginal p.d.f. we obtain the p.d.f. of Y as follows:

(3)
$$g(y|\theta)(\stackrel{.}{=}g(y-\theta)) = \begin{cases} nc^{-n}(c-2|y-\theta|)^{p-1}, & \text{for } -c/2 < y-\theta < c/2, \\ 0, & \text{elsewhere.} \end{cases}$$

To get the shortest C. I. for θ at confidence coefficient η we minimize $y_2-y_1(>0)$ provided that for any $\theta\in (-\infty,\infty)$

(4)
$$P_{n}[y_{1}\langle Y\langle y_{2}]=] \qquad y_{2} \qquad g(y|\theta) \qquad dy = y$$

where y_1 and y_2 are real numbers such that $y_1 < y_2$. To get such y_1 and y_2 we let

(5)
$$(L \doteq) L(y_1,y_2) \doteq y_2 - y_1 - \lambda \{ \} \qquad g(y|\theta) \quad dy - \tau \}$$
, for real λ

and solve the equations

(6)
$$\partial L/\partial y_1 = -1 + \lambda g(y_1|\theta) = 0,$$

(7)
$$\partial L/\partial y_2 = 1-\lambda g(y_2|\theta)=0$$
,

(8)
$$\partial L/\partial \lambda = \begin{cases} y_2 \\ g(y|\theta) & dy - \tau = 0, \end{cases} \forall \theta.$$

Since by (6) and (7), we obtain

(9)
$$g(y_1|\theta)=g(y_2|\theta)(=\lambda^{-1}), \quad \forall \theta,$$

we merely obtain y_1 and y_2 which satisfy (9) and (8), for any $\theta_{\xi}(-\omega,\omega)$.

Hence, we obtain

(10) $y_1 = \theta - r$ and $y_2 = \theta + r$

where r is determined by

(11) $r=c(1-e^{-t/n})/2$.

Hence, the shortest C. I. for θ is (Y-r,Y+r) for which

(12) $P_o[\theta_i(Y-r,Y+r)] = \gamma.$

In the next section we compute the probability of falsely covering $\theta_{\sigma}(\sharp \theta) \quad \text{when the true parameter is } \theta \text{ and see that it is concave (from below)}$ in $\theta.$

§3. The Falsely covering probability.

Let

(13) $\xi(\theta) \doteq P_{\theta}[\theta_{\theta} \xi(Y-r,Y+r)],$ for real θ_{θ} with $\theta_{\theta} \neq \theta$ where r is given by (11). We shall call $\xi(\theta)$ as the probability of falsely covering $\theta_{\theta}(\phi)$ when the true parameter is θ . We can easily calculate $\xi(\theta)$ as follows:

$$\begin{cases} 0, & \text{for } \theta \leq \theta_{0} - r - c/2, \\ -\frac{1-2c^{-1}(\theta_{0} - r - \theta)}{2} - (1-2c^{-1}(\theta_{0} + r - \theta))^{n}]/2, & \text{for } \theta_{0} - r - c/2 \leq \theta \leq \theta_{0} + r - c/2, \end{cases}$$

$$(14) \qquad \xi(\theta) = \begin{cases} [\{1-2c^{-1}(\theta_{0} - r - \theta)\}^{n} - \{1-2c^{-1}(\theta_{0} + r - \theta)\}^{n}]/2, & \text{for } \theta_{0} + r - c/2 \leq \theta \leq \theta_{0} - r, \end{cases}$$

$$1 - [\{1-2c^{-1}(\theta - \theta_{0} + r)\}^{n} + \{1-2c^{-1}(\theta_{0} + r - \theta)\}^{n}]/2, & \text{for } \theta_{0} - r \leq \theta \leq \theta_{0} + r, \end{cases}$$

$$[\{1+2c^{-1}(\theta_{0} + r - \theta)\}^{n} - \{1-2c^{-1}(\theta - \theta_{0} + r)\}^{n}\}/2, & \text{for } \theta_{0} + r \leq \theta \leq \theta_{0} - r + c/2, \end{cases}$$

$$\{1+2c^{-1}(\theta_{0} + r - \theta)\}^{n}/2, & \text{for } \theta_{0} - r + c/2 \leq \theta \leq \theta_{0} + r + c/2, \end{cases}$$

$$0, & \text{for } \theta_{0} + r + c/2 \leq \theta.$$

(Here, we remark that for ($\mathfrak{g} \geq 0.001$; $\mathfrak{n} \geq 10$), ($\mathfrak{g} \geq 0.01$; $\mathfrak{n} \geq 7$), ($\mathfrak{g} \geq 0.05$; $\mathfrak{n} \geq 5$), and ($\mathfrak{g} \geq 0.10$; $\mathfrak{n} \geq 4$), we have that $\mathfrak{g} \leq 1/2$. (See Table, below.) So, calculations led to (14) depend on \mathfrak{g} and \mathfrak{n}

Table. The Values of a''".

such that ø'/n ≥ 2~1.)

a 1	.10	.05	.01	.001	
n=41	.56	.47	.32	.18	Since, $d\xi(\theta)/d\theta=\xi'(\theta)>0$
5ı	.63	.55	.40	.25	_
51 61	.68	.61	.46	.32	for $\theta < \theta_0$, $\xi'(\theta) < 0$ for $\theta > \theta_0$ and
71	.72	.65	.52	.37	
101	.79	.74	.63	.50	$\{(\theta_0)=0,$ and since $\{(\theta_0)=\emptyset\}$ and
	.95	.94	.91	.87	·
50)	98	.97	.96	.93	$\xi(+\infty) = \xi(-\infty) = 0$, $\xi(\theta)$ is a concave (from

below) function of θ . We also see that for all θ with $\theta \neq \theta_0$, $\xi(\theta) \mid 0$ as $n \mid \infty$. In the next section we check the optimal property for the C. I. (Y-r,Y+r) at $\theta = \theta_0$.

§4. Optimal property.

Assume, for simplicity, that

(15)
$$\phi(y) \stackrel{!}{=} \begin{cases} 1, & \text{if } y_1 \ge y & \text{or } y_2 \le y \\ 0, & \text{if } y_1 < y < y_2, \end{cases}$$

where y_1 and y_2 are real numbers such that $y_1 \triangleleft y_2$. Define $\beta(\theta) = E_{\theta}(\phi(Y))$. Assume that $\theta = \theta_0$ is a true value. Then, we try to choose y_1 and y_2 which satisfy

(16)
$$\beta(\theta_0) = \mathbf{E}_{\theta_0}(\phi(\mathbf{Y})) = \mathbf{g}$$

and

(17)
$$\beta'(\theta_0) = d\beta(\theta)/d\theta = g(y_2|\theta_0) - g(y_1|\theta_0) = 0.$$

Equations (16) and (17) are the same as (8) and (9) except for the value θ_0 of θ . Hence, the solution of (16) and (17) is (10) with θ replaced by θ_0 .

References.

- Y. Nogami(1992)."A statistical inference under the uniform distribution $U[\theta,\theta+1)$ " D.P. Series No. 507, Inst. Soci-Econ. Planning, U. of Tsukuba, December.
- Y. Nogami(1995)."Statistical Inference under U[0,0+1); Correction and Supplement of No.507".(in Japanese) D.P. Series No.627, Inst.Soci-Econ.Planning, U. of Tsukuba, May.
- Y. Nogami(1997,May).(Unpublished Paper) A new bre kthr ugh on statistical infarence. pp.1-8 (Submitted to some journal for publication on June, 1st of 1997, and turned down in July).