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Abstract

Choquet expected utility (CEU) generalizes subjective expected utility (SEU)
by relaxing additivity of state probabilities. There are only two axiomatiza-
tions by Gilboa (1987) and Sarin and Wakker (1992) to generalize Savage's
SEU model. As in Savage’s theory, they impose two restrictions on the rep-
resentational form of CEU models, i.e., the boundedness of utility and the
continuous divisibility of the state space. This paper establishes an axiomatic
characterization without those restrictions in Savage’s SEU framework. Our
representational form yields a (not necessarily bounded) utility function and a
dense capacity, the range of which forms a dense set in the unit interval.
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1 Introduction

Since Savage’s (1954) axiomatization of subjective expected utility (SEU) model
that represents numerically the personal beliefs (state probabilities) and preferences
of a decision maker, numerous alternative theories in decision making under uncer-
tainty have been proposed under various set-ups (see a survey by Fishburn (1981)).
However, abundant evidence shows that people’s carefully considered decisions of-
ten violate the underlying axioms of SEU models. One of the well-known violations
was observed by Ellsberg (1961) who discussed decision situations under uncertainty
that contradict additivity of state probabilities. It has not been recognized how to
cope with capacities, i.e., nonadditive state probabilities, in SEU framework until
Schmeidler (1984, 1989) first discovered that the Choquet (1953-54) integration pro-
vides an appropriate numerical representation, referred to here as Choquet expected
utility (CEU).

Schmeidler's CEU model generalizes Anscombe and Aumann’s (1963) SEU model
which uses an auxiliary device, ie., lottery-acts (functions from the state space into
a mixture set of probability distributions on the consequence space). His model has
motivated much research interest in axiomatic characterizations of CEU models in
various set-ups, including Gilboa (1987), Chew and Karni (1994), Nakamura (1990,
1992), Sarin and Wakker (1992), and Wakker (1989, 1993).

Gilboa (1987) was the first to axiomatize a CEU model in Savage’s SEU frame-
work. As in Savage’s theory, his axiomatization imposes two restrictions on the
representational form of his CEU model. The first restriction is the boundedness
of utility, and the second is the continuous divisibility of the state space, i.e., the
set of state probability numbers is the unit interval. Furthermore, his axiomati-
zation cannot draw directly on Savage's theory. A recent axiomatization by Sarin
and Wakker (1992) is also confined to those two restrictions, since preferences for
acts (i.e., functions from the state space into the consequence space) restricted to
unambiguous events obey Savage's Theory. One of the aims of the paper is to give
an axiomatic characterization of 2 CEU model without those restrictions in Savage’s
SEU framework, so that a utility function is not necessarily bounded and the set of
state probability numbers forms a dense set in the unit interval.

Although additivity of thestate probabilities contradicts Ellsberg's observation,
another stream of the researchto generalize Savage’s theory was initiated by Machina
and Schmeidler (1992) who demontrated that the existence of additive state proba-
bilities is robust for less demanding preferences than in Savage's SEU model. When a
decision maker'’s preferences for acts can be translated into risk preferences for prob-
ability measures over the consequence space induced by additive state probabilities
through acts, they call those (transitive) preferences probabilistically sophisticated.

The preferences that satisfy Savage's SEU model are probabilistically sophisti-
cated, so that the induced risk preferences obey von Neumann-Morgenstern expected
utility (EU) model. As a generalization of EU models, Quiggin (1982) and Yaari
(1987) independently investigated rank dependent expected utility (RDEU) mod-
els, which motivated much axiomatic refinements and generalizations, such as Chew



(1989), Green and Jullien (1988), Nakamura (1992, 1995a), Quiggin and Wakker
(1994), Segal (1989), Wakker (1990), and others.

CEU and RDEU models have a common representational form, ie., expected
utility of a gamble or an act is calculated with respect to a (distorted) (de)cumulative
distribution over the consequence space generated by that gamble or act. Nakamura
(1995b) recently axiomatized a CEU model with probabilistically sophisticated pref-
erences, so that the capacity is given by a strictly increasing transformation of an
additive state probability measure, and the induced risk preferences obey an RDEU
model. His model relaxed the boundedness of utility, but retained the continuous
divisibility. The second aim of the paper is to axiomatize probabilistically sophis-
ticated preferences for CEU models without the boundedness and the continuous
divisibility. When the capacity is a linear transformation of an additive state prob-
ability measure, this model is reduced to an SEU model. Since the state space need
not be continuously divisible, our SEU model has a more general representational
form than Wakker’s (1993) generalization of Savage’s theory with an unbounded
utility function. .

The paper is organized as follows. Section 2 discusses a CEU model in our set-up
and two specializations. Then Section 3 describes axioms and three representation
theorems for simple acts. Section 4 provides axioms and theorems to cover all
measurable acts. Section 5 proves the existence of a unique locally convex, and
dense capacity. Then Section 6 proves the existence of a unique locally convex and
finitely additive state probability measure for two specializations of our CEU model.
Section 7 and 8 provide the proofs of three representation theorems respectively for
all simple acts and all measurable acts.

2 Choquet Expected Utility Models

Let I's denote a Boolean algebra of subsets of the state space 5, ie., I's contains @
(empty set) and S, and is closed under finite unions and complementation. Elements
of I's are called event. By A° we denote the complement S\ A of an event 4. A
real valued function 7 on I'g is said to be a capacity if w#(5) =1, x(0) = 0, and for
all A,B € I's, w(A) < (B) whenever A C B. A capacity r is finitely additive if
for all disjoint A, B € I's, n(AUB) = w(4) + 7(B). In general a capacity is not
necessarily additive.

Given a capacity 7, the range of 7 is denoted by R(r) and is defined to be the
set {m(4): A € T's}. A capacity = is said to be locally convez if for any A, B €l's
with A C B, and any a € R(7) with 7(4) < a < 7(B), there is an event G & T's
such that A C €' ¢ B and n(C) = . By R(r) we denote the closure of B(x). We
say that a capacity w is dense if E(r) = [0,1] (the unit interval), and continuous if
R(w) = [0,1]. Capacities that we shall consider may not take any value in the unit
interval, ie., there may exist a number 0 < a < 1 such that 7(A) = a for no event
A € T's. However, we require that capacities be dense. When capacities are finitely
additive, it is known that the range is either finite or dense (see Rao and Rao, 1983).




Acts are defined as functions from S into the consequence space §2. A constant
act is an act f such that f(s) = zfor all s € S and some z € 2. Every z € 2 will be
identified with a constant act. Let < be the binary preference relation on a set F of
acts including all constant acts. Let < and ~ be defined as usual, i.e., for f,g € F,
f=<gifnot(g X f),and f~gif f<Xgandg X f. We write f X g 2 hwhen f g
and g 2 h; f<g<hwhen f <gandg < h; f ~g~ hwhen f~gand g~ h.

Following Fishburn (1982), a subset X of Q is said to be a preference interval
if z € X whenever z,y € X andz =< z < y. Certain preference intervals will be
denoted as follows.

(—o0,a] = {zeQ:zXa},
[a,+0) = {zeQ:aXz},
[a;b) = {zefl:a=xzxb}

Preference intervals such as (—c0,a),(a,+),[a,b], and so forth are similarly de-
fined.

By I'q we denote a Boolean algebra of subsets of {2 that contains all preference
intervals. Given an act f, let f~}(X) = {s€ S: f(s) € X} for X € Tq. For z € 2,
we shall write f~!(z) in place of f~!({z}). When X = (—o0,z], we shall write
f7Y(zy) in place of f~1((—oo0, z])). We say that an act f is measurable if for every
X €Tq, f(X) isin I's. Note that all constant acts are measurable. In the sequel,
we shall take F as the set of all measurable acts. Qur basic structural assumptions
for S, 2, and F are stated as follows.

Assumption 1 S is a nonemply set endowed with a Boolean algebra T's of subsets
of S. T'q is a Boolean algebra of subsets of Q0 that contains all preference intervals.
F is the set of all measurable acts.

We say that (F, <) has a CEU representation (u, ) if there exist a (not neces-
sarily bounded) utility function v on (2 and a locally convex and dense capacity =
on I'g such that for all f,g € F,

Pt sy ]S sl F{s))d(s) < ]S w(g(s))dn(s),

and u is unique up to a positive linear transformation and 7 is unique. The integra-
tion is defined as follows:

+00
Jusedn(s) = [ @=nlls: u(f(s) < TH)dr
) 0 i
= [ #s: ul(s)) < 7y,

which is the Choquet integration meaning that the expectation is calculated with
respect to (w.r.t.) cumulative distributions on the utility space induced by the
capacity 7 through acts.



One of the aims of the paper is to provide an axiomatic characterization for the
CEU representation (v, ). Gilboa (1987) presumed that I's = 25 (the power set of
S). His axiomatization yields a unique locally convex and continuous capacity 7 and
a bounded utility function u as in Savage's SEU model. Sarin and Wakker (1992)
presumed that T's is a o-algebra and consists of two types of events, unambiguous
and ambiguous events, and that the set of unambiguous events forms a o-subalgebra

g of I's. Their axiomatization yields a bounded utility function « on 2 and a
unique capacity 7 on I's such that 7 on I'§ is locally convex, continuous, and finitely
additive,

Gilboa (1985) considered the problem that given a locally convex and continuous
capacity 7 on I's, when there exists a function ¢ on [0,1] and 2 locally convex,
continuous, and finitely additive probability measure #* on I's such that & = ¢(x*),
and provided necessary and sufficient conditions for that problem. Unfortunately,
those conditions are not translated into preference-based conditions, i.e., conditions
that are stated by <. Recently, Nakamura (1995b) developed a preference-based
axiomatization by applying the concept of probabilistic sophistication to a CEU
model, and obtained a slightly stronger version of the RDEU representation defined
below, since the capacity = is continuous.

The second aim of the paper is to provide axiomatic characterizations for the
RDEU representation (u,7*, $) and the SEU representation (u,7*) described in the
sequel. We say that (F, <) has an RDEU representation (u,7*,#) if it has a CEU
representation (u,7) and there exist a locally convex, dense, and finitely additive
probability measure #* on I's and a strictly increasing continuous function ¢ on
[0,1] such that for all A € T'g, -

T(A) = ¢(x*(4)),

where ¢ is unique up to a positive linear transformation. The uniqueness of 7*
follows from the uniqueness of 7 and ¢. The integration is described as follows:

+00
Luts@ans) = [T 6 - (fs  u7(s) < T
0
- [ @@ s w(s) < 7)) - $(0)ar.
-0
The function ¢ may be called a distortion function of cumulative distributions.
Utilities of acts are calculated w.r.t. distorted cumulative distzibutions on the utility
space induced by an additive state probability measure 7* through acts, When

¢ is a linear function, the RDEU representation (u,7*,¢) is reduced to an SEU
representation (u,7*).

3 Axioms and Theorems for Simple Acts

This section presents axioms and three representation theorems for CEU models
dealing with all simple acts. The first theorem is concerned with a CEU represen-
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tation (u,w). The last two theorems are concerned with specializations of the first,
i.e., an RDEU representation (u, 7*,¢) and an SEU representation (u, 7*).

For X C Q and A € T'g, let |X| denote the cardinality of X, and let f(A) =
{f(s) : s € A}. A simple (measurable) act f is an act f € F for which [f(A4)| is
finite. Let F* be the set of all simple acts. Note that 75 C F. For f,g € F and
A €Tg, an event-mixtue of f and g with respect to (w.r.t.) A, denoted by f QOa g,
is the act h such that h(s) = f(s) for all s € A, and h(s) = g(s) for all s € A°. For
example, given f,g,h € F and A,B € T's, (f Oag) Op h is an event-mixture of
acts f Qa9 and h wrt. Band f Qa(gOph) is an event-mixture of acts f and
gQOpghwrt A

Any simple act can be represented as follows: for Aj,...,Ap_1 € T's and
Lo s ibn B 1

f=0((z1 Oaz2) Qasz3) - Oapg Tn-1) Oan_y Zn.

This means that for ¢ = 1,...,n, f(s) = z; if s € 4;\ Ai_1, where 4g = 0 and
Ap=S5. When A; C A3 C -+ C A,_3, we shall simply write a simple f by

1 Q4 T2 Zn-1 Oap_y Tn

without parentheses.

We use seven axioms for (7%, <) to have a CEU representation (u, ). Six of
them, which are understood asapplying to all simple f, g, h, f1, f2, 91,92, h1, ha € F?,
all z,y € Q, and all A, B € T'g, are stated as follows.

Al. < on F is a weak order.

A2. If fi(s) < gi(s) for al s € S and i = 1,2, and if fi ~ f2, 1 ~ g2, and
(G-.Og‘,—l(zl) b) Of‘-_l(zl) c~a Oh.-'l(zl) c fori=1,2, all z € Q, and some a,b,c € Q
with a < b < ¢, then hy ~ hq.

A3, Ifr<yand AC B,thenzQpy=2z(Oay.

Ad. IfaQp-1(4) b 2 aQp1(z b forallz € Q and some a,b € Q with a < b,
then f <X.g. If, in addition, aQg-1(,)b < a Og-1(¢)) b for somec €, then f < g.

AB5. a=<b=<c for some a,b,c €.
AB. Iff2h=g, then h~ f Qgg for some C € ['s.

Axiom Al says by definition that < on F is asymmetric and negatively transitive.
We note that axioms A2—A6 apply to only simple acts. To see the meaning of axiom
A2, assuming that the CEU model holds, it may be useful to translate preference
statements in the axiom into risk preferences for distributions on Q induced by the
capacity through each act. Under the hypotheses of the axiom, for i = 1,2, the
induced distributions of act h; is identical to a unique common probability-mixture
of the induced distributions of acts f; and g; that depends on the utility levels of a,
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b, and c. Then the axjom requires that A; and hy be indifferent. Note that if the
SEU model holds, then any common probability-mixture suffices to ensure that A
and hg are indifferent.

Axiom A3 says that preferences are monotonic w.r.t. event monotonicity. A
dominance condition is stated in axiom A4 which is tantamount to the stochastic
dominance of induced distributions on . It is obvious to see that it implies Savage’s
P4 (Weak comparative probability axiom) which is stated as axiom A4* below, being
understood as applying to all z,y,z,w € Q and all 4, B € I's.

Agt. Ifz <y, z<w, andzQay<zQpy, then2Q 4w <2Qpw.

Axiom AS is a structural) property of {2 which says that 2 includes at least three
consequences that are not mutually indifferent. Axiom A6 is a restricted solvability
axiom, which seems weaker than Savage’s P6 (Small event continuity axiom), since
the local convexity and density of a capacity follows from A6, while P§ is crusial to
obtain a locally convex and continuous state probability measure in Savage’s SEU
model. We note that if the CEU model (u,7) has a continuous utility function «,
then A6 requires that 7 be continuous. On the other hand, if the range of u is a
denumerable set, then 7 may not be continuous but dense.

To obtain a CEU representation, we need one more axiom, called Archimedean
axiom, which guarantees the existence of a real valued function # on I'g. Throughout
the paper M always stands for any set of consecutive integers. We define a weak
standard sequence as a monotone sequence of events {A4; : i € M} for which there
exist z,7,z € Q and A, B € I's such that not(z Qay ~2Opy), either z <y < z
orz~<y—<zand forall{,i+ 1€ M, AUBC A4; and

(.’E OA y) OA.’ Z~ ($ OB y) OA,;+1 z.
Then our Archimedean axiom is stated as follows.
AT. PBuvery weak standard sequence is finite.

We have the following CEU representation theorem for all simple acts. The
existence of a unique locally convex and dense capacity will be proved in Section 5,
and the complete proof of the thecrem will be given in Section 7.

Theorem 1 Suppose that Assumption I holds. Then azioms AI-A7 imply that
(F¢, %) has an CEU representation (u, 7).

We note that all the axioms in the theorem except A5 and A6 are necessary for the

representation.
In what follows we shall consider two specializations of Theorem 1, i.e., an RDEU

representation (u, 7%, ¢) and an SEU representation (u,n*). The both representa-
tions use restricted versions of Savage's P2 (Sure-thing principle), which are under-
stood as applying to all simple f,g,h, k' € F?, all A € g, and all positive integers
n.




A(n). IfIf(A)ug(A) <n and fOah X gQah, then fOsR 2gOah’

This axiom says that if the number of consequences generated by both simple acts,
f and g, when the event A obtains is at most n, then preferences between simple
acts f Q4 h and g Q4 h do not depend upon the consequences the both acts yield
when the complementary event A obtains. We note that axioms A(n) holds for all
n > 0 if and only if Savage's sure-thing principle P2 holds for all simple acts. Clearly,
axiom A(n+1) implies axiom A(r). RDEU representations require only axiom A(2).
Although P2 is necessary for SEU representations, we shall use only axiom A(3) for
our SEU representation. Axioms A(2) and Savage's weak comparative probability
axiom A4* are combined to give an equivalent axiom to Machina and Schmeidler’s
(1992) strong comparative probability axiom, from which A4 follows. Therefore, we
shall replace A4 by A4* for our RDEU and SEU representations.

Archimedean axiom A7 is not strong enough to make the capacity in Theorem 1
to be a strictly increasing transformation of a finitely additive probability measure,
so that we need a stronger version of standard sequences in A7. We say that a
monotone sequence of events {A; : i € M} is a strong standard sequence if there
exist z,y,z €  and A, B € I'g such that not(y Qaz ~yOp z), either z Xy < 2
orz <y =z and forall 4,24+ 1€ M,

(zQav) Qaua; 2~ (2 OpY) Obuaiy, 2

In contrast with A7, we allow that for each i, 4; is disjoint from A and B, and either
z~y<zorz <y~ z. Thee conditions are crusial to derive the existence of
a finitely additive probability measure by applying additive conjoint measurement
(see Krantz et al., 1971) as shown in Section 6. If we take a stong standard sequence
{A;} to satisfy that AU B C 4; in AT", the sequence is also weak whenever either
z<y<zorz<y=az.

Our Archimedean axiom is stated as follows.

A'T*. Every strong standard sequence is finite.

We have the following RDEU representation (u,7*,¢). The existence of a unique
locally convex, dense, and finitely additive state probability measure will be proved
in Section 6. The complete proof that implies the existence of a strictly increasing
distortion function ¢ and a utility function v will be provided in Section 7.

Theorem 2 Suppose that Assumption 1 holds. Then azioms Al, A(2), A2, A3,
Ad*, A5, AB, AT* imply that (F¢,<) has an RDEU representation (u,7*, ).

We note that A4* and A7* are necessary for the representation.

When axiom A(3) is imposed on Theorem 2 in place of axiom A(2), we obtain the
following SEU representation (u, 7*), which generalizes Savage’s SEU representation.
The complete proof will be provided in Section 7.

Theorem 3 Suppose that Assumption I holds. Then azioms Al, A(3), A2, A3,
Ad*, A5, AB, AT* imply that (F*°,=X) has an SEU representation (u, 7).



4 Axioms and Theorems for Nonsimple Acts

This section extends the results obtained in the preceding section to the set of all
measurable acts. We shall do this in two steps. The first step is concerned with the
set of all acts that are bounded in consequences introduced below. The second step
considers the whole set F.

We say that a preference interval X € I is bounded if there are a,b € €1 such
that e Xz X bforallz € X. If X,Y € I'g, then X < Y means that < y for all
z € X and all y € Y. A partition of a preference interval X is a finite sequence of
preference intervals that are mutually disjoint and whose union equals X. Thus if
preference intervals Y and Z are in the partition, then either Y < Z or Z <Y. Let
F® denote the set of all measurable acts that are bounded in consequences, i.e.,

FP={f€F: f(a,b]) = S for some a,b & C2}.

The following axioms apply to all n > 1, all Hagfi,. faeF allz,yef all
A1,...,An1 €T, and all X3,..., X, € T'q. .

AB*. If f(s) 2 g(s) foralls € S, then f < g.
AS8. Ifmjf«g:jy,thenf%mOAy-<gforsomeAeI‘s.
A9, If{X1,...,X.} is a partition of some bounded preference interval, X) <

k
o R Xp, and A = f71 (UXi) fork=1,...,n, then
=]
g3 f i g'—<mloA1mgn-mn_loAH_l.rnfora]lm,;EXiandz'=1,...,n;
fXg if mloAImg--.xn_loAn_lxn~<gforallz,;eXiandz'=l,...,n.

First we note that axioms A3* and A8 may apply to acts that do not belong to F?,
while axiom A9 applies to only bounded acts in F?, A3* is a state-wise dominance
axiom, which implies A3. Since our extended representations deal with nonsimple
acts, we need to replace A3 by A3*. Axiom A8 asserts that the set of all binary acts
are dense in preference order. Since f and g are not necessarily simple, there may
not exist binary acts, z Op y and z Q¢ y, such that f ~ z Qg yand g~z Qgy
as shown by the following example.
Let @ be the set of all rational numbers in T = (0,1]. Let S=QnN[0,1) and

"
s = {Jleiti)NS:b; <ajfori<y, a;<b;andayb; e Q
=1
for every ¢, and n > 1}.

Then I's is a Boolean algebra. For any set in I'g, let

U (O[%bi) N 5) = i(bi - a;).

i=1 i=1




Then 7* is a locally convex, dense, and finitely additive probability measure with
R(m*) = Q. Let Q = @ and u(z) = z for all z € Q. Then the set of expected
utilities for all binary acts is given by Q. It suffices to show that there is an act
whose expected utility is irrational.

Take any irrational number 0 < r < 0.1, whose decimal expansion is given by

" _.i a;
AR
i=1l
where a; =0 and q; € {0,1,...,9} for all 2 > 1. Then consider an act f defined as
follows: fori=1,2,...,

a;

f(s)=-§, ifse [%,2—213)

Then the expected utility of this act is given by
i a; a; X G
1=1 5 a" =1 10°
which is irrational.

Axiom A9 is an event-wise dominance axiom, whose slightly different form was
first investigated by Nakamura (1995b). The first part of A9 says that if the bounded
act f is certain to yield outcomes in X; when A;\ A;_; obtains, and if every simple
act that yield exactly one outcome z; in each X; for every state s € A; \ Aij—1 is
strictly preferred to g, then f is weakly preferred to g. The second part has a similar
interpretation.

Adding axioms A8 and A9 to each of Theorems 1, 2, and 3, we obtain the
following representation theorem for all bounded acts in F b The proof is deferred
to section 8.

Theorem 4 Suppose that Assumption I and azioms A8 and A9 hold.

(1) If Theorem 1 holds with A3 replaced by A3*, then (F°, =) has a CEU repre-
sentation (u, 7).

(2) If Theorem 2 holds with A3 replaced by A3*, then (F°, %) has an RDEU rep-
resentation (u, %, ¢).

(3) If Theorem & holds with A3 replaced by A3*, then (F®, =) has an SEU repre-
sentation (u, 7%).

We note that axioms A3*, A48, and A9 are necessary for each representation of
Theorem 4.

When F\ F? is not empty, 2 is unbounded, i.e., there exist no a,b € €2 such that
a <z =<bforall z € Q. Inthis case, Wakker’s (1989) truncation continuity axiom
will suffice to derive CEU models. Following Wakker, we introduce the upper and
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lower truncations of measurable acts. Given e € 2, the upper truncation of f € F,
denoted f¢, is defined as follows. For all s € S,

F@={ﬁﬂiw@4&

a ifa = f(s).
The lower truncation of f € F, denoted f,, is defined as follows.

.ma={§ﬂﬁﬁgﬁﬁ

We note that for alla € Q, f2 and f; are measurable acts, so that féand f, arein
F. .

Wakker's truncation continuity axiom, which applies to all f,g € F\F?, is stated
as follows.

Al10. Iff <g, then f, < g and f < g® for some a,b € Q.

Wakker (1993) examined this axiom to obtain unbounded utility representations in
various set-ups including an extension of Savage's SEU theory. Also, in our set-up,
the axiom ensures that the Choquet integration for f € F\F? is well defined even
though a utility function might be unbounded.

Our representation theorem for all measurable acts is stated as follows. The
proof is deferred to Section 8.

Theorem 5 Suppose that Assumption I and axiom A10 hold.

(1) If Theorem 4(1) holds, then (F, <) has a CEU representation (u,w).
(2) If Theorem 4(2) holds, then (F, =) has an RDEU representation (u, 7%, ).
(3) If Theorem 4(8) holds, then (F,=) has an SEU representation (u,n*).

We note that axiom A10 is necessary for each representation in Theorem 5.

5 Dense Capacities

We shall assume throughout the séction that Assumption 1 and axioms A1-A7 hold,
i.e., the hypotheses of Theorem 1. Define a binary relation <* on I'g as follows: for
some z,y € {2 and for all A, B € T,

AX*B &= zQpy2zQay whenever £ < 7.

Since A4 implies A4%, the definition of =* does not depend on the choice of z and
y, so that X* on I's is well defined. By Al, it is a weak order. We say that a set
function m on I'g agrees with <* if for all 4,B € I's,

A =* B &= (A} £ w(B).

11




The aim of the section is to show that there is a unique, locally convex, and dense
capacity 7 on I's agreeing with <*.

Define ~* and <* in the usual way: A~*B if AX*B and B=X*A; A<*B if
not(B=<*A). We write A%*B=%*C when A=*B and B=3*C. If I'},I’; € I'g, then
I'; <*T'5 means that A<*B for all A € T'; and all B € I'5. Basic properties of X* are
given by the following lemma.

Lemma 1 (1) IfAC B, then AX*B.

(2) If AX*B=*C and A C C, then thereis a D € I's such that AC D C C and
D~*B.

(8) IfA;=*-.-=<*A,, then there are By,...,Bn € I's such that By C -+ € By and
Ayt B fori=1,....n.

(4) Ifz<y=zand AUBCC, then

zQay 22Oy (£04y)Ocz =2 (zOBY) Oc 2.
(5) Ifz2y=<zandC C ANB, then

yOaz=2yQOp21+=2z2Q0c(¥0a2) 220c Onr2):
Proof. (1) This follows from A3.

(2) Suppose that A X* B %* Cand A C C. Let a < b. Then by definition,
aQcb=2aQpb=2aQab. It follows from A6 that there is an event E € T'g such
that

aQpb~ (aOcb) Or(aOabd).
Note (CL Oc b) OE (G. OA b) = a OAU(CF‘IE) b. By Al, B ~* AU (C N E) Let
D=AU(CNE),sothat Del's, ACDCC,and D~ B.

(3) This follows from (2), since A, %* S by (1).

(4) Suppose that z < y = zand AUB C C. IfzQav Xz (Opy, then by A4,
(zOQay) Ocz 2 (zOp ¥) Oc 2. Assume that (z Qay) Ocz 2 (zOs y) Oc¢ 2.
Then by A4, (zOsy) Ocz< (x Qay) Oczif t Opy <z (Oay. Thus we must
have that zQay 2 zOB Y.

(5) Similar to (4). O
Forn > 2, let
It = {(A1, -+, An): A1X*... %A and 4; €Ts fori=1,...,n},
Q?H = &1, cor p Bmgin) t By Rove < R By and zieQfori=1,...,n+ 1}
Given & = (21,...,Zn+1) € Q?‘H, we define a mapping wg from I'? into I's as

follows: for every (Ai,...,4n) € I'Y let we(A1,...,An) = B for some B € I'g if
there are By,...,Bn € I's such that By C -+ C By, Ai~*Bifori=1,...n, and

1 Op,z2* Tn OBy Tntt ~ T1 OB Tnt1-

)



By Al, A4, A, and Lemma 1(3), wg is well deﬁned on I'Z.

* We shall denote w§(AB) = wg(4,...,A,) when 1 k<n A = A for
i=1,...,k and A4; = B fori=k+1,. ,n Wesaythat1<k<nlsleﬂ
messentzal if for all A,B,C € T, wm(AC' )~ wh (BC) whenever A=*B<*C, and
righi-inessential if for all A, B,C € Ts, wh(AB)~*wh(AC) whenever A<*B=<*C,
When % is not left (right)-inessential, we say that k is left (right)-essential. When
k is left and right essential, we say that k is essential, When there is an essential
1 £ k < n, we say that wy; is essential. It follows from Al and Adthat forl1 < & < n,

k is left-essential <= ; < Tpy1 =< Tpya,
k is right-essential <<= 1 X zp41 < Ty,
k is essential <= = < Tp4) < Tyl

Given = € Q7! and an essential 1 < & < n, a standard sequence w.r.t. <% is
defined as a set of events, {4; : i € M}, for which there exist A, B € I's such that
not(A~*B), and either {4, B}=<*{4;} and wh(AA;)~*wh(BAyy) for alld,i+1 €
M, or {A;}=%*{A, B} and wf(A;A)~*wh(A;41B) for all 4,4+ 1 € M. We say that
a standard sequence w.r.t. <%, {A;: i € M}, is strictly bounded if A<*4;<*B for
all i € M and some A, B € ['s.

Given x € Q“"‘l with n 2 2, the triple (=* ywx, [T} is said to be a weak multi-
symmetric structure if it satlsﬁes the following six axioms, which are understood as
applying to all 4,B,C, D, A4;,B; e Tgfori=1,...,nandallk=1,...,n -1,

Bl. < is a weak order.
B2. Ifk is left-essential and {A, B}=<*C, then
A=*B = Wk (AC) "Wk (BC);
if k is right-essential and CX*{A, B}, then
‘ AX*B &= Wk (CA)=WE(CB).

B3. If {A,B}=*C and wm(AC)-<‘D-<*wm(BC’) then D~*wh(ECQ) for some
B € I's with EX*C; if C%*{A, B} and w;(CA)2X*DX*wk(CB), then D~*wk (CE)
for some FE € I'g 'wtth C=*E.

B4. BEvery strictly bounded standard sequence w.n.t, =<* is finite. ‘
B3, IfA1=%---2%A4p, B1X*---X*By, and A;3*B; fori=1,...,n, then
w4, .., An)Sfwe(By,. .., By).
B6. IfA;X*- %A, B1<X*-- - X*B,, and A;=<X*B; fori=1,...,n, then
wh(wa (A1, .., An)wz(By, ..., Bp))~wz (Wi (41B1), .. ., wh (AnBn)).

Then we have the following proposition. The proof appears at the end of the section.
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Proposition 1 Suppose thatn > 2, z = (z1,... , Zn41) € Q?"‘l, and wy 15 essen-
tial. Then (X*,wg,I'7) is a weak multi-symmetric structure.

A numerical representation of the weak multi-symmetric structure, which is stated
in the following proposition, yields a unique locally convex and dense capacity 7 on
I's. The proof is deferred to the end of the section. Note that when 2 is finite, the
proposition provides the CEU representation of Theorem 1.

Proposition 2 Forallz = (21,...,Zn41) € Q?H and alln > 2, if wy is essential,
then there ezist unique real numbers A\i(x) =0 fori=1,...,n with Y ri i) =1
and A\j(z)\k(z) > 0 for some distinct1 < j <nandl <k =<mn, and a unique locally
conver and dense capacity © on s agreeing with X* such that for all Aj,...,An €
I‘Sl

n
m(wx(4y,...,4n)) = Z Ai(z)m(A;) whenever Ay =% -+ Z* An.
i=1
Proof of Proposition 1. Suppose that n > 2, ¢ = (21,...+Tns1) € Q?H, and
wq is essential. Then z; < Zy < Zn41 for some 1 < 2 < n. Bl follows from the
definition of <* and Al. Let a = z; and b = Zn41, s0 @ < b. Throughout the proof,
we shall fix z and k. Thus without any confusion, for all 4,B € I's, we shall write
AB in place of w%(AB). Then note by definition that aQasb~ (@Qazrs1) Onb.
To show B2, we show the first part of the claim. A similar analysis applies to get
the second part. Suppose that kis left-essential and {4, B}=*C. Thena < z341 2 b.
By Lemma 1(2), there are A’, B’ € I's such that A" ~* A, B' ~* B,A' C C, and
B’ C C. Hence, we obtain that

A<"B < A B

aQOp' Try1 2 ¢ Qar Tyt

(@ Opr zrs1) Ocb % (@ O zis1) Ocb  (by Lemma 1(4))
aQOpcb=aQach

Alg¢* B

AC =£* BC.

[reee

To show B3, suppose that {4, B}=<*C and AC=*D=*BC. Then by Bl and
B2, A=<*B. We note by Lemma 1(3), Al, and A4 that there are A''B' € Tsg
such that 4’ € B' C C, A~*A!, B~*B’, a Qac b ~ (e Oa zk41) Oc b, and
aQpcb~ (aOp zks1) Oc b. Then we have ;

AC=%*D=X*BC GOBcbjaODbjaoAcb
= (@Ops zrt1) Ocb=2aOpb =2 (aOu ziks1) Oc b

AB implies that for some F' €'g,

aQpb ~ ((@ Op zrq1) Oc b) Or (e Oar Zk+1) Ocd) -
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The right hand side is rearranged to give (@ Qany BnF) Zrt1) Oc b, Thus letting
E = A"U(B'NF), we bave that D ~* EC and £ <* (. The second part of B2
similarly follows,

To show B4, suppose that k is essential. Let {A; : i € M} be a standard
' sequence w.r.t. =% such that for some 4, B € I's with not(4~*B), {A, B}=*{A;}
and AA4;~*BA;y for alli,i4 1 € M. Assume that A<*B. When B~<*A, the proof
is similar. By B1 and B3, Ay <*A;forall4,i+ 1 € M. Since § <* {4;} <* S, the
standard sequence w.r.t. <* is strictly bounded, We are to show that {A} is finite,

It follows from Lemma 1(3) that there are events A’, B’ and a decreasing sequence
of events {A]: ¢ € M} such that A’ ~* 4, B’ ~* B, Al~*A;and 4; D A1 D B! D
A’ for all 4,44+ 1 € M. By the definition of g, Ad; ~* A’Al and BAy 1 ~* BAL 41
Hence, by A7, {A;} must be finite. When {4;} <* {A, B} and A;A ~* A1 B for
all4,44 1 € M, finiteness of {4;} similarly follows. -

To show B5 and B6, suppose that A= A4, BiX* . X*B,, and Ai=*B;
fori=1,...,n. Then by Lemma 1(3), there are events A, AL B, .., B such
that A1 C-.-C Al B, C-.. C By, Ai~* AL, B;~* B}, and A} C Bifori=1,...,n.
By Ad,

71 Op; 22+ 20 O Tnp < 11 Qu 2+ 20 Qar Tnyr-

Hence B5 readily follows from Al and the definition of wa.

Next we show B6. Since wg is essential, let a < ¢ < b for some ¢ € {z1,..., 2}
Then it follows from A4 and A6 that there are events A” B¢, CY,...,C such
that 4” C B",C; C --- C C.,

Iy OA; L+ Tn OA;1 Topr ~ 21 Oar Tny,
71 0py 22 2n Oy Tt ~ 21 Opr Tnya,

and fori=1,...,n,

(@O ) Opib ~ aQgb,
(CL OAH C) OB” b ~ ¢ Oow b.

By A2, we obtain that
21 Ocy 22+ 2n Ocy, Tnt ~ 21 Qor Tnpr.
Hence B6 holds. ]

Proof of Proposition 2. Suppose that n > 2, 2=z, 2pq) € Q?"'i, and
we s essential. Since, by Proposition 1, (j*,wa;,r‘?) is a weak multi-symmetric
structure, and wy is idempotent, ie., wp(4,... yA)~*A for all A € Tg, it follows
from Theorem 1 in Nakamura (1992) that there are real numbers M{x) >0 fori=
L...,nwith 38 Mi(z) = 1 and M(z)Mp(z) > 0 for some distinct 1 <j<nand
1 <k < n, and a real valued function 7 on I's such that for all 4, B, 4,,... yAn €
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Te(wz(AL,.. ., An)) = ZA (z)7mz(A4;) whenever A; <X* -+ 2% Ap.
Moreover, \i(z) for i = 1,...,n are unique, and 7z is unique up to a positive linear
transformation.

Forz € Q“‘H and y € Q’T“'"l with wy and wy essential, let 1 <k <n -1 and
1<j<m— l be essential. Then it follows from A2 and the definitions of wgz and
wy that for all A, B,C, D € I's with A=*{B,C}=2*D

wy (W (AB )wfi-(CD))N‘Wé(wg’j(AC)w;(BD)),
which is the weak isometry condition defined in Nakamura (1992). Thus Proposition

1 in Nakamura (1992) implies that wg = 7y. Let 7 = mg = my. Since 7 is unique
up to a positive linear transformation, we take (@) = 0 and 7(S) = 1, so that 7 is

a unique capacity agreeing with <*, and satisfies that for all A4;,...,4n € 's,
T(we(Ay, ..., AR)) = Z)\ (z)7(A;) whenever A1 e - T
=1

By AS5, there is at least one essential wg. It follows from B2 and the idempotency
of wg that <* is dense, i.e., if A<*B for A, B € I's, then A<*C~<*B for some C € Ts.
Hence density of 7 easily follows from the representation of m(wg (Al ..., Aq)) in
the preceding paragraph. Local convexity of 7 follows from Lemma 1(2). a

6 Finite Additivity

This section assumes that a binary relation X* on I'g is primitive but not a derived
notion as in Section 5. We show a qualitative probability structure that implies
the existence of a unique locally convex and finitely additive probability measure 7*
on I's agreeing with <*. OQur structure is slightly weaker than Savage’s qualitative
probability structure, since continuity is not required. It will be shown in the next
section that the hypotheses of Theorems 2 and 3 satisfy our qualitative probablity
structure when <* is interpreted as a derived notion from =.

Proposition 8 Suppose that <* on I's satisfies the following seven conditions,
which are understood as applying to all A,B,C € I's.

Cl. D=4
Cc2. 0=<*8S.

C3. <* is a weak order.
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C4. If(AUB)NC=0, then A <* B <= AUC <* BUC. .

C5. IfACB and A <X*C %* B, then C ~* D forsome DeTlg with AC DC
B,

C6. If(AUB)NC =0 and not{A ~* B), and if a set {A; : A; C C,i € M}
satisfies that AUA; ~* BU Ay foralli,i+1 € M, then the set is finite.

C7. 0 <*E < S for some E € [g.

Then there is a unigue locally conves and finitely additive probability measure 7* on
I's agreeing with <*. ‘

The proof is deferred later in the section, Axioms C1-C4, by which ~<* is called
a qualitative probability relation, are necessary for the existence of 7*. It is well
known that they are not sufficient. A partition of an event A, denoted o(A), is a
finite set of mutually disjoint nonempty events whose union equals A. Savage (1954)
added the following condition to axioms C1-C4, which applies to all A, B € Ts.

C5*. If A <* B, then there is a partition (S) for which AUC <* B for all
C e o(S). '

Then he showed that C1-C4 and C5* are necessary and sufficient for the existence of
a unique locally convex, continuous, and finitely additive probability measure 7* on
I's agreeing with =<*. In place of C5°, we introduce a restricted solvability condition
G5 and an Archimedean condition C8. Since C5 is a restatement of local convexity
in terms of %%, it is necessary for the representation. C8 is also necessary. Although
C§ is not necessary, we require it to avoid the unusual case of 0 ~ 1 measures.

The following example shows that C1-C7 collectively do not require density (and
also continuity). Let S = {s3,...,s,} and 7* be a probability measure on I's that
assigns equal probabilites to every state, i.e., 7*({s;}) = L for all 4. Define a binary
relation <* on 'y as follows: for all 4, B € I'g, A %* B < 7*(4) < n*(B). Then
it easily follows that <* satisfies C1-C7.

Before providing the proof of Proposition 3, we need the following lemma.

Lemma 2 Suppose that C1-C4 hold. Then we have

(1) IfACB, then A <* B.
(20 fANC=BND=9,C~*" D, and A~* B, then AUC ~* BUD.

(3) IfAND =BNE=BNF =CND=ANF =CNE =0, and if AUD ~* BUE
and BUF ~* CUD, then AUF ~* CUE.

Proof. (1) and (2) follow from Fishburn (1970, Chapter 14).

(3) Suppose that the hypotheses of (3) hold. Then we have
AUD = (A\B)U(ANB)U(D\E)U(DNE),
BUE = (B\AUANB)U(E\D)U(DNE).
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Thus by C4,
AUD~* BUE <= [(A\B)U(D\E)U[(ANnB)U(DNE)]
~* [(B\A)U(E\D)U[(ANB)u(DNE)]
< (A\B)U(D\E)~"(B\A)U(E\D).
Similarly we obtain
BUF ~* CUD <= (B\C)U(F\D)~* (C\B)U(D\F).

Since [(A\B)U(D\E)|N[(B\C)U(F\D)] = [(B\4)U(E\D)]N[(C\B)U(D\F)] =0,
it follows from (2) that

[(A\B)U(D\ B)U[(B\C)U(F\D)]~*[(B\ 4)U(E\D)U[(C\B)U(D\F)].
This is rearranged to give

[(ANC)U(F\E)U[(B\ (AUC)U((ANC)\ B)]
= [(C\A)U(E\ F)]U[(B\(AUC))U(ANC)\B)].

Hence by C4,

(A\NC)U (F\E) ~ (C\A)U(B\F)
< [(A\CQUF\EBE)U[(ANC)U(FNE)
~* [(C\A)U(E\F)U[(AnC)U(FNE)
<= AUF~* CUE.

This completes the proof. ' O

Proof of Proposition 3. Suppose that C1-C7 hold. Given an event 4 € I's,
define a relative algebra as follows:

I'y={Bels:B=ANC for some C € I's}.

We say that an event A is essential if @ <* A <* S. If A is essential, then by C4, its
complement is also essential. Thus it follows from C7 that there exists at least one
partition of S that includes two essential events.

Suppose that n > 2 and there is a partition o(S) = {E1,...,En} for which
at least two events in o (S) are essential. Then we define a binary relation < on
Tg, x -+ xT'g, as follows: forall 4;,B; €Tg, andi=1,...,n,

n k]
(A1y.0 0 4 An) <5 (Byy oo i Bo) =)y <* | ) Be.

i=1 i=1

Let =5 and ~7 be defined in the usual way.
It readily follows from C1-C7 that (<%,I'g, X --+ x I'g,) is an additive conjoint
structure (see Krantz, et al., 1971, Chapter 6), since the following six conditions
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hold for an essential event E, which are understood as applying to all A4, B,Celg
and all A, B/, C’ € Ige.

Di. <*isa weak order.

D2. f AUA =<* BUA' then AUB’ =* BUB;
fAUA =X* AUB then BUA' <* BUB.

D38. ifAUA' ~*BUB and BUC' ~* CU A, then AUC ~* CUB'.

D4. if AUA' X" CUC' X* BUA/, then CUC' ~* DU A’ for some D € g,
JAUA X* CUC X" AUB, then CUC' ~* AUD' for some D' € T'ge.

D35. if not(A” ~* B') and A; U A" ~* Ay UB' for Ay Ay € Tr and all
i € M, then the set {A;} is finite, and if not(A ~* B) and AU A} ~* BUAL, for
Al Al €Tpe and alli € M, then the set {Al} is finite.

D8, @ <* F and B <* E°.

D1-D3, D5, and D6 follow from respectively C3, C4, Lemma 2(3), C8, and C7. To
see that D4 holds, suppose that AUA’ <* CUC! %* BUA’. Then by Lemma 2(1),
AP 2* AUA, soby C3, A/ = CUC <* BUA'. Thus it follows from C5 that
CUC ~* DU A’ for some D €',

Since (<5, I'g % +--xTg,) is an additive conjoint structure, there are real valued
functions, Yg, onlg fori=1,...,n,such that forall 4;, B; € I'g, and i =1,...,n

UA < UB <==>Z¢E.(Aa)<E¢E,(B

i=1
Let 9% (0)=0fori=1,...,nand I, ¥%.(E:) = 1. Therefore, it follows from the
umqueness of additive COIl]OlD.t measurement that ¢ for i = 1,...,n are uniquely

determined. We note that 0 < Yg <1if E;is essentlal and ¥Z. = 0 otherwise.
Let 0(S) = {B, B¢} for an essential E. Then we show that ¢ % on I'g is additive, |
ie,forall 4,B € Tg with ANB =0, ¥G(AU B) = y§(4) + ¥4(B). H B ~* 0,
then Y%(B) = 0 and by Lemma 2(2), 4 UB ~* A. Thus the desired result obtains.
Therefore, we assume that A and B are essential. Let o’(S) = {4, B, E\(AUB), E¢}.
By the uniqueness of additive conjoint measurement, we have

YE(AUB) = 9% (4)+ 4§ (B),
$3(4) = 93 (4),
¥%(B) = ¥%(B).

Therefore, additivity of g follows.

Take any essential event E as assured by C7. Then it follows from the preceding
paragraph that % and g, are additive, where ¢(S) = {E, E°}. Thus we define a
finitely additive probability measure 7 on I's as follows: for all 4 € I'g,

T (A) = ¢g(AUE) + ¢p(A N E°).
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Then local convexity of 7* follows from C5, and 7* agrees with <*. It remains to
show that the definition is consistent, ie., if E; for i = 1,2 are essential, then for all
A eTg,

o (AN Ey) + Y5 (AnEl) VB (AOE2)+1.b (AN E3),

where 0;(S) = {Ej, Bf} for i = 1,2. By additivity, we have that for i = 1,2,

YR (ANE) +YZ(ANES) = YZ(ANELNEy) +YE (AN BN EY)
+1,b (AﬂElﬂEg)—l-lfJ AN EfN ES),
B(ANE) +YE(ANE]) = (AmElnE2)+¢ (AﬂElﬂEg)

1/) (AN BN ES) + 4% (AnElnEz)

Let o/(S) = {E1 N E2, E1 N ES, E{ N Ey, Ef N ES}. Since ¢'(S) includes at least two
essential events, it follows from the uniqueness of additive conjoint measurement
that

¢E}nEz(AﬂElﬂE2) = YZ(ANEINE) = YZ(ANE NEY),
«!)Emgg(AnEmEg) = oYF (AﬂElﬂEQ) = YZE(ANELN E),
VEenp,(ANEf N By) = v,bEi(AﬂElﬂEg) = YZ(ANESN By),
Voenps(ANEFNES) = YR(ANE{NE]) = Y7 (AN Ef N E3).

Hence the desired result follows. o

7 Proofs of Theorems 1, 2, and 3

Throughout the section we assume that Assumption 1 holds. This section provides
the proofs of Theorems 1, 2, and 3.

Proof of Theorem 1. Suppose that axioms A1-A7 hold. Since the representation
of the theorem readily follows from Proposition 2 when (2 is finite, we shall assume
that Q is infinite. Let m on I'g, A;(z) for all z € Q"‘H, all integers n > 2, and all
i=1,...,n be obtained in Proposition 2. We are to show that there is a real valued
function u on 2 such that for all f, g € F*,

f2g = [ufeNdns) < [ ulo(n(s)

where

js w(f(s))dm(s) = ZW(A u(z) — u(@i)) + Wz,

when f =I O-‘h 9 Tn OA.-. Tntl-
Given a,b € ) with @ < ¢ < b for some ¢ € €, let

Q= {ceflateRb)
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For all z € gy with = = (e, z,b), define a real valued function Agy.on Qg as follows:

Mx) Hfa=<z<b,
Ap(z) =¢ 0 ifz~e,
1 ifz~b.

Suppose that 21 ~ ¢, Zpyy ~ b, and = = (2y,...,&nqy) € Q2*! forn > 1. Then we
show that forall k= 1,...,n,

Me(z) = Aap(Zr1) — Agp(zi) = 0.

Since, by Proposition 2, w(wg(4y,...,4,)) = 21—1 Ai(z)w(Ag) forall (Ay,...,4,) €
I'?, we obtain that for (4,B) eI%and k=1,...,n -1,

m(wk(AB)) = (Z)\ (m)) (4) + (1 ZA,(&:)) w(B).

On the other hand, we have
(w3 (AB)) = Aap(@rs2)7(4) + (1 = Ago(zrin))7(B).

To see this, given 1 < k < n, let y = (a,z11,b) € QT We note by the defi-
nitions of wg and wy that for (A,B) € I‘T, o Q. x % (AB) b~ aQk % (AB) b. Thus
wh (AB)~*wy(AB). Therefore, by Proposition 2, the desired result obtalns
It follows from two expression of w(w (AB)) in the preceding paragraph that
fork=1,...,n -1,
: : k
AaplTrat) = 3 Mi(a).
i=]
Solving those n — 1 equations w.r.t. X(z), i = 1,...,n — 1 yields that for all
k= 1 ) 7 Ak(a:) = )\ab(mk_,_l) - ab(mk) = 0.
As51gn any real numbers uqp(a) and ugp(b) with ug(a) < uqp(b) to a and b, Then
define u,, on Qg as follows: for all z € Qg,

uab(T) = Aap(z) (Uas(b) — uab(a)) + uas(a).

It easily follows that ugy, on Qg is unique up to a positive linear transformation. Let
x = (21,...,Zn41) € Q?"‘l and ¥ = (y1,...,¥m+1) € Q}“'*'l with @ ~ zy ~ y; and
b~ Tnyy ~ Ymya. Then for all (4,,...,4,) € I'T and all (By,...,By) € I'T, we
obtain

21 Qa; T2+ Tn O, Znyr 29108, ¥+ Ym OB, Yokl
= 2Qugpa,..4nb 20 Ougy(B1Bm) b
= wy(B1,...,Bn)S we(dy,..., Ap)
<= 7w(wy(BL,...,Bm)) € m(we(As,..., An))
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= > N@)n(Bi) £ Y M) (4s)
i=1

i=1

= i(}‘ab(yi-}-l) = Aap(%:))7(Bi) < i()\ab(ﬂ?iﬂ) — Aap(zi))7(As)

=1 =1
=3 Z;(Uab(xi) - Uab(:ﬂi+1))7§'(.4.;_) < i(uab(yi+l) — uab(yi))W(Bi)-

Note that every f € F,, can be represented as follows: f = 2104, 22 - ZnO A Tn41
for some positive number 7, some (4, ..., A,) € I'f and some L e Q?‘*’l
with z1 ~ a and z,, 41 ~ b. Hence it readily follows that for all f,g € Fap,

f=ges fs ues(£(5))dn(s) < /S uap(9(s))dn(s).

Suppose that Q4 C Qe We show that for some > 0 and S, uealz) =
aug(z) + B. Let = = (¢, a,z,b,d) and y = (a,z,b). It follows from the preceding
paragraph that

cQpaQazQOpb0sd 2c0paQcz0OpbOsd
= (ua(a) — ua(z))m(4) + (vea(z) — vea(b))7(B)
< (ted(a) — ()7 (C) + (ea(@) — Uea(b))7 (D).
aQazQOpb=2aQczOpb
= (uap(a) = uep(2))T(A) + (2ab() — uab(b))7(B)
< (2ab(a) = U (2))7(C) + (uab(z) — ap(b))7 (D).

Since cQgaQazQpbQOsd = a0 azQpb and cOgaQczOpbOsd = aOczOnb,

the uniqueness of additive representation gives

Ued(a) ~ Uea(®) _ Uar(a) — vab(2)
Uca(a) = uea(d)  uab(a) — uas(b)

Hence t04(z) = atigs(x) + B, where & = (uga(a) — vea(8))/ (as() — as(8)) and
ﬁ = ua.b(a‘)ucd(b) - uab(b)ucd(a')'

It follows from the preceding paragraphs that under appropriate positive linear
transformations of ug, for all a,b € Q with @ < ¢ < b for some ¢ € X, we can
construct a real valued function w on X such that for all f,g € ¥,

f2g e [ufe)dn(s) < [ ulo(e)dn(s).
Moreover, © is unique up to a positive linear transformation. a

Proof of Theorem 2.  Suppose that axioms Al, A(2), A2, A3, A4®, A5, AS,
and A7* hold. First in Claim 1below, we show that there is a unique locally convex
and finitely additive probability measure 7* on I's agreeing with <X*. Next, we
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show that A4 and A7 hold, so that Theorem 1 obtains. Thus (<,7*) has a CEU
representation (v, 7). Finally, the density of 7* is proved in Claim 3. Therefore, there
exists a unique strictly increasing function ¢ on R(x) such that 7(A4) = @ (A))
for all 4 € T's. Suppose that 0 < @ < 1 and & = 7(4) for no 4 € Ts. Since 7 and
7* are dense, '

S fn(A) = nt o(n(a)),

Letting ¢(a) = supy(4)<o $(7(4)), ¢ must be continuous on [0,1]. Hence the con-
clusion of the theorem obtains.

Claim 1 There ezists @ unique locally conves and finitely additive probability mea-
sure #° on I'g agreeing with =*,

Proof. It suffices to show that the qualitative probability relation <* satisfies
C1-C7 in Proposition 3. We note by A5 that a < b < ¢ for some a,b,c € Q. C1 and
C2 follow from A3, and C3 follows from Al.

C4. Suppose that (AU B)NC = 0. Then by A(2), we have
A<"B &= aQpb=aQab _
<= (a0s5 OuauB(eOcb) < (aQab) Qaus (e Ocb)

<= aQOpucb<zQauch
= AuC =<*BUC.

C5. Suppose that 4 C B and A <* ¢ =* B. Thenwe have e Opb < aQcb =<
2(Qab. By AS, there is an event F such that aQcd ~ (aQOpb) O (@ Oab). Thus
aQcb~aeQpbsoC~*E,where E=AU(FNB)and ACE C B.

C6. Suppose that (AUB)NC =0, 4; C C, and AUA; ~* BU Ay for all
5,2+ 1€ M. Then we have

aQaua b = (e Oaa) Oava b~ aOpuay, b = (@ Os 6) Opuay, b,
so that finiteness of {A;} follows from A7,

C7. Since @ < b < ¢, A6 implies b ~ o Og ¢ for some event . Thus by Al,
eQsc=a=<aQgc<c=aQyc, so that § <* £ <* S..

Hence by Proposition 3, there is a unique locally convex and finitely additive prob-
ability measure 7* on I's agreeing with =<*. O

AT follows from AT*. To see that A4 holds, we need the following claim.

Claim 2 For A,B € I's, 21,...,2, € R, and g € F%, let ¢(A) = {A1,..., 4.},
O‘(B) = {Bl,. ..,Bn}, ANB = 4; = By, andg(Ai) =g(B.;) =z; fori=1,...,n.
Ifzy 2+ %z, and By X° A; fori = 1,...,n, then for oll f € FS, (z1 Oa
9) Qaus f = (z1 On ¢) Qaus f. If, in addition, By <* Ay for some k, then
(21 Oa9) Qaun f < (21 Or 9) Qaus f.
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Proof. Suppose that the hypotheses of the claim hold. Let fiy = (21 Qa9)Qausf.
Then we recursively define acts, f2,..., fn, as follows: fori =2,...,n,

fi = (z1 Os,; z:) OBa; fi1-

Note fn = (21 Op 9) Qaup f- Since 21 O 4,z 221 Op; zi for i = 2,...,n, A(2)
implies .

(x1 Q4 2:) Oap; fier 2 (21 OB, 1) Oswa; fiois
so fi_1 =% fi. Thus by Al, fi X f,. If, in addition, B;, <* A, for some %, then
fr—1 =< fr. Thus by AL, fi < fn. This completes the proof of the clajm. O

Suppose that f(S) = ¢(S) = {z1,...,Zn}, 71 X+ Sz, and fori =1,...,n,
g 1({z1,...,z:}) 2* F7{{z1,...,z:}). We are to show that f < g, and that f < g
whenever ¢g~1({z3,...,z:}) <* f~1({=1,...,2;}) for some i.

Let fi = f. For k =1,...,n =1, we recursively define acts, gr and fi41, as
follows. Let o(g~*(zx)) = {Bf, By, ..., BP}, where B} = g~ (xx) N £ (:) for
i=k,...,n. Since by Claim 1, #* on I's agrees with <* and is locally convex and
additve, there exists a partition o(fi (zy)) = {45, AFH1 U 4D, AF2 .| A2} such
that AX = Bf and A} ~* Bl fori=k+1,...,n, where

A = F @\ U 4t

i=k
Then we define an act g, € 7* by
91(AD) = {zk41} and gi(A}) = gx(B}) = {=zi} for i =k,...,n.

Given gy, let
ferr = (@ Og-1(zp) ) Op~1{zug=1(z) fr-

Since fiz = (2 O 15y 9%) Oprt(mgugri(ee fi 2nd BETY <= AMH1 4 AD, Claim
2 implies that f; =X fi41. Hence f= fi <+« % f, = g, so that the first part of Ad
bolds.

Let £ be the smallest number in {1,...,n — 1} such that g~ ({ey,...,z¢}) <
FY({z1,...,zs}). Then it is easy to see that 7*(A49) > 0, so that BS <= A4+ AY.
Hence by Claim 2, f; < fee1, s0 f < g. Therefore, the second part of A4 holds.

We note at this stage that there exist a locally convex and dense capacity = on
T's and a locally convex and finitely additive probability measure 7* on I's, both
agreeing with =*.

Claim 8 =* is dense.

Proof. Let Ag = S and a < b < ¢. Define a sequence {A4;} of events as follows:
fori=0,1,2,...,
b OA; c~ G-OA¢+1 c.
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We show that such a sequence exists and that @ <* A;) <* A; <7 S for all integers
1> 0. Since @ < b O4, ¢ < ¢, A ixnplies that 5Oy ¢ ~ a4y, ¢ for some 4; € I's.
Thus a < a Oa, ¢ < ¢, so by definition, § <* 4; <* 5.

Suppose that Aj,..., Ay exist for some & > 1 and @ <* Ay <* -+ <* 4; < S.
We are to show that Ap,; exists and § <* Apyy <* A, Since b < b Q4. ¢ < ¢
we have that a < b Oa, ¢ < ¢. By A8, there exists an Apyy € I's such that
bQapc~aQapy ¢ Thus (@ Opd) Oa, ¢~ aOagyr ¢ On the other hand, since
aQab < aQgb, it follows form A(2) that aQa,¢ = (804, 0)Oa,c < (2Opb) Oa,c.
Hence @ O, ¢.< ¢ QOay,, ¢ 50 by definition, Agyg <* Ag. Since a Oy, ¢ < 6, We
have § <* Ay,

In the sequel, we show that 0 is an accumulation point of R(7*), i.e., given a
sequence {A;} constructed in the preceding paragraph,

lim 7*(A4;) =0.
00
Hence it follows from additivity and local convexity of 7* that n* must be dense.
Suppose on the contrary that 0 is not an accumulation point of R(n*), ie.,
1> lim 7*(4;) =a> 0.

i—00
Given 0 < ¢ < ¢, there is a k 2 1 such that
a < W,(Ak-}-l) < ‘H"(Ak) < o+ €,

so that 0 < w*(Ag) — 7" (Ag41) < €. Therefore, local convexity and additivity of #*
imply that there is an event A € I'g such that 0 < 7*(4) < a. Thus § <* A <* 4;
for all 4, :
Since § <* A, we have m(4) > 0. By Theorem 1 and the construction of {A;},
lim w{A;) =0.
00
Therefore, there is an £ > 1 sucht that w(4,) < w(4), so Ay <* A. Thisis a
contradiction. Hence O must be an accumulation point of B(m*). a

Proof of Theorem 3. Suppose that axioms A1, A(3), A2, A3, A4*, A5, A6,
AT* hold. Since A(3) implies A(2), Theorem 2 implies that (7%, <) has an RDEU
representation {(u,7*,$). We are to show that ¢ is a linear function on I = {0,1],
ie., ¢(a) =ya+ v for all « € I and some reals, ¥ > 0 and v.

Throughout the proof we shall fix a,b,¢ € Q with a < b < ¢ as assured by AS.
With no loss of generality we assume that u(a} =0 and u(c) = 1. Let A = u(b), so
0<A<L '

We define a mapping g from I x I into I such that for all (&, ) € I x I,

$u(e ) = Ap(a) + (1 — A)(B).
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Since ¢ is continuous and strictly increasing on I, p is uniquely.well defined. We
note that ¢ is a cardinal scale, i.e., unique up to a positive linear transformation.
Let J C I. Then we say that p on J % J is eugmented inveriant if for all ¢, 5,6 € J,

P(a+6:.6+6) =§L(a,‘3)+5,

whenever & + § and B+ § are in J. Pfanzagl (1959, Theorem 3) proves that if p
on I x I is augmented invariant, then ¢ is either a linear function or an exponential
function. .

Next we show that uon I x I is augmented invariant. Since ¢ is continuous, it
suffices to show that x on J x J is augmented invariant for some dense subset J of
Iie,I=J. For ABeTgwith ACB, e =< ((04b)Opc £ c Thus by A6,
{(aQab)Opc~aQgcfor some C € I's. By Theorem 2,

A(m*(A)) + (1~ N)g(x*(B)) = ¢(n*(C)).

Therefore, p(n¥(A), 7%(B)) = 7*(C).

Throughout the rest of the proof, let f = {(a Qad) Opcand g = a O¢e,
so f ~ g. Since |f(S) U g(8)| = 3, it follows from A(3) that, for all D, E € I'g,
fOp(eQrc)~gQOp(eOgc). Taking any D and F to satisfy that B C D and
DNE =0, we obtain

(e Qaue b} Opus ¢~ (e Qcusb) Ocusc.
Therefore, by Theorem 2,
Mp(n* (4) + 7(B)) + (1 = N(n*(B) + 7°(B)) = ¢(n*(C) +7°(E)),
so that we have

u(r*(4) + 7 (B), 7 (B) + 7°(B)) = 7°(C) +7"(E)
= u(r(A), 7(B)) + 7(B).

Thus u on R(x*) x R(n*) is augmented invariant. Since R(n*) =1, pon I x I is
augmented invariant.

Last we show that ¢ must be a linear function. Suppose on the contrary that ¢
is an exponential function, ie., for some real numbers v, €, and v with ye > 0,

$(e) = ve™ +v.
Since f ~ g, it follows from Theorem 2 that
Xe (A 4 (1 - A)e™ (B) = o7 (O
which is rearranged to give

AT A — O = (1 - A) (e (O) — e (B)),

26



Taking any D and F to satisfy that B C D, DNE = 0, and #*(F) # 0. we
obtain by A(3) that f Op (b Ogc) ~ g Op (6 Of ), which is equivalent to

(aQab) Opuec~(aOcb) Courc.
Therefore, by Theorem 2,
AesmHA) (1 = A)estr (B () — 2O o (1 — A)esm (O (E))

which is rearranged to give

AMeT (A — g7 (O)) = (1 = )™ (B (e77(C) _ gom*(B)),

It follows from the last equation of the preceding paragraph that e (&) = 1, so
that ¢ = 0. This is a contradiction. Hence ¢ must be a linear function. m|

8 Proofs of Theorems 4 and 5

This section shows the proofs of Theorems 4 and 5. Since the representations (2)
and (3) in each theorem readily follow from the representation (1) in those theorems,
and Theorems 2 and 3, we shall prove only the representations {1) in Theorems 4
and 5. Throughout the section, we shall assume that Assumption 1, axioms A8 and
A9, and the hypotheses of Theorem 1 hold with A3 replaced by A3,

Let F* denote the set of all measurable acts that are bounded in preferences,
ie.,

F*={feF:aXf2bforsomea,be}

By A3*, F* C F*. Let u and 7 be resepectively a real valued function on  and a

capacity on I's obtained in Theorem 1.
For f € F*, there are a,b € ) such that a X f Xband a < b. Let

Rf(a,b) = {n(4):aQab=f},
R_F(a.,b) = {m(A): f<eab}.

Since 7 is dense, we have inf B} (a,b) = sup R7(e,b). Let oy = inf R}"(a,b). Then
we define

U(f) = apua) + (1 — ag)u(b).
‘We note that the definition of U(f) does not depend on the choice of a and b.

We show that for all f,g € F*, f < g < U(f) < Ulg). With no loss of
generality we assume that @ < f X banda <% g X b If f < g, then by A8,
f<aQab < g for some A € I'g, so that ¢y < ay. Hence U(f) < Ulg). If
U(f) < Ulg), then by definition, ¢, < ay, so ay, < 7{4) < ay for some A € T's.
Thus f<a(Qab=<g,s0 f<g.

Given won Q, f € F, and 7 on ['g, define

E(u, f,7) = /:00(1 —aw({s: u(f(s)) < 7}))dr —/

0

m?f({s tu(f(s)) < 7}Hdr.
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We note that E(u, f, ) is well defined when f € F*.

Proof of Theorem 4. We are to show that U(f) = E(u, f,n) for all f € F~.
First we show the following claim.

Claim 4 Suppose that f € F° g € F%, ¢ < ¢1 < --- < ¢, ond 0(S) =
{41,..., An).

(1) Ifeimy Su(f(s)) <esforallse Ay andi=1,...,n, and g < f, then

E(u,g,7) < Z(W(U A;) —-?T(U A;)

. k=1 i=1 i=1
(2) ey <u(f(s) SciforallseA;andi=1,...,n, and f < g, then
k—1
Z(T"(UA _W(U A‘L) ci-1 < E(u, g, 7).

k=1 =1

Proof. We show (1). The proof of (2) is similar. Suppose that the hypotheses of
the claim hold, Fori=1,...,n, let

Xi={zeQ:¢y <ulz) <cl,

so A; = f~3X;). Givenz; € X;fori=1,...,n,let h(s) = z; if s € A;. If thereis
no k such that g < A, then by A9, f = ¢. This is a contradiction. Hence g X & for
some h. Therefore,

k-1

E(u,g,7) € Blu, h,7) < Z(W(U A;) —w(U A))

k=1 i=l
This completes the proof of the claim. O
Since f € F*, let ¢ X f <X b for some ¢,b € 2. With no loss of generality,

assume that u(a) = 0 and u(b) = 1. Devide S into n cumulative events as follows:
fori=1,2,...,n,

_ ={se S ufe) < ).
By the definition of expectation, we have
> I () = w{Asma)) € Bl £,7) € 1 2(e(As) = m(Aica)).
=1 i=1

It follows from Claim 4 that for any € > 0,

3 S n(4g) = w(4i 1),

sup {(l—a) <
aERf(ap) i=1
L _
) (r(4) —7(4i1)) € if (1-o).
i=l n &GR; (alb)
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Therefore, we have

n u

> —

= (7(45) ~ m(As1)) S U(S) < Z —(W(Az — 7(Ai-1))-

i=1
Letting n get la.rge, we obtain that U( f) = E(u, f,7). This completes the proof of

the theorem. O

Proof of Theorem 5. Suppose that axiom A0 holds. We have two cases to
examine: f € F*\ Fb f & F*

Case 1(all f € F*\ F?). Suppose that f € F*. We are to show that U(f) =
E(u, fym) forall f € F*\F*. lLet e X fXband a < b for e,b € .

By A3*, f® X f % fz forallz € Q, so that sup,eq U(f*) S U(f) < infreq U(fz)-
Suppose first that f is bounded below, ie., d X f(s) for all s € S and some d €
Q. When f is bounded above, the proof is similar. Note that E(u, f,7) is well
defined. Since f* is bounded, U(f*) = E(u, f%,x). By the definition of E(u, f,7),
SUPgeq E(u, /%, 1) = E(u, f, 7). Therefore, E(u, f, %) < U(f). It remains to show
that the equality holds. Assume that E(u, f,m) < U(f). Since U(f) = asu{a) +
(1 — ap)u(b) for some 0 < ey < 1, it follows from the density of m that there is an
A € T'g such that E(y, f,7) < w(A)u(a) + (1 — m(A))ud) < apu(a) + (1 — af)ufb).
Thus e Q46 < f. By A10, a O b < f€© for some ¢ € ). However, we have

B(u, f¢,7) < By, f,m) < w(d)ula) + (1 - w(4))u(b),

so f¢ < a(Qab. This is a contradiction. Hence U(f) = E(u, f, 7). :

Suppose next that f is unbounded below and above. If E(u, f,7) is well defined, a
similar analysis of the preceding paragraph provides that U(f) = E(u, f, 7). Thus it
suffices to verify that E(u, £, 7) is well defined. Suppose that E(u, f, 7} is undefined,
so that

+00 0
J @ ns sue) s 7har = [ (s u(f(e) < Thar = +oo.
We note that E(u, g, 7) = —o0 if g is bounded above. Since f is unbounded, there is
a ¢ €  such that ¢ < a. Thus by Al, ¢ < f. By A10, ¢ < f¢ for some & € Q. Since
f@ is bounded above, U(c) < U(#%) = E{u, f¢ n) = —co. This is a contradiction.
Hence E(u, f, ) is well defined.

Case 2 (all f € F\F*). A similar proof of Case 1 gives that for all f € F\F*,
E(u, f,n) is well defined. We are to show that if for all f € F\F*, we define
U(f) = E(u, f,7), then for all f,g € F, f 2 g ff U(f) < U(g). It suffices to verify
the following claim.

Claim 5 (1) If eitherz < {f, g} forallz € Q, or {f,g} <z for allz € Q, then

fr~g
(2) Ifx < f forallz €0, then B(u, f,m) = sup,eq u(z).
(3) If f <z forallz € Q, then E(u, f,7) = infzeq u(x).
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Proof. (1) Suppose that 2 < {f,g} forallz € 2. When {f,g} <z forallz € ,
the proof is similar. First we show that f ~ ¢, Assume f < g. Then by 410, f < ¢¢
for some e € 2. By A3%, ¢% < a, so by Al, f < a. This is a contradiction, so f < g.
Similarly, we must have g <X f. Hence f ~ g.

(2) Suppose that z < f for all z € Q. Assume that E(u, f,7) < supgequ(z). Then
there is an @ € Q2 such that E(u, f,7) < u(a). Since @ < f, A10 implies that o < f°
for some b € Q. Since a < f° < b by A3*, Case 1 implies that u(a) < E(x, f°, 7).
Since E(u, f, ) is well defined, B(u, f°,7) £ E(y, f,#). Thus u(a) < By, f,7), a
contradiction. Hence sup,q u(z) < E(y, f, 7).

It remains to show that the equality holds. Assume that sup,cqu(z) < E(y, f, 7).
By the definition of E(u, f, ), sup,eq E(u, /5, 7} = By, f, 7). Thus sup,equ(z) <
B(u, f°,m) for some a € Q. However, we have E(u, f*,7) < u(a). This is a contra-
diction. Hence E(u, f,7) = sup,equ(z).

(8) Similar to (2). [
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