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Abstract

The mere knowledge of the existence of a Nash equilibrium for a game is not
sufficient for a player to play the game. Instead, he needs the specific knowledge
of what a Nash equlhbrmm is. The standard existence theorem ensures the former
if the real number axioms are known to the players with complete logical abilities,
but not necessarily the latter. In this paper, we consider the implications of this
distinction, and explore conditions on the language and axioms for the latter to
be obtained. We formulate classical game theory in an ordered field language, and
review the epistemic axiomatization of final decisions, which leads to the common
knowledge of a Nash equilibrium. This additional knowledge structure enables us
to distinguish between the mere and specific knowledge of the existence of a Nash
equilibrium. Then we show that in this language, any axioms additional to the
ordered fi€ld axioms are not sufficient for our purpose for games with more than
two players. This gives the undecidability result for many games. The introduction
of radicals solves undecidability for some games, but not for all games. Then we
extend the language and axioms in two ways so that zll real algebraic numbers have
names, and show that each these extensions is sufficient for the speclﬁc knowledge
of the existence of a Nash equilibrium for any finite game.

1. Introduction

It has been often regarded as an acceptable view among game theorists and economists
that if the players have “complete” logical (mathematical) abilities, each player could
find his strategy to be played whenever such a strategy exists. Instead, it has been a

*The author thanks T. Nagashima, H. Ono and R. Aumann for helpful discussions on earlier versions
of this paper. He is partially supported by Tokyo Center of Economic Research.



problem in the literature of game theory what such a strategy is. Nevertheless, we would
find this view to be too naive by recalling the literature of foundations of mathematics:
(Godel’s incompleteness theorem is often referred as an example to warn us of such
a nalve view, but the distinction between classical mathematics and constructionist
mathematics is more to the point. This distinction is relevant specifically to game
theory, since game theory should take actual choices as its objects in addition to pure
deductive considerations of decision making. The distinction may be relevant in many
phases of game theoretical decision making.! In this paper, we consider the distinction
between the mere knowledge of the existence of a Nash equilibrium (e.g. by the standard
fixed point argument) and the specific knowledge of where a Nash equilibrium is.

For the explicit consideration of the above distinction, we need some framework
where the logical abilities of the players as well as some mathematics sufficient for
classical game theory can be explicitly described. Kaneko-Nagashima [12] and [13]
have developed such a framework, called game logic. The game logic framework has
several variants depending upon choices of assumptions on the knowledge of the players.
In this paper, we adopt one variant, GL,, where the logical-introspective abilities of

-the players are assumed to be common knowledge as well as the description of the
logical ability of the investigator is given. Specifically, it is an infinitary predicate
extension of propositional (modal) epistemic logic, KD4, with the knowledgcgf/pérrators
of n players. It is infinitary, i.e., allows infinitary conjunctions and disjunctions, as
to describe common knowledge explicitly as a conjunctive formula,? and is a predicate
logic to allow the treatment of some real number theory for classical game theory. The
players and investigator have logical abilities in the sense of classical mathematics but
not in the constructionist sense. The constructionist aspect emerges in the interactions
between the knowledge and inferences of the players and those of the investigator. To
state this aspect, we need to discuss an epistemic consideration of ez ante decision
making in a game.

In GL., Kaneko-Nagashima [10] and [12] gave an epistemic axiomatization of indi-
vidual ex ante decision making in a game, and showed that their axioms lead to the

1This has been discussed by some authors, e.g., Rabin [22]. He gave a 3-stage 2-person O-sum game
with countable action spaces where all descriptions are effectively computable but the a strategy induced
by backward induction is not effectively computable. See also Tashiro [26]. In classical game theory
in the sense of von Neumann [31] and Nash [20], however, this view has not been discussed, with the
exception of the work on algorithms for finding Nash equilibria.

2We formulate the common knowledge C(A) of a formula A, to be an infinitary conjunction, instead
of introducing the operator symbol Co(-). Therefore we employ the infinitary predicate extension GL.
of KD4. There is a finitary approach to logics with common knowledge (cf., Halpern-Moses [3] and
Lismont-Mongin [17]). In fact, Kaneko [5] proved that the (KD4-variant of) common knowledge logic
of [3] and (17) can be faithfully embedded into a propositional fragment of GL. (under some restriction
of the Barcan axiom in GL.).



common knowledge of a Nash equilibrium,
C(Nashg(@)), (L1)

for a solvable game g in Nash’s [20] sense, i.e., the equilibria are interchangeable. That
is, a mixed strategy profile @ = (@', ..., @ ») consists of decisions predicted by a player
if and only if it is common knowledge that @ is a Nash equilibrium. For an unsolvable
game, the solution is the common knowledge of a subsolution in Nash’s sense (Kaneko
[6]). Also, it is also argued in Kaneko [7] that for a game which has some dominant
strategies, the common knowledge is not necessarily involved. We focus, however, on
the solution of the form of (1.1), since this case is central in the problem of this paper.
Once the solution is determined as (1.1), the playability is formulated as

37 C(Nashg(T)) (1.2)

instead of
C(37 Nashyg(z")). (1.3)

The former states that there exists a strategy profile 7" such that it is common knowl-
edge that 7" is a Nash equilibrium, and the latter simply states the common knowledge
of the existence of 2 Nash equilibrium. The latter could be obtained if the “complete”
logical (mathematical) abilities as well as appropriate real number axioms are common
knowledge. To play a game, however, the former is required, while it may not be derived
from the common knowledge of real number axioms.

Here we meet the constructionist aspect. The distinction between (1.2) and (1.3) is
substantiated by the term-ezistence theorem proved in Kaneko-Nagashima [13], rather
than just giving different interpretations to them. It requires that to have (1.2), the
existence of such a strategy profile should be obtained by constructing it with permissible
computational units together with some operations, for example, zero 0, one 1, and the
four arithmetic operations +,—,-, /. Thus, we do not directly adopt constructionist
mathematics, but our distinction emerge as a consequence.3

Mathematical and game theoretical axioms are assumed in addition to the logical
axioms of game logic GL,. Throughout this paper, we adopt at least the ordered field
language having 0,1 as well as the four arithmetic operations +, —, -, /, and the ordered
field azioms @.r. The ordered field axioms ®,; may not be enough to prove the existence

3There are various constructionist schools: they have developed various constructive mathematical
systems, cf., Beeson [1] and van Dalen [28]. In game logic GL., classical logic is assumed for each player
as well as the investigator. The constructive aspect emerges only as a consequence of the interactions
of the knowledge and inferences of the players and that of the investigator. Also, the constructiveness
in this paper may be accepted by these constructive mathematics schools, since we do not go to more
than the real closed field theory.



of a Nash equilibrium. For general existence, we need some additional continuity axiom.
One choice of such an axiom is the real-closedness aziom (schema), and we obtain the
real closed field azioms @, as the union of .5 and the real closedness axiom. The real
closed field theory enjoys the special property: it is complete, which is known as Tarski’s
completeness theorem. Using Tarski’s completeness theorem and Nash’s [20] existence

theorem, we have . .

i.e., the existence of a Nash equilibrium is derived as a theorem from the real closed
flelds axioms @,.;, where g denotes the provability relation of classical logic. It follows
from (1.4) that in game logic GL,,,

C(®ret) Fu C(37 Nashg(Z')), (1.5)

where |, is the provability relation of GL,. That is, when all the axioms &, are
common knowledge, the existence of a Nash equilibrium is also common knowledge,

On the other hand, 37 C'(Nashg( 7)) may not be provable even if the real closed
field axioms ®,cf are common knowledge. Kaneko-Nagashima [13] and [13] showed that
in some 3-person game g with a unigue Nash equilibrium,

neither C(yer) by 37 C(Nashg(Z')) nor C(dyep) b =37 C(Nashg(7T)).  (1.6)

The first states that the specific existence 37 C(Nashg(%’)) is not obtained, and the
second that the negation of this existence is not obtained either. Hence any player
. cannot have a definite, positive or negative, conclusion, and continues looking for an
equilibrium forever. In fact, the essential part of (1.6) is the first statement in the sense
that the second can never hold and involves no deep considerations. Hence we will focus
on the first in the remaining of this introduction.
The term-existence theorem of [13] states that the assertion, C{®rer) Fu

37 C(Nashg(Z')), is equivalent to

C(®pef) Fu C(Nashg(T)) for some profile 7 of closed terms. (1.7}

Here the closed terms are expressions constructed by basic constant symbals in addition
to 0,1 and the four arithmetic operations +, —, -, / in the formalized language together
with appropriate axioms. The closed terms constitute permissible computational unitsin
our formalized theory. We can categorize the existence proofs into two classes: general
proofs allowing abstract axioms and constructive proofs based only on the permissi-
ble computational units and four arithmetic operations. By (1.7), we need to have a
constructive proof of a Nash equilibrium for the specific existence 377" C'(Nashg(z")).
In the pure ordered field language allowing only 0,1 and +, —,-, /, the closed terms
express only rational numbers. Hence if a Nash equilibrium involves irrational numbers,

4



(1.7) would not hold. For 3-person games, irrational numbers are typically involved —
- one example is given by Kaneko-Nagashima [13] where /51 is involved in the equilibrium
strategies. However, if +/51 is added to the language as a permissible computational
unit, then the undecidability result, (1.6), is removed. Thus (1.6) depends upon the
choice of a language, in other words, the constructive proofs are dependent upon the
choice of permissible computational units. It is known that the abstract proofs are
independent of computational units in the above sense.

The fact that the addition of a symbol removes undecidability (1.6) does not nec-
essarily mar its point, since the players living in the fixed language cannot find the
necessity of introducing new computational units. Nevertheless, we can ask the prob-
lems of how robust the above undecidability is and how we can avoid it. Specifically,
the problem is how and how much such computational units should be introduced to-
gether with appropriate mathematical axioms in order to have 37 C(Nashg( 7)) for
some and/or all games. In this paper, we explore these problems in details.

In Section 2, we formulate game logic GL,, and present basic theorems necessary in
this paper. In Section 3, we review briefly the epistemic axiomatization of individual ez
ante decision making. Section 4 is the first main section. There we start wit the pure
ordered field language. Then we show that (the common knowledge of ) any axioms ad-
ditional to the ordered field axioms &, are superfluous for obtaining 37 C(Nashg(T')).
It means that in this choice of a language, the ordered field axioms &, should be suffi-
cient for 37 C'(Nashg( 7)) if it is ever provable. It follows from Lemke-Howson [16] that

for any 2-person game g, 3% C(Nashg(Z')) is obtained from the common knowledge
of the ordered fleld axioms. This does not work, however, for a game with more than
two players. The reason for it is, as stated above, that a Nash equilibrium may involve
irrational number probabilities for games with more than two players.

Undecidability (1.6) is removed by adding a symbol together with an appropriate
axiom to describe /51 to our theory. Then we would ask whether or not the introduction
of radical expressions is sufficient to remove the undecidability for any game. In fact,
this question is answered negatively by the Abel-Galois theorem on the unsolvability of
a polynomial equation of degree 5 together with Bubelis’ [2] result. This consideration
does not directly lead to our final conclusion, but is important in the consideration of
the distinction of the abstract and constructive existence proofs. In Section 5, we will
reflect on the entire problem of decision making involving 2 real number theory.

In Section 6, we extend the language so that all real algebraic numbers are ex-
pressed by constant symbols. Then we show that 3% C(Nashg(7')) is provable from
the common knowledge of the real closed field axioms as well as of additional axioms
determining real algebraic numbers. In this extension, we prove that 37 C(Nashg(T'))
holds for any finite game. In this extension, each player can compute a Nash equilibrinm
and generate the probabilities prescribed by the equilibrium. Hence in this extension,



every game is playable as far as it is solvable. We will discuss also applications of this
extension to other game theoretical concepts.

In Section 7, we give another extension of the ordered field theory, which is weaker
than the extension in Section 6 and is sufficient for our specific purpose of the specific
knowledge of the existence of a Nash equilibrium. This extension can be regarded as
purely constructive, but may not be sufficient for some other game theoretical concepts.

A final remark should be’ given on our mathematical method. We will discuss our
game theoretical problems in a formalized language as well as will use sometimes model
theoretic methods and nonformalized mathematics. Qur game theoretical objects are
described in the formalized mathematics, but the formalized mathematics is not a for-
malization of game theoretical objects in nonformalized mathematics. In this sense,
model theoretic methods as well as nonformalized mathematics are understood as meta-
mathematics for investigations in game logic GL,,.

2. Logics GLy and GL,,

The language of an ordered field theory suffices for classical game theory, but some
extension is needed to discuss epistemic aspects. First, we give finitary and infini-
tary languages. Then we give base logic GLg which is classical predicate logic with
no epistemic axioms, and we formulate game logic GL,, which is an infinitary predi-
cate extension of propositional epistemic KD4 and in which we discuss our epistemic
axiomatization of final decisions. We provide some relevant results without proofs.

2.1. Languages PYL) and P¥(£)
The following is the list L5 of basic symbois:
Logic Symbols:

Free variables: ag, ay, ...; Bound variables: Xg,%;,...;
Logical connectives: = (not), D (implies), A (and), \/ (or), V (for all), 3 (exists);
Parentheses: (1, );

Ordered Field Language Symbols:

Constants: 0, 1; Binary functions: +, ~, -, /;
Binary predicates: > ,=;

Game-Epistemic Symbols:
3%, & —ary predicates: Dy, ..., Dy;
Knowledge operators: K1,...,K,,.



We denote the above list of symbols by Lo. We denote, by £, a list of symbols obtained
from Lo; by adding some constant and function symbols. In Sections 5, 6 and 7, we will
give specific extensions of L.

The indices 1,...,n are the names of players. Each player i has £; pure strategies
(¢; > 1). The intent of D;(?l, ey ?n) is that player ¢ predicts that each player j chooses
a mixed -strategy ?j = (tj1, .+, j¢;) -as-his final decision, where ?j = (21, tj¢;) is
a {;-probability vector. Mathematically, they will defined presently. By the expression
K;(A), we mean that player i knows formula A.

In this paper, the concept of terms — function expressions — plays a crucial role as
computational units as mentioned in Section 1. We define the terms by the standard
finite induction:

(T0): each free variable a is a term and all constants are also terms;
(T1): if f is a k-ary function symbol and if ¢, ..., ¢ are terms, then f(%i,...,1) is also
a term.?

A term having no free variable is said to be a closed term. The space of terms depends
upon the list of primitive symbols. Particularly, we mean, by the terms in L, the terms
generated by T0 and T1 based on constant 0,1 and four function symbols +, =/

For any terms, #1, ¢y and vectors of terms, 1= (t115-at1gy ), ...,Tn = (triy ooy tnty )
the expressions #, > t5,%; = f; and Dy( Ty, ..., ?n) (i = 1,...,n) are called atomic
formulae.

Let P(L) be the set of all formulae generated by the standard finitary inductive
definition with respect to -, 2,V,3 and Kj, ..., K, from the atomic formulae, i.e.,

(F0) any atomic formula is in Po(L);
(F1)if A and B are in PY(L), so are =4, A D B,VzA(z),3zA(z) and Ki(A);

where A(z) is obtained from A by substituting & for all the occurrences of some variable
a in A. Suppose that P¥(L) is already defined (k = 0,1,..). We call a nonempty
countable subset & of P*(L) an allowable set iff it contains a finite number of free
variables. For an allowable set &, the expressions (A ®) and (\/ ®) are considered here.
From the union P*(L) U {{A3),(V®) : @ is an allowable set in P*(L)}, we obtain
the space P*+1 of formulae by the standard finitary inductive definition with Tespect
to =,3,V,3 and Ky, ..., Kn. We denote (Jpe, P¥(L) by P¥(L£).58 A formula having

‘and (T2): the terms generated by finite numbers of applications of T0 and T1 are only terms. In
the following inductive definitions, we skip this third statement.

*Note that A ® and \/® may not be in P*(L) for some countable subsets & of PY(L). For our
purpose, however, this does not matter and the space P¥(L) is large enough.

®This space is already uncountable. Some smaller, countable, space of formulae suffices for our
purpose. For example, a countable and constructive space of formulae is provided in Kaneko-Nagashima
[10]. We adopt the above space for presentational simplicity.



no free variable is called closed. We abbreviate A{4, B}, V{4, B}, A{A1,-.. m} as
AAB,AV B, AT-; Ak, etc.

We say that a formula A is finitery iff it contains no infinitary conjunctions and
no infinitary disjunctions. We denote the set of all finitary formulae including no D;
and K; (¢ = 1,...n) by P(L). The space PH(L) is closed with respect to =, D,¥,3 and
finitary A,V . When £ is specified to be Lo, the set of formulae P(Los) is called the
pure ordered field language.

The primary reason for the infinitary language is to express common knowledge
explicitly as a conjunctive formula. The common knowledge of a formula A is defined
as follows: For any m > 0, we denote the set {K;, K;,...K;,, :each K;, isone of K1, ..., K,
and i; # iy forallt = 1,...,,m -1} by K(m). When m = 0 K; K;,...K;_ is interpreted
as the null symbol. We deﬁne the common knowledge of A by

ME(A): K e mL(Jw K(m)},

which we denote by C(A). If A is in P™(L), then C(A) is in P™+1(L). Hence the space
P¥(L) is closed with respect to the operation C()..

2.2. Classical Logic GLg

We define logic GLg by the following seven axiom schemata and five inference rules. In
GLo, 2ll formulae occurring in these axioms and inferences are assumed to be in P(L).
For any formulae 4, B, C, finite set of formulae @, and term t,

(L1): 4> (B> 4);
(L2): (AD(BDOC)D((AD>B)D(4D0C));
(L3): (-~AD-B)D((~A D B)> A);

(L4): A® D A, where A€ @

(L5): A DV, where A € d;

(L6): VYzA(z) D A(2);

(L7): A(t) D JzA(z);

ADEB A
—5 — (MP)
{ADB:Bed)} {AD>B:A€d}
A5 NG (A-Rule) TEY: (V-Rule)
A D B(a) Ala) D B
A VoB(g) (7 Rule) TeA(s) 5 B (T Rue)



where the free variable @ must not occur in 4 D VzB(z) of V-Rule and 3zA(z) D B of
3-Rule.
A proof in GLy is a finite tree with the following properties:
(i): a formula in PY(L) is associated with each node, and the formula associated with
each leaf is an instance of L1 -~ L7;
- (ii)-adjoining -nodes -together -with- their-associated -formulae-form an instance of the
above inferences.

For a formula A in Pf{(L), we denote by +q A iff there is 2 proof in GLg such that A4
is associated with the root of the proof. For any subset I' of Pi(L), we write [ kg 4
iff Fo A® D A for some finite subset & of I'. We will use some abbreviations, e.g.,
T'UO kg Aand T'U{B} o A are denoted by I',® Fg A and T, B ko A.

Logic GLg is classical predicate logic, and it is sound and complete with respect to
the standard interpretations. That is, all valid formulae in this sense are provable, and
vice versa (cf., Mendelson [18], Chapter 2). We will use, later on, the soundness theorem:
if A is provable in a theory (P(L), ®), then A is true in any model of (PH(L), ).

2.3. Game Logic GL,: Players’ Logical and Introspective Abilities

In game logic GL., we allow logical axioms L1 — L7 and inference rules MP — 3-Rule
in the language P*(L), and add the following axioms and inference rule in P¥(L): for
any formulae A4, B, allowableset ® and i = 1,...,7n;

(MP;): Ki(A> B)/\K;(A) o If,'(B);

(L) —Ki(~AAA);

(PL): Ki(A) D K:K:(4);

(A-Bi): AK(®) D Ki(A®), where Ki(®) = {K:(4): A e &);
and

A

(Necessitation): T(A)

In GLy, a proof is defined to be a countable tree satisfying:
(1): every path in the tree is finite;

(ii): a formula in P¥(L) is associated with each node, and the formula associated with
each leaf is an instance of L1 - L7 and the additional four axioms MP; to A-B in P¥(L);

(iil) adjoining nodes together with their associated formulae form an instance of MP —
3-Rule and Nec.

We write b, A iff there is a proof in GL,, such that A is associated with the root of
the proof, and also write I' -, A iff -, A® D A for some finite subset & of T.
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Since logical axioms MP;, 1; and P; are called K, D and 4 in the literature of modal
logic, GL, is an infinitary predicate extension together with axiom A-B of propositional
epistemic logic KD4.78

Logic GLo may be regarded as a description of the logical ability of the investigator.
In logic GL, Nec and MP; gives each player the infinitary extension of the complete
logical ability of the investigator, and L; requires the knowledge of each player based his
basic knowledge to be consistent in GL,. Axiom PI;, called the Positive Introspection,
gives each player the introspective ability in the sense that he knows 4, he knows that
he knows A. Moreover, these are assumed to be common knowledge. Nevertheless, it
is important to note that in the statement F, A® D A, the game theoretical axioms
which are described in @ are not necessarily common knowledge, while whole statement
A ® D Als common knowledge. See Kaneko-Nagashima [13] for more details.

Axiom A-B is called the Barcan aziom. When & is finite, this is derived from other
axioms, but not for infinite @, For the development of our framework, A-B will be used
to derive the fixed-point property:

C(A) D KiC(A) fori=1,..,n. (2.1)

That is, if A is common knowledge, then each player i knows that it is common knowl-
edge, which plays an important role in the epistemic axiomatization of final decisions
in Section 3.°

The following theorem is a corollary of Propositions 8.4 and 4.1 of Kaneko-Nagashima
[13]. In th following, we denote the set {C(B): B € I'} by C(I).

Theorem 2.1. Let T be a set of closed formulae in Pi(L), and A a closed formula in
PHL). Then C(T) F,, C(A) if and only if T k¢ A.

The next theorem was proved in Kaneko-Nagashima [13], which will play a crucial
role in this paper. As discussed in Section 1, the theorem requires that existence should
be obtained by constructing objects in terms of permissible computational units.

Theorem 2.2 (Term-Existence for GL, ). Let I be a set of closed formulaein Pf(£), and
3z3...37:A(21, ..., 24) 2 closed formula in PI(L). If C(T) Fodzy.. 32 C(A(z1, ..., Zk)),
there are closed terms #;,...,% such that C(T') k-, C(A(t1, ..., t)).

"The logic obtained by the replacement of L; by T: Ki(A) D A is called S4. In S4, the truth of
knowledge can be defined relative to the investigator, while in KD4, knowledge is required only to be
consistent within each player. In this sense, KD4 is a system of cognitive relativism, and knowledge in
KD4 is often called belief in the literature of epistemic logic.

! Game logic GL. can be regarded as a modal logic variation of a fragment of infinitary logic Lu,w {cf.,
Karp [14] and Keisler [15]). As a space of formulae, P“(L), is much smaller than the space of formulae in
Lu,w. Since our primary purpose of the infinitary extension is to express common knowledge explicitly
as a formula, the present extension suffices for our purpose

®In Kaneko-Nagashima [12] and [13}, the ¥-Barcan axiom, Yz K;(A(z)) D K:(VzA(z)), is also assumed
for GLu. The results we use in this paper are independent of ¥-Barcan.
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It is important to notice that this is a general term-existence theorem for game
logic GLy,, instead of for a particular theory (i.e., a combination of a logic and a set of
nonlogical axioms), while Theorems 6.3 and 7.2 to be given later are term-existence for
particular theories. Theorem 2.2 gives a general requirement, while the others show the
capabilities of those theories.1®

Theorem 2.2 implies that the assertion C(T) b, 3zy...32:C(A(z1, ..., 2&)) is poten-
tially different from C(T) ko, C(321...324A(%1, ..., 7x)). On the other hand, if we put the
negation symbol - to these conclusions, they become equivalent (see Ka.neko—N agashima
[12]):
Lemma 2.3. Let T be a set of closed formulae in PX(£), and 3z,...3z,4(z1, ..., 2£)
a closed formula in P{L). Then C(T) k, -3zy...32;C(A(z1,...,2x)) if and only if
C(T) ko C(—-32z1...32  A(z1, ... 2 Tk))-

2.4. Axioms for Ordered Fields and for Real Closed Fields

Here we give the axioms for ordered flelds and also for real closed fields.
We start with the equality axioms: In the following axioms, z, ¥, z are bound vari-
ables xg X3, x,.
(Reflexivity): Vz (z = z);
(Substitutivity): VaVyVz (z = 2 D f(2,¥) = f(2,v));
VaVyVz (y = z D f(z,y) = f(z,2));
VaVyVz (z = z D (P(z,9) D P(z,¥)); and
VaVyVz (y = z D (P(z,y) D P(z,z))),
where f is one of the function symbols +,—,,/ and P is either = or > .
The following are the main part of the ordered field axioms:

(Commutativity): VaVy(z + vy = y + 2); VaVy(z -y =y z);
(Associativity): VaVyVz ((z + ¥) + z =2+ (y+2)); VaVy¥z((z-9)- 2=z (y-2));
(Inverse Operations): VaVy (z + (y — z) = ¥); VaVy (-(z = 0) D z(y/z) = v);
(Distributive Law): VaVy¥z (z - (y+ 2z) =z -y + 2+ 2);

(Unit Elements): Yz(z 4 0 = z); Vo(z -1 = z);

(Distinctive Elements): -(0 = 1);
(0-Denominator): Vz(z/0 = 0);11

1%Several forms of term-existence theorems have been known for some logics and some theories. For
example, intuitionistic logic permits term-existence in some form, and some theories in intuitionisitc
logic enjoys term-existence. See van Dalen [28).

11t suffices to put some fixed number in the right-hand side.
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(Reflexivity): Yz(z > z);
(Antisymmetry): VaVy ((z 2 y) Ay 2 z) D = = v);
(Transitivity): YaVyVz ((z 2 ) Aly 2 2) D z > 2);
(Totality): YaVy((z > y) V(y 2 2));
(Structure Preserving): VaVyVz(z > 2 Dz + 2 > y + 2);
U VagYa (5 2 ) AEE 0) S5z 2 y-2).

We denote the set of above axioms by ®or. The pair (P Lof), Bof) is called the pure
ordered field theory.1?

Under the ordered field axioms, integers and rational numbers are expressed as
terms. We define numerals as follows: [0] is 0, [m + 1] is [m] 4 1 for any nonnegative
integer m, and [m] is 0 — [—m] for a negative integer m. For a rational number ¢ = k/m
(k{/m are irreducible and m > 1), we define [g] to be [k]/[m]. Numerals are closed terms.

The following lemma is crucial in this paper, which will be proved in the Appendix.

Lemma 2.4.(1): For any closed term ¢ in Lo, there is a rational numeral [k]/[m] such
that o5 ko t = [m]/[k].
(2): either ®op gty > 13 or op ko =t > 25) for any closed terms #; and #p in Lof.

This lemma implies that the set of closed terms in the pure ordered field theory is
regarded as corresponding to the set of rational numbers in the non-formalized mathe-
matics. We should note that if r;, 7, are the rational numbers corresponding to closed
terms 11,12 in Lof, then

Por ko ty 2ty if and only if 7y > g, (2.2)

where the right-hand side is evaluated in the ordered field Q of rational numbers.
We denote —(#) > t2) A(32 > t1) by 2 > #1. Since @or bo (1 2 t2) V(t2 > 1) by
Totality, Lemma 2.4.(2) is restated as @5 ko 21 > t2, $of Fo t2 > 3 or Bor g 8y = 1.
Finally, we add the following axioms to have the real closed field theory which is one
possible choice of a real number theory:

(Real-Closedness): Vz3y(z > 0 (3% = z)); and
for any odd natural number m,
Yym—1--Yy03z(z™ + gm12™ 1 + ... + 117 + o = 0).
We denote the union of &, and the set of the formulae of Real-Closedness by &,. Note
that ®y is an infinite set, while ® is a finite set. The theory (P{(Los), Prof) is called

the real closed field theory. An important theorem on the real closed field theory is
known as Tarski’s theorem (cf., Rabin [23] and van den Dries {29] for recent survey):

1¥We use, without references, elementary propositions, such as ={0 > 1), derivable from these axioms.
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Tarski’s Completeness Theorem. For any closed 4 in PYLos), either @pep kg A or
Brer Fo A

Here, we should mention some model theoretic facts, which will be used later. Let
Q the set of all rational numbers, A the set of all real algebraic numbers, and R the
set of all real numbers. Then (Q; +,—, X,/ ;>), (A4, —, X,/i2)and (R; 4+, -, %,/ ;>)
are all ordered fields. - Here -we -use- the same symbols +,—,x,/ ,> to denote their
interpretations, but would not cause any confusions. The first is a subfield of the
second, and the second is a subfield of the third. By interpreting 0 and 1 to be 0
and 1, (Q;+, -, %,/ ;2;0,1), (Aj+, -, x,/;2) and (R4, —, X, /; >) are models of the
pure ordered feld theory (P Lof), Bof). Also, (A; +,—, %,/ ;>:0, 1)and (Rj+, —, X, /; >
) are models of the real closed field theory (PH(L), (Iimf) (cf van der Waerden{30],
Section70).13

3. Games and Individual Decision Making

In this section, we provide a formalization of classical game theory in our language, and
review the epistemic axiomatization of final decisions given in Kaneko-Nagashima [10]
and Kaneko [6).

3.1. Finite Games and Nash Equilibrium

Consider an n-person finite game g. Recall that each player has £; pure strategies. The
payoff function of player i is a function from the set of pure strategy profiles to the set of
rational numbers. That js, for each pure strategy profile (sy,...,s,), the payoff to player
i is given as a rational number g;(sy, ..., 5n).

Now we describe these payoff functions in our formalized language: the payoff to
player i from each strategy profile (s1, ..., 5,) is given as the rational numeral [g;(s1, ..., )l
Pure strategies sy, ..., $, are not directly formalized in this paper. The game g itself is
not formalized either in this paper but is treated as a part of the description of Nash
equilibrium. In fact, this treatment is rather for simplicity. To discuss the knowledge
on the game, it would be better to formalize the game explicitly, but is a side problem
in this paper. It can be done without much difficulty, cf., Kaneko [6].

A mized strategy for player 7 is formulated as an attribute of an £;-vector of terms

Ti= (ti1y ..., tig;) satisfying the following formula:

(2 e = DA 20:k=1,..,8)) (3.)

13In these models, equality = is interpreted as the standard identity, i.e., these are normal models.
Hence we do not include = in these models.
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which we denote by St;(7;).14 Next, the payoff to player  from a mized strategy profile
T = (?1,...,?n) is given as the expected payoff with respect to the probability
distribution over the pure strategy combinations (s, ..., 8n) induced by T

kE...thlkl- ver * inkn-[g;(sh,...,skn)], (3.2)
1 n - . .

which we denote by g:( 7). Note that this gi(T') is a term. In the following, we denote
(?1, vy i1y ?;.,.1, veny ?n) by T _;, and (s, T..;) means 1 itself.

A Nash equilibrium is defined to be a mixed strategy profile 7 = (?1,..., t'r)
satisfying the following formula:

/\{St;(?,‘)/\V?; (St;(?;) D’ g,'(_t_)) > a(7Ti, ?_,‘)) ri=1,..,n}, (3.3)

where YT'; A(T ;) means Vz;1..Vz: A2, ..., 2i¢) and, later on, 37 ;A(T;) will be used
to denote 3zyy...3z;¢A(zi, ..., 2iz). We denote the formula of (3.3) by Na.shs(?). Note

that the formula Nashs(?) is relative to a specific game g.
The game of Table 3.1 is the “Prisoner’s dilemma” and has a unique Nash equilibrium
((0,1),(0,1)) in the formal language.

N c B M
N 5,5 1,6 : B 2,1 0,0
¢ 6,1 3,3 M 0,0 1,2
Table 3.1 Table 3.2

The game of Table 3.2, called “the Battle of Sexes”, has three equilibria, (B,B),(M,M)
and ((2/3,1/3),(1/3,2/3)},and their formal counterparts are ((1, 0), (1,0)), ((0, 1), (0, 1))
and (([2/3],[1/3]), ([1/3], [2/3]))-

The following lemma is a well-known criterion for a Nash equilibrium, which elimi-
nates the universal quantifiers in the formula Nashg(@). We denote the £;-vector with

0’s except 1 in the k-th entry by ug.
Lemma 3.1. .iof Fo Nashg(?) = AL, (St;(_cf,') A (/\ksz g;(?) > g,-(uk, ?_;))) .

Proof. It suffices to prove that &, Fo Ni<e; 9i(@) 2 gi(ug, @) D

_"Ei=1 tik is an abbreviation of {...((ai1+2i2)+ai3)+...+ai;)...). Under the ordered field axioms, the
order of summation does not matter, but we do not assume these axioms in the epistemic axiomatization.
We use also other abbreviations without noting.
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Yz (St,-(?,-) D a(7a) > g7, E’_;)) for each ¢. We show that for any terms ¢, 1, ..., ¢,

4
@ofkoké\tztkD(Zb—l/\(/\ b2 0)D D b tk<t) (3.4)

=4 k= k<4

where. &y, ..., by are.free variables not .occurring in ¢,1y,...,2,. This together with V-Rule
implies @z Fg /\ksl.' t>1 OVT, (St,-(?,-) DD ket; Tik i < 1‘) . From this, we obtain

what we have to prove, by substituting ¢;(@") and g;(uy, @ i)fortand t (k=1,...,0).
Assertion (3.4) is equivalent to

Ofl-o(/\t>tk)/\2b—1/\(/\bk>0)32bk i < 1. (3.5)

k=1 k<L
This is proved as follows: First, ®¢ Fg A<, (t>te Abk>0)D 2okt ket < Dk<e; b
¢, and second, s o T 1 b; =10 2k<e; bk -1 = 1. These imply (3.5). O

The above lemma states that the Nash equilibrium property can be verified by
checking a finite number of equalities and inequalities. By Lemma 2.4, when we plug
closed terms in Lqf to free variables in the right formula of Lemma 3.1, the right formula

is decidable. Hence Nashg( ) is decidable, too.
Lemma 3.2. Suppose that (Pf(L), @) satisfies

P oty > 13 or ko (¢ > t3) for any closed terms #y, 3 in L. (3.6)

Then & Fo Nashg(_t)) or & ko —-Na.shg(?) for any profiles 7 of closed terms in L.

Proof. Let (?1,...,?,1) be a profile of closed terms.l It follows from (3.6) that (i)
$ o Sti(t:) or @ ko —Sti(t;) for each i and (ii) & ko gi{ T ) > gilug, T —i) or & kg
- (g,(?) > gi(ug, ?“;)) for each & < £;. If all of these hold without negation -,

then & Fq A\. St; ?,— A Aver 65 T > g,—(uk,T_,- ; and otherwise, we have
i<n <&

@ to = Aicn (St,-(?;) A (/\ksl g;(?) > g;(uk,?_,-))) . Thus it follows from Lemma
3.1 that & ko Nashg(T) or & kg ~Nashg(7). O

The standard existence proof of a Nash equilibrium for any finite game g with
mixed strategies relies upon Brouwer’s fixed point theorem (von Neumann [32] and
Nash [20]). Since (R;+,-,-,/;2;0,1), is a model of (P{(Lef), Brep), the existence of

a Nash equilibrium, 37" Nashy(Z’), is true in this model. Hence it follows from the
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soundness theorem for (P Lsf), Brer) that it is not the case that &, Fo —:EJ?Na.shg( ).
Thus ®per o 37 Nashg(z') by Tarski’s completeness theorem, and then C(Pret) Fu
C(37 Nashg(7)) by Theorem 2.1.
Theorem 3.3. Let g be any n-person finite game. Then
(1): @1 o 3T Nashyg(7T);
(2): C(®res) Fw C(3T Nashg( 7).

Thus, in logic GLw, the existence of a Nash equilibrium is common knowledge when
the real closed field axioms are common knowledge. Nevertheless, this is different from

C(®ret) Fo 3T C(Nashg(7)), which is required to be a necessary condition by the
epistemic axlomatization.

3.2. Infinite Regress of the Knowledge of the Final Decision Axioms and its
Solution

In a game g, each player deliberates his and the others’ strategy choices and may reach
a prediction on their final decisions. The expression D;(@) intends to mean that player
i predicts the strategy profile @ = (7@4,..., @») to be chosen by tlie players. We
characterize these predictions D;("@) by the following five axioms: for i = 1, ..., 7,

(D09): V& (Di(F) 2 A; SH(T5) s

(D1): VZ (Di(F) D VT (St T0) 2 6(F) 2 (T, F-1)))
(D29): VF (D(F) D A; Di());

(D30): vz (Di(Z) > K« Di( 7)) 5

(D40): VBV A; (Di(F)ADLT) D Di( T3, 7))

We denote DOA ... AD4 by D;(0-4). Each axiom is described as follows.

D0: (Strategies): Predictions are mixed strategies;

D19: (Best Response to Predicted Decisions): When player ¢ predicts final decisions
T'14+eey T n for the players, his own decision T'; maximizes his payoff against his pre-
diction Z'_;, that is, Z'; is a best response to T ;.

D2?: (Identical Predictions): The other players reach the same predictions as player 4’s.
D3?: (Knowledge of Predictions): Player i knows his own predictions.

D4?: (Interchangeability): Player i’s predictions are interchangeable, which is a require-
ment for independent decision making.
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We assume that player ¢ himself knows these axioms as his behavioral postulate.
- Thus, the axiom for him is (DOP A - - - AD4?) A K;(DO0? A - - - AD4?), which we denote by
D;(0-4). We denote A;D;(0-4) by D(0-4).

In fact, Axiom D(0-4) is far from being sufficient to determine Di(-), ..., Du(+). Each
D;(0-4) requires player ¢ to know the axioms, A;jziD;(0-4), for the other players, since
D2{ includes the other D;(-),J # 1, that is, without knowing these axioms, D29 could
not make sense for player i. Thus, we assume that all the players know D{(0-4), i.e.,
Ai Ki(D(0-4)). However, this addition does not solve the insufficiency: under this ad-
dition, we have

D(0-4), A Ki(D(0-4)) b, Di(@) D K;Kp(D:i( ). (3.7)

This requires the imaginary player k of the mind of player j to know the behavioral
postulate, D;(0~4), for player 7, for otherwise, consequence (3.7) would not make sense
for k. This suggests to add another formula A; A; K;K;(D(0-4)). Under this addition,
however, we meet the same difficulty as that in (3.7) of the depth of one more degree,
and need to go to the next step. This process leads to an infinite regress of adding the
knowledge of D(0~4) of any finite depth. The infinite regress is described as

{K(D(0-9): K & | K(m)}. " (3.8)

The conjunction of this set is the common knowledge, C(D(0-4)), of D(0-4). We adopt
this infinite regress as an axiom for D;(-),7 = 1,...,n. Then:

Lemma 3.4. C(D(0-4)) b, V7 (D{(F) D C(Nashg(7))) 15

In fact, the formula, C(Nashg('d")), can be regarded as the solution of C(D(0-4))
for the class of solvable games: A game g is said to satisfy interchangeability (in the
sense of Nash [20]) iff the following holds:

v-za‘v?/j\ (Nashg(7") A Nashg( ) D Nashg(7;, 7-5) (3.9)

This is satisfied by the game of Table 3.1 but not by that of Table 3.2. We denote this
formula by INTg. Of course, this is satisfied by a game g with a unique equilibrium.

Then we can prove that C(Nashg(7@")) satisfies C(D(1-4)) under the common knowl-
edge of INTg, that is, if every occurrence of Di(Z) in C(D(0-4)) s replaced by C(Nashg( 7))
for i = 1,...,n, which is denoted by C(D(0-4))[C(Nashg)], then:

Lemma 3.5. C(INTg) b, C(D(0-4))[C(Nashg)].16

'S Axiom D4},i = 1,...,n are not necessary in this lemma. For such details, see Kaneko [6].
%1n fact, A\-Bi is used for this lemmam but not for Lemma 3.4. Also, D47 is used here, but not for
Lemma 3.4.
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Thus, C(Nash(a)) is a solution of C(D(0-4)), and Lemma 3.1 states that it is the
deductively weakest. Hence C(Nashg('@’)) can be regarded as what C'(D(0-4)) deter-
mines. To formulate this claim explicitly, we introduce one more axiom schema:

(WD): C(D(0-4))[A] > AiVZ (Ai(7F) D Di(7)),

where A is a family {4:(@") : ¢ = 1,...,,n} of formulae, and C(D(0-4))[.A] is obtained
from C(D(0-4)} by replacing all occurrences of D;(Z) by 4:(7) for all i = 1,...,7.
Lemmas 3.4 and 3.5 together with WD imply the following theorem.

Theorem 3.6. C(D(0-4)), C(INTg),WD b, V7 (D7) = C(Nashg(7))) -

It should be remarked that since we defined only implicitly a game as a part of Nash
equilibrium, it is unclear whether game g is known to the players. However, it would be
fair to say that since the players are not given the knowledge of basic axioms in $ or
@rct, they do not know the structure of the game. When they know these axioms, they
are well informed of the game. In this sense, Theorem 3.6 is an abstract characterization
of prediction D;(+).

When the real closed field axioms ®,.f are assumed to be common knowledge, the
game included in Nashg(-) is also common knowledge. In this case, when a game g
satisfies (3.9), we have

C(D(0-4)), C(®:er), WD b, VZ(Di(T) = C(Nashg(7))),

since C(@rep) Fu C{INTy).

In order for player ¢ to play the game g, we need to have 37 D;(T). By the
above theorem, this is equivalent to having 37 C(Nashg(ZT')). Of course, since C(D(0~
4)), C(INTg) and WD are axioms for the considerations of Dy, ..., Dy, we need to assume
some additional axioms including the ordered field axioms ®;. In the following, we con-
sider the question of what I' including no D, ..., D, can ensure

I b, 37 C(Nashg(F)). . (3.10)

Suppose I' k, C(INTg). If (3.10) holds, then we have C(D(0-4)),I,WD F, 37 D;(T),
which gives an affirmative answer to our playability problem. On the other hand, if
(3.10) does not hold, it is not the case that C(D(0-4)),T,WD +, 37 D;(T), which is
shown in Kaneko-Nagashima [12]. Hence it suffices to consider whether or not (3.10)
holds. ‘

When g has an equilibrium in pure strategies, it follows from Lemmas 2.4, 3.1
and 3.2 that . ko Nashg(T") for some profile T of terms consisting of 0,1. Hence

C(&of) Fu 37 C(Nashg(7)) by Theorem 2.1 and 3-Rule. Hence C(®,) suffices for I' in

18



(3.10). In the following, we will focus on the existence of a Nash equilibrium in mixed
strategies. .

For an unsolvable game g, Theorem 3.6 fails to hold, but Lemma 3.4 does hold.
Hence (3.10) is a necessary condition to have 2 final decision: unless (3.10) holds, it
would be a conclusion that the game is unplayable. Theorem 3.6 is modified for an
unsolvable game so that Nash equilibrium is replaced by a subsolution (a maximal
subset of equilibria satisfying interchangeability) in the sense of Nash [20]. Kaneko {6]
discussed this modification for finite games with pure strategies. For a game with mixed
strategies, we meet some difficulties, for example, the subsolution concept may involves
the second-order language. However, we can avoid these difficulties by restricting games
so that each Nash equilibrium is locally unique and assuming some strong theory such
as those given in Sections 6 and 7. In such a formulation, we would have the same
conclusions (with some apparent modifications) with those for solvable games.

4. Conditions for the Specific Existence of a Nash Equilibrium

In this section, we give a general criterion for the specific knowledge of the existence of
a Nash equilibrium. We start with the following result.

Theorem 4.A. Let @ be a set of closed formulae in P(£) satisfying decidability (3.6).
Let I' be a consistent set of closed formulae in P(L) with T' k¢ A for any 4 € &, and
let g any finite game. Then the following three statements are equivalent:

(1): C(T) ko, 37 C(Nashg(T));
(2): C(®) F, 3T C(Nashg(7));
(8): there is a profile 7" of closed terms such that & Fo Nashg(?).
Proof. (2) = (1) is straightforward, and (38) = (2) is obtained by Theorem 2.1 and 3-
Rule. We prove (1) = (3). Suppose C(T) k-, 37 C(Nashy(7')). It follows from Theorem
2.2 (Term-Existence Theorem) that C(T') k-, C(Nashg( 7)) for some profile 7 of closed
terms. Then I k¢ Nashg(?) by Theorem 2.1. By (3.6) and Lemma 3.2, & o Na.shg(?)
or & ko ~Nashg(?). If & ko ~Nashg(7'), then T ko =Nashg(7) because I' ko A for
all A in @, and then T ko —:Nashg(?) /\Nashg(?), which is a contradiction to the
coﬁsistency of I'. Thus & Iy Na.shg(-t_’). 0

The direction (1) = (2) states that if the specific existence, 37 C(Nashg(7")), is
obtained from the common knowledge of some set I' of axioms stronger than @, then we

could actually obtain it from the common knowledge of &. This mean that to obtain
37 C(Nashg(7')), the common knowledge of any axioms additional to the given axioms
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® having decidability (3.6) are superfluous. Hence a deductively weakest set of axioms
having (3.6) determines whether 37 C(Nashg(')) can be obtained. '

When the list £ is specified to be Lof, the ordered field axioms & satisfies (3.6)
by Lemma 2.4. In this case, &, does not help us obtain 37 7 C(Nashg(7')), though
C(37 Nashg(Z")) is obtained from C (@rcf) When £ is Lo, we can strengthen Theorem
4.A as follows:

Theorem 4.B. Let £ be Lo, and let & be ¢ Then each of the assertions (1), (2) and
(3) of Theorem 4.A is equivalent to each of the following:
(4): C(%or) ko C(3T Nashg(T));
(5): @of o 37 Nashg(T).
Proof. (3) = (5) is straightforward, and the equivalence (4) ¢ (5) follows from The-
orem 2.1, We prove (5) = (3): Suppose Bof o 3T Nashg(T). Then 37 T Nashg(7) is
true in the model (Q;+,~—, X,/ ;2;0,1) by the soundness theorem. This means that
there is a profile (7°1,..., 7»)} of rational numbers such that Nash ( @ 1yeeey Gn) 18
true for an a.531gnment o in the model (Q;4+,—, %,/ ;2;0,1) where cr(a,k) = 1y for
k=1,.,8,i=1,..,n Let T,.., Tn be the vectors of the rational numerals cor-
responding to 'F’l,...,?n. Then Nashg(?l, ey T ) is true in (Q; 4, ~, X,/ ;2;0,1).
This together with the soundness theorem implies ®of ko Nashg(T1,..., Tn), since
Dof FoNashg(T'y,..., Tn) of Bof ko —Nashg(T1,..., Trn ) by Lemmas 2.4, 3.1 and
3.2.0

Under the assumptions of Theorem 4.B, the assertion (3) is further equivalent to,
by Lemma 2.4.(1),

(3;): there is a profile T of rational numerals such that & Fq Nashg(?).

It is a consequence from Theorem 4.B that although C(®res) Fo C(37 Nashg(7))
by Theorem 3.2 for any game g, C(®rer) Fo 37 C(Nashg( 7)) would be obtained only if
Pof Fo 3T Nashg(Z"). Thus (2) holds if and only if the existence is obtained from the oz-
dered field axioms ®.¢ in the standard sense. Hence unless 37 C(Nashg(3")) is provable
from C{®s), any strengthening in the axioms does not help to obtain 37 C (Nashg(Z)).

In the pure ordered field theory (P¥(Lof), @of), only the four arithmetic operations
together with equality-inequality comparisons are allowed. Therefore the existence looks
difficult to obtain. In the literature of game theory, we already know a positive answer
for some class of games and a negative answer for some other class of games.

For 2-person finite games, Lemke-Howson [16] gave a finite algorithm to calculate a
Nash equilibrium, based on the ordered field axioms.'” A counterpart in the formalized
mathematics is as follows:

"Rosenmiiller [24] and Wilson [27] gave “algorithms” to calculate Nash equilibria for any finite game
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Theorem 4.1 (Lemke-Howson [16]). Let g be a 2-person finite game. There is a profile
T of rational numerals such that & g N ashg(T).

This together with Theorem 4.A jmplies that each of the assertions (1) through (5)
holds for any 2-person game, in addition to their equivalence, in (P¥(Log), C(Bop)).

When a 2-person game g is zero-sum, it is proved to be also solvable in (P Lot), Bop),
. le.,.@of Fo INTg,-which implies. C{$of). k- C (INTg).--Hence every zero-sum 2-person
zero-sum game passes the playability test fully, that is, C(D(0-4)),WD,C(®s) ko,
37 Di(7).

For a game with more than two players, we have often a negative answer to the
above existence question even if the game has a unique Nash equilibrium when £ is Lqs.
A Nash equilibrium may involve irrational number probability weights for a game with
more than two players. If this is true for a game g, all the assertions of Theorem 4.A
fail to hold. Furthermore, the negation of such an existence claim is also unprovable
when L is Lo, This is the undecidability result presented in Kaneko-Nagashima [12],
which is now discussed below.

Consider the following 3-person game:

B Ba B2 B2
ey 0,0,1 1,0,0 a 2,0,9 0,1,1
a2 1,1,0 2,0,8 as 0,1,1 1,0,0
. ’71 72
Table 4.1 Table 4.2

The tables mean that when the players choose pure strategies, say, ¢, B2,2, the right
upper vector (0,1,1) of Table 4.2 gives payoffs to the players. This game has no Nash
equilibrium in pure strategies, but has a unique Nash equilibrium ((p,1 - 2),(q,1 -
g), (r,1— 1)) in mixed strategies, where

» = (30 - 2/51)/29, ¢ = (251 — 6)/21 and r = (9 — +/51)/12. (4.1)

The probability weights in equilibrium are irrational numbers. Therefore those proba-
bilities are not represented as closed terms in Lof by Lemma 2.4. Therefore it follows
from Theorem 4.A that when £ is Lo, it is not the case that C(T') 37T C(Nashg(7')),
even though T is very strong.

By Lemma 2.3, C(T') k-, 37 C(Nashg( 7)) is equivalent to C(T') k,, C(~3Z Nashg( 7).
When T is nonepistemic, this is further equivalent to I —37F Nashg(Z"). If 2 set T of

as extensions of the Lemke-Hosen algorithm. However, these algorithms require more than the four
arithemic operations and does not work for an ordered field, which is shown by the game of Tables 4.1
and 4.2. They need to trace on algebraic curves, which step does not have an algorithm. Hence theirs
are not regarded as algorithms.
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nonepistemic closed formulae stronger than ®,; does not satisfy I' tq —~37 Nashg(7),
then we have the following theorem.

Theorem 4.2 (Kaneko-Nagashima [12]). Let g be the 3-person game given by Tables
4.1 and 4.2, and let T be a set of closed formulae in P!(Lof) which satisfies T' ko A for
all A € &t but not T g =37 Nashg('Z). Then neither C(T') b, 37 C(Nashg( 7)) nor
"C(T) Fu =37 C(Nashg(Z")). o ' .

5. Extensions, and Computations to Play a Game

Some readers may be puzzled by the undecidability assertion that a player cannot reach
the Nash equilibrium which is specifically given by (4.1). The reason for the above
undecidability result is that radical expressions are not allowed in our formal language.
Once radical expressions are introduced, undecidability is removed for that specific 3-
person game. However, this will not solve undecidability completely. In this section, we
discuss the undecidability result when we extend the theory by adding some constant or
function symbols. Then we consider the meaning of computations in such an extension,
and provide the desiderata which should be satisfied by an extension.

5.1. Radical Expressions and the Abel-Galois Theorem

We add the following constant symbol to the list £o¢ of symbols:
Constant: v/51.

We denote the new list of symbols by £, /57 We need the following axiom to determine
v/51 to be the square root of 51:

(v51): (V51 2 0) A(V5T - v/B1 = [51]).

We denote ®,r U {(+/51)} by D /E

In this extended theory (Pf(ﬁof\/gl-), ®,s/57)s the irrational numbers of (4.1) are
expressible by closed terms. Denote the terms representing these irrational numbers by
P, 4, T, e.g., p is {[30] — [2]v/51))/[29]. Then we can prove that for the 3-person game
g of Tables 4.1 and 4.2,

q)of\/ﬁ l‘g NaShS((p’ 1- P), (q, 1- Q), (1', 1- I‘))

This together with Theorem 2.1 and 3-Rule implies C(®,/57) Fo 3T C(Nashg(7)).
Thus the game g is no longer an example for undecidability in the present extension.
The above extension removes undecidability for only games where equilibria are ex-
pressed in terms of rational numerals with v/51. However, Theorem 4.A is applied also to
this (PY( Loz /57)s Poryar)s since (3.6) holds in (PH(L ; /), 8, /51)» Which can be proved
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by modifying the proof of Lemma 2.4.(2). Hence if a game involves another radical,

.then the above extension does not remove the new undecidability. Nevertheless, we
can remove such undecidability by adding a constant to describe the new radical to the
theory (PHL s /z7), @ of/5T) in 2 similar manner. Now we have a question of whether
some extension of the theory (PH(L s £7), ®or) by the addition of radicals removes un-
decidability for any finite game. _

In fact, we can find an answer to this question in the literatures of game theory and
of algebra. A theorem of Bubelis (2] states that for any real algebraic number a € [0, 1],
there is a 3-person game such that its unique equilibrium has o as the probability weight
for some pure strategy. The Abel-Galois theorem states that a polynomial equation
of degree five or more with rational coefficients is not necessarily solved by the four
arithmetic operations together with radicals. For example, 5 —42+2 = 0 has three real
roots, which cannot be solved by the four operations and radicals (cf., van der Waerden
[30], Section 60). For any of these roots, Bubelis’ theorem provides a 3-person game
whose unique equilibrium involves that root (the game is relatively small; players 1,2
and 3 have two, six and six pure strategies, respectively). Consequently, undecidability
cannot be removed for such 3-person games by any extension of our theory by adding
radicals.

The addition of radical expressions does not suffice for the complete resolution of
undecidability. Bubelis’ [2] theorem states that every real algebraic number is involved
in classical game theory. Conversely, The argument for Theorem 3.3 states that the real
algebraic numbers are sufficient for the existence problem of a Nash equilibrium. The
Abel-Galois theorem simply states that the four arithmetic operations and radicals do
not express all the real algebraic numbers. Now our problem is to find a method of
expressing all the real algebraic numbers by closed terms. In Sections 6.and 7, we give
two procedures.

5.2. Terms as Computation Units, Transformation into Decimal Expansions,
and Generating Irrational Probabilities '

Before going to the consideration of expressing all real algebraic numbers by closed
terms, we consider computations involved in playing a game.

To play a game, each player needs not only to reach a specific Nash equilibrium but
also to generate the probabilities prescribed by the equilibrium whenever proper prob-
abilities are involved. This statement may include several kinds of computations and a
probability generator. As Theorem 2.2 {Term-Existence Theorem) states, each player
needs to compute a Nash equilibrium in closed terms. In this computation, closed terms
form computation units, which depend upon the choice of a language. For example, in
the pure ordered field theory (P{(L.s), ®or), rational numbers are only legitimate com-
putation units, and in the extended theory (’Pf(ﬂof\/ﬁ), @ 1/37)» expressions in terms of
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the four arithmetic operations including radicals are allowed. Once those computation
units are specified, some algorithm for searching a Nash equilibrium is defined. For
some games, a Nash equilibrium is found in such computation units, but sometimes
not. When a Nash equilibrium is found in closed terms, we have the question of how a
player plays such a strategy expressed by closed terms.

Let us return to a theory (PY(£), &) with property (3.6). This decidability of #; > #,
plays two 1mportant roles in our consideration. The first is: for any profiles of closed

terms (1, £ n))

$ ko Nashg () or & ko ~Nashg(?) for any profiles T of closed terms.

Suppose that a Nash equilibrium exists in closed terms in the theory (Pf, ®). If the
closed terms are enumerable — we will construct theories in Sections 6 and 7 whose
closed terms are enumerable —, then the profiles (Tl, veoy ?n) of closed terms are also

enumerable. Hence the step-by-step verification of each candidate (?1, ey ?n) to be
a Nash equilibrium until a Nash equilibrium is found forms an algorithm (though this
procedure is very inefficient from the practical point of view). Hence (3.6) ensures the
existence of an algorithm if there exists a Nash equilibrium in closed terms.

Now suppose that a player reaches a Nash equilibrium in closed terms. The other
problem of how he plays such a strategy expressed by closed terms. For a 2-person
game, such closed terms are rational numerals. Hence a fair roulette (a choice of a ball
from an urn) can generate the probability described by each term. However, for a game
with more than two players, a Nash equilibrium involves irrational numbers. Now his
problem is how such irrational number probabilities are actually generated. In fact, this
is always possible if the irrational numbers are transformed into decimal (or binary)
expansions.

Consider the problem of how the probability p = (30 —2+/51)/29 is generated in the
game of Section 4. Let the decimal expansion of p be .dyds...d... (= .5419...). Prepare
a fair roulette (an urn containing 10 balls) with outcomes 0, 1,...,9. Player 1 chooses
pure strategy o or ay by spinning the roulette repeatedly according the following rule.
Suppose that he goes to the k—th spin of the roulette. If the outcome of the k-th spin
is smaller than dy, then choose ¢; and if it is greater than d, then choose as. In these
two cases, player 1 does not spin the roulette anymore, but if the outcome is dy, then
he goes to the (k4 1)-th spin of the roulette. The probability of choosing pure strategy
o is exactly p = d1/10 + da/10% 4 d3/10% + - - - = (30 — 2/51)/29. The process halts
and player 1 chooses @ or ¢p with probability 1.18

Although we separate the process of making the decimal expansion from the roulette
spins, practically these should be processed simultaneously, that is, if the roulette spin

1*This procedure was suggested by R. Aumann.
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goes to the next round, then the player needs the next digit of the expansion. When

an extended theory (Pf(L), &) satisfies (3.6), this decimal expansion can be obtained

up to any given order. In (PH(L ; £7), 8 ¢ /57), the first digit dy is found by checking

® /57 Fo [£]/[10] £ p < [k + 1)/{10] for £ = 0,...,9, and the second d; is found by

® /57 Fo [d1]/[10] + [#]/[100) < p < [d1]/[10]+ [k + 1]/[100] for k = 0, ...,9, and so on.
Hence (3.6) suffices for obtaining decimal expansions.

"~ We summarize the above considerations as follows:

Computation of a Nash equilibrium in closed terms: In a given language with
suitable axioms where legitimate computation units are specified as closed terms, a Nash
equilibrium could be computed if a Nash equilibrium exists in closed terms.

Transformation into a decimal expansion: Once a player obtains a Nash equilib-
rium in closed terms, he needs to transform the probabilities involved in the equilibrium
into decimal (or binary) expressions up to any given order.

Generating Probabilities: Finally, he needs to have some random mechanism to
generate the probabilities prescribed by the Nash equilibrium computed.

The last process conditional upon the first two is external to the choice of a theory
(PHL), ®). To have the first two, we should construct a theory (Pf(L),®) so that it
enjoys decidability (3.6), term-existence:

if & o 37 Nashg(7'),

3.1
then @ ko Na.shg(?) for some profile 7 of closed terms, (5:1)

as well as the existence of a Nash equilibrium itself. We will give such two theories in
Sections 6 and 7.

6. The Real Closed Field Theory with Real Algebraic Numbers

It was discussed in Section 5 that a new extended theory should be able to express
all the real algebraic numbers by closed terms as well as to guarantee the existence of
a Nash equilibrium. Theorem 3.3 states that the existence of a Nash equilibrium is
obtained in the real closed field theory (Pf(Lof), ®rer). Hence it would be natural to
add to this theory some symbols to express all the real algebraic numbers. By this
addition, we will construct the new theory (P!(Leg), ®resr) Which satisfies decidability
(8.6), term-existence (5.1) as well as has the existence of a Nash equilibrium. In fact,
by using Tarski’s completeness theorem, this theory is proved to be complete. This
enables us to obtain a positive answer to parallel questions about refinements of Nash
equilibrium, which will be remarked in the second subsection.
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6.1. A Formalization of Real Algebraic Numbers

To describe a real algebraic number, we need to consider a polynomial equation with
integer coefficients. Identifying a polynomial 8,,™ + bym12™1 - ... 4 bz + by With a
vector (b, ..., b1, bo), we can regard the set of all polynomials with integral coefficients
as the set Jpemew P(M), where P(m) = {(bm, bl,bo) bm, bl,bo are integers and
by # 0}.

We add the following constant symbols to the list Lof of bas1c symbols
Constant symbols: e}: fork=1,..,m, f€ P(m)and m=1,2,..

The new list is denoted by L.g. The symbol e,’: is intended to express the k—th smallest
real root of polynomial equation f(z) = 0 if it exists, and to be 0 otherwise. We call
these symbols algebraic numerals.

In our formalized language, a polynomial equation can be described as

[bm]a™ + ... + [b1]a + [bg) = O, (6.1)

where a is a free variable and [b,],...,[b1], [bo] are numerals corresponding to integers
by ey b1, b0, where f = (bm,...,b1,b0) € P(m). We denote the above equation of (6.1)
by f(a) = 0.

We denote, by RA 3(a), the fo]lowmg formula describing “f(z) = 0 has at least k-1
real Toots smaller than real root a”

2. 3zk-1 (Z\I(f(mt) = 0)A(z1 < . < Ty < a)) Alf(a) = 0).

We denote, by E{(a), the following formula describing “a is the k-th smallest roof of
f(z) = 0":
R{(@)AVy (B{(») >y > a).

Hence if f(z) = 0 has at least k real roots, then Ef(e]) describes “ef is the k-th
smallest root of f(z) = 0”, and otherwise, we determine e£ to be 0. We make this as
an axiom:

(RT): (3cR{(=) > Ef(e))) A (-32R[(z) > ef = 0),

where f € P(m), k = 1,..,m and m = 1,... We denote the union of &, and the set
of all instances of RT by ®rctr. Since $ref g EImRi(:r) or ®rcr Fo —-EI:::R,{(::) by Tarski’s

completeness theorem, either ®,.4 o E{ (e;’: ) or @.cir Fo ei = 0. Here e}: is completely
determined. In the first case, this complete determination is guaranteed by the first of
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the following lemma. The second assertion of the lemma is the elimination of algebraic
numerals,

Lemma 6.1.(1): &, J2R{(2) Fo Vz(Ef(z) D z = ef).

(2): For any closed formula A in P(Log), there is a closed formula B in P L) such
tha-t @rcﬁ- '_0 A = B.

Proof. (1): Observe &,cg,, 2RI () Fo E¥(a) . E}‘(a) /\R’}(e,{) and ko E5(@)ARK(e]) D
a < e,’:, which imply @, BmR,{(m) to EJ’E(a.) Sa< e,{. The converse holds, too, i.e.,
®yete, Iz RL(2) Fo Ef(a)D>a> ef. ‘Hence Brenr, I3 Ef (z) Fo Efa)Da= el.

(2): Let A(e]) include ef. There are two cases: $;c¢ bo IzR{(z) and S, ko -3z R (z).
We prove that in each case, there is another formula A’ without including e,{ such that
Sreir Fo A(e;':) = A’. Repeating this process, we eliminate all algebraic numerals in
A(ef), and then obtain B in PY(Lyr) so that Bpep o Ale]) = B.

Consider the case where @, o —leRﬁ(m). Then Pyt Ho e{ = 0 by RT. Hence
Brote Fo A(e]) = A(0), where A(0) is obtained from A(e]) by substituting 0 for all
occurrences of ef in A(el).

Now consider the case where @, Fo HzRﬁ(z). Then @i Fo E,{ (e,{) by RT. It
suffices to show Sy bp Yz (E,{ (z) D A(m)) = A(e,{), where A(z) is the expression
obtained from A(ei) by substituting = for all occurrences of e}: in A(e£ ).

First, kg Vz (Ekf(z) D A(m)) ) (E,{(e,{) D A(e{)), equivalently, Fo Ef(e]) >
(V:c (E‘,{(x) D B(z)) > B(e,{)) . Since ®,c4 Fo E{(e}:), we have ®pop ko Yz (E,{(m) D A(a:))
D A(ef). Conversely, since &y Fo JzR](z), it follows from (1) that ®,cs Fo E{(a) >
(A(e,{) D A(a)) , equivalently, B, Fo A(ef) D (E,{(a) > A(a)) . Thus &.cs o A(e]) D
vz (E{(z) 5 A()). ©

Lemma 6.1.(2) implies that the provability of a closed formula in (PH{Logr),Brer) is

reduced into (P¥(Ly),®rcf). This together with Tarski’s completeness theorem implies
the following.

Theorem 6.2 (Completeness of (PY(Lot),Brerr)). Let A be a closed formula in P Log:)-
Then ®pe o A and S Fg DA

Proof. Let A be a closed formula in PHL.;). By Lemma 6.1.(2), there is a closed
formula B in Pi{(Le) such that &, ko A = B. By Tarski’s completeness theorem,
®.cr o B or ®pep o B, Hence Prege Fo A oF Spepy Ho ~A4. O

Decidability (3.6} is a small part of Theorem 6.2. The other key property for the
specific existence is term-existence (5.1).
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Theorem 6.3 (Term-Existence for (P Log),Brere)). Let Iz...32mA(21, ..., Zy) be a
closed formula in P!{(Log). Then if Srep o 3z;...32,A(z1, ..., Zm), there are algebraic
numerals ey, ..., en such that ®..p o Aler, ..., exn).

Beiore proving this theorem, we construct a model of (P Lo ),®rer). To discuss a
model of (PH(Log), Bresr), We should specify the interpretations of algebraic numerals in
addition to those of-+,—, X,/ and >--Wedenote the k—th root of a polynomial equation
f(z) = 0by el (f € P(m),m = 1,...). Define the structure A = (As+,—,%,/;2;¢) by
the following interpretation % of constants:

$(0)=0,4(1)=1

if f(z) = 0 has £ real roots, then ¥(ef) = el fork=1,...,¢ (6.2)

and 1/)(e£) =0fork=£+1,..,m.

Then every instance of RT is true in A. Therefore A = (A;+,~, X, /; >; %) is a model

of (PH(Log), Bresr)-

Proof of Theorem 6.3. Suppose &y ko 371...32,A(21, ..., T ). Then Jz1..32mA(21, .0y Tn)
is true in the model A. Hence A(ay,..., dn) is true in A for some free variables ay, ..., 2,

and some assignment o which assigns a value in A to each free variable. Let a(a1), ..., 0(am)

be e1,...,ep. For each e, (s = 1,..., m),there is a polynomial equation f,(z) = 0 with in-

teger coefficients such that e, is its k,—th smallest root. Thus qb(e?:) =efors=1,..,m,

Then A(e’}: , ...,e_’;:) is true in A. By Theorem 6.2, we have ®,.5 Fo A(eg, ...,e'}:). o
Now we can state the game theoretical result.

Theorem 6.A. Let £ be Log. Let g be any finite game. Then the following hold:

(1): C(®retr) Fw 37 C(Nashg(2));

(2): there is a profile "€ of algebraic numerals such that $..5 Fo Nashg( ).

Proof. By Theorem 3.2.(1), ®ycf Fg 37 Nashy(Z'). By Theorem 6.3, there is a profile
"€ of algebraic numerals such that ®.cs; Fo Nashy( ), which is (1).” Assertion (2) follows
(1): By Theorem 2.1, C(@reqr) bo C(Nashg(€)). Then C(@regr) o 37 C(Nashg(7))
by 3-Rule. O

We can observe that in the present extension, the desiderata discussed in Subsection
5.2 are fulfilled. Although we add an infinite number of constants symbols, they are
enumerable and so are the instances of Axiom RT. We can repeat the verification of
whether or not ®yeqr ko Nashg( €'y, ..., €,) for each profile (€'y, ..., €4), until it holds.
This verification terminates by Theorem 6.A, and we will find (€4,..., €5) so that
Dretr Fu Nashg( €1, ..., €p). Since Bpone bo 83 > 22 o Bpegr o =(11 > 1) for any closed
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terms ?;,%2 by Theorem 6.2, every term in €4,..., €, are transformed into decimal
expansions. Thus the probabilities described by algebraic numerals can be generated.

6.2. Possible Applications to Refinements

The extension presented in the above subsection is very powerful. Theorem 6.A could
hold for many refinement concepts, for example, Selten’s [25] perfect equilibrium and
Nash’s [19] and [21] bargaining solution. Here we give remarks on possible apphca.tmns
to such refinement concepts.

By adding more axioms, the epistemic axiomatization of “final decision predictions”
would yield a refinement concept of Nash equilibrium. For example, in the case of
perfect equilibrium in Selten [25], the final decision prediction D;(@) would become
C(Selteng (")) instead of C(Nashg(@")), where Selteng(@) is a perfect equilibrium.!®
Hence the relevant question becomes the provability of 3% C(Selteng(=)). Then The-

orem 6.A holds for 37" C(Selteng( ")) in any finite game. In a similar manner, we can
apply our argument to other refinement concepts.

Another, slightly different, application is Nash’s [19] and [21] bargaining theory.
The Nash bargaining solution with a fixed threat can be regarded as a Nash equilib-
rium with the other axioms (Independence of Irrelevant Alternatives, Invariance under
Affine Transformation and Anonymity) for demand games {cf., Kaneko-Mao [9]). The
epistemic axiomatization given in Section 3 can be modified to incorporate the other
axioms, and the resulting solution concept C(Barg(@')) for a polyhedral bargaining
problem S. In the 2-person case, the pure ordered field theory (Pf(Lof), @of) suffices,
which was shown by Kaneko [4]. For a ba.rgaining game with more than two players,
irrational numbers may be involved again in the Nash solution. However our theory
(PY(Lok), Bresr) suffices for the Nash bargaining solution and Theorem 6.A holds for it.
It is important to emphasize that this theory gives a unique bargaining outcome and
hence it satisfies always the solvability condition.

Theorem 6.A holds, too, in the case of the Nash bargaining solution with variable
threats. In the 2-person case, the pure ordered field theory (PH(Lof), @of) suffices and
it is also solvable. For a bargaining game with variable threats and more than two
players, (P{(Log), Drerr) is sufficient for Theorem 6.A. But the game may be unsolvable
(cf., Kaneko-Mao [9]).

1%Selten [25] himself used the definition in terms of a convergent sequence, and this invelves a second-
order language -~ it is not allowed in our first-order language. Nevertheless, it is possible to define perfect
equilibrinm in our first-order language.
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7. Ordered Field Theory with the Sturm Axiom

The real closed field theory, (P¥(Log), ®retr), With real algebraic numbers fulfills the
desiderata discussed in Section 5, and works for purposes other than the specific ex-
istence of 2 Nash equilibrium, as stated in Subsection 6.2. It includes, however, one
slightly nonconstructive axiom — Real-Closedness. In fact, without this axiom, Axiom
RT could not work to détermine the real algebraic numbers. Hence we can ask the ques-
tion of whether we have a purely constructive theory which consists only of the axioms
for the four arithmetic operations and of ones determining the real algebraic numbers.
In this section, we construct such a theory, (P{(Lof), Pofst), Which is properly weaker
than (P!(Log), Bres), but it suffices for the specific existence of a Nash equilibrium,
though it cannot be applied to some refinement concepts.

We will adopt the Sturm method to determine the real algebraic numbers instead of
Axiom RT. In Subsection 6.1, we will prepare such algebraic notions in nonformalized
mathematics, and then formulate our new theory, (Pf{(Log), ®osst), in Subsection 6.2.

7.1. Some Algebraic Notions

Given polynomial f(z) = 2™ + bp_13™ 1 + -+ byz + by (f € P(m),m = 1,...), we
define the Sturm sequence fo(z) = f(z), fi(z), oy J2,(2) By

f(e) = fi(z) = ma™ 1 4+ (m = 1)bp_12™ 2 + . - 4 by;
fe-1(z) = @ {z) fi(2) — fegr(z) fork=1,..,£;—1; and (7.1)

fry—1(z) = qe,(2) fe, (),

where each — fry1(x) is obtained by the Euclid algorithm from fi—1(z) and fi(z), i.e.,
gk() is the quotient and — f,.1(z) is the remainder when polynomial fr—1(z) is divided
by polynomial fi(z) (cf., van der Waerden [30], Section 68). We denote the number of
changes in signs in the Sturm sequence of (7.2) at a real number a by vs(e) :

fola), fu(@), s, fr,(a), ‘ (7.2)

where if some of these numbers are zero, we count the number of changes in signs
ignoring 0’s. It is known as Sturm’s theorem (cf., van der Waerden [30], Section 68) that
for any numbers &) and oz with ey < ag, if f(o1) # 0 and f(a) # 0, the numbers
of real roots of f(z) = 0 between ey and e, is given as vs(c1) — vs(az). The total
number of real roots of f(x) = 0 is given by choosing a; and a; large enough, which
are called bounds for roots. One bound is given as My = max(|bm-1/,..-,|bo]) + 1, i.e.,
—Mj; <z < My for all real z with f(z) = 0 (cf., van der Waerden [30], Section 68). It
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follows from Sturm’s theorem that the number of real roots of f(z) = 0 that are less
than o with f{e) # 0 is given as

ny(a) = vi(—M;) - vs(a). (7.3)

Therefore the fotal number ns of real roots of f(z) = 0 is given as ny = ny(M;) =
vy(—My)~vs{My)-Sturm’s theorem holds for any real closed field (cf., van der Waerden
[30], Section 68).

It is important to notice that ny is calculated from each polynomial f € P(m),m =
1,... by the four arithmetic operations +, —,-, / on real numbers. Especially, when o is
rational, all of these notions can be calculated in the ordered field of rational numbers.

7.2. The Sturm Axiom

We adopt the same list of symbols Lo as in Section 6, but adopt axioms different from
Axiom RT to determine the real algebraic numbers. Specifically, we formulate Sturm’s
method as an axiom (schema) instead of proving Sturm’s theorem from some other
axioms.

Let f € P(m),m = 1,.. The Sturm sequence fy(z),..., fr,(z) is described as
fo(a), ..., fe,(a) in our formalized language, where a is a free variable. Then “the change
in signs in the Sturm sequence fo(a), ..., fz,(a) occurs at f,, (a),..., £, (2)” is described as

423 (8 (@)" Farsa (@) < O) A (AZE ™" £, (0) £y, 44(a) 2 0))
(7.4)
Li—s
A (AL £4(0)  fie(e) 2 0)
where f,, is always fixed to be f;. Since we add -f(a) = 0 later, we can start with
f;, in the first parentheses of (7.4). We denote this formula by [fy, (a), ..., fs; ()]. Then

we translate “ve(a) = k7 (k < £4), i.e., “the number of changes in signs in the Sturm
sequence at o is k7, into our formalized language by

VAlfs (), s (@) i 0< sy < oo o< s 65}, (7.5)

The expression [vs(a) = k] denotes this formulaif ¥ < £; and 0 = 1 if k > £;.
The following formulae correspond to “ny(a) = k" and “vs(a) — vs(8) = 17 :

V{los(-Mg) =7 +EAlvs(a) = 7] : 7 = 0,1,...,m}; (7.6)

VA{lvi(e) =k + | Alvs(b) = k] : £ = 0,1,...,m}, (7.7)

where f € P(m) and M; is the rational numeral corresponding to the bound My given
in Subsection 7.1. We denote these formulae by {ns(a) = k] and [v;(e) — vs(b) = 1].
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We also denote V,¢i[ns(a) = 7] and VZi[ns(a) = 1] by [ns(a) < &) and [n;(a} > &],
respectively. *

If we plug a rational numeral r with $., Fo =f (r) = 0 to the free variable ¢ in
[v(a) = K], it follows from Lemma 2.4 and (2.2) that ®of ko [vs(r) = k] if and only if
vs(r) = k, where r is the rational number corresponding to r. The latter statement is
evaluated in the ordered field, Q, of rational numbers. Similarly, we have,

Lemma 7.1. For any rational numbers r,# with f(r) # 0, f(+') # 0 and for the
corresponding rational numerals r, r’,
(1): @of ko [ns(r) = k] if and only if ny(r) = k;
(2): Bor o [ns(r) < K] if and only if ny(r) < k;
(8): @otbo [vf(r) — vp(r’) = 1] if and only if v;(r) — vs(r') = 1.

Now we can formulate the Sturm axiom: for any f € Uocmew £(m),

(Sturm):(1): for k =1, ...,ny, _

flef) =0 AV (-ﬂf(x) =0D (([nf(a:) <klDz<el)Aniz)2 k] Dz > e{))) ;
and for k = ny 4+ 1,...,m, e,{ = 0;
(2): for any rational numerals ry,r,,

Va¥y(~£(r1) = 0 A~E(rs) = 0 Alvg(rs) — vp(rz) = A
flz)=0Af(y)=0A(r1 <z < rg)A(rl <z <ry)dzT=y).

Sturm (1) means that for any k = 1,...,n4, symbol e{ is a roof of f(z) = 0 and is
located in the k-th position of the roots of f(z) = 0, that e{ is fixed to be 0 if k > ny.
Sturm (2) means that the root located in the k-th position is unique whenever it exists.
Lemma 7.1 guarantees that the instances of Sturm (2) are meaningful under the ordered
field axioms ®o¢. Hence Sturm (1) and (2) determine the k-th root to be ef under &
We denote the union of &o¢ and the set of all instances of Sturm (1) and (2) by Bog:,
and call (P¥(Log), Dosst) the ordered field theory with the Sturm aziom.

The theory (PH(Log), ®otst) is properly weaker than (Pf(Log), ®res), since every
instance of Sturm is provable in (P!{Log), ®rerr) but conversely since no instance of
Real-Closedness is provable in (P{(Logr), Posst). The structures (A; -+, —, X,/ ;>3 ) and
(Ri+,~, %,/ ; 2; ) are models of (PHLof:), Bosst) as well as of (PH{Log), ®rere). How-
ever, we can construct some models of (Pi(L,), ®ogst) in which no instance of Real-
Closedness is true. )

For the new theory (P!(Log), Poist), the following form of decidability holds. Since
the proof of this theorem needs proof-theoretic as well as model-theoretic arguments,
we leave its proof to a discussion paper (Kaneko [8]).
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Theorem 7.2 (Decidability for (P{(Log), Bosst)). Let A be a universal or existential
(i-e., it is expressed as Vz;..V2, B(21, ..., Tm) or Iz1...32, B(21, ..., ) With no more
quantifiers) closed formula in PH(Log). Then Bogst Fo A or Boge Fo —A.

Theorem 7.2 states decidability only for universal or existential closed formulae. In
this sense, Theorem 7.2 is weaker than the corresponding theorem (Theorem 6.2) for
(P Lot ), Bretr). Nevertheless, this theorem is sufficient for the consideration of the mere
and specific existence of a Nash equilibrium. For example, it follows from Theorem 7.2
and the soundness theorem for classical logic that

Bogss o 3T Nashy(T), (7.8)

since 37 Nashg(Z') is true in the model (A;+,—, %,/ ;>:%). Then the question is |
whether this implies the existence of a profile € of algebraic numerals such that &g Fo

Nashg(€). We have the affirmative answer to this question using Theorem 7.2, whose
proof is essentially the same as the proof of Theorem 6.3.

Theorem 7.3 (Term-Existence for (P{Log), Potst))- Let 3z1...3z,A(21, ..., Zm) be an
existential closed formula in P{(Log). Then if @yt Fo Jz1...3z,A(z1, ..., %m), then there
are algebraic numerals ey, ...,en such that ®os Fo Aey, ..., en).

Once these are proved, we obtain the result parallel to Theorem 6.A.
Theorem 7.A. Let £ be Log. Let g be any finite game. Then the following hold:
(1): C(Botut) o T C(Nashg(F));

(2): there is a profile € of algebraic numerals such that @z Fo Na.shg(?).

Thus, as far as the mere and specific existence of a Nash equilibrium is concerned,
the ordered field theory, (PY(Lot:), Pofst), With the Sturm axiom fulfills all the desiderata
discussed in Section 5. Hence the four arithmetic operations together with the axioms
determining the real algebraic numbers suffices for our purpose of the consideration of
the playability of a game.

Nevertheless, the theory (PY(Log), Potst) is, probably, insufficient for the consider-
ation of the specific existence for perfect equilibrium, since Seltens(?) itself involves
some quantifiers ~ Lemma 3.1 does not hold for Selteng(a’) and Theorem 7.2 is applied
to existential and universal formulae. On the other hand, (P!(Log), Dofst) suffices for
Nash’s bargaining theory.

8. Conclusion

We considered the problem of the playability of a finite game with mixed strategies.
The epistemic axiomatization of final decision predictions leads to the requirement that
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existence is obtained in closed terms. Closed terms form permissible computation units
in a mathematical theory. Each player can think of the game theory in an abstract
manner, but to play his game, he is required to obtain his prediction expressed in terms
of permissible computation units. In this sense, this specific existence is a language-
dependent, while abstract logical statements are language-independent as far as they
are expressed as formulae and appropriate axioms are given. Then Theorem 4.A stated
that if some axioms are properly specified to determine computational units, then any
other additional mathematical axioms are superfluous. From this result, the general
version of the undecidability of Kaneko-Nagashima [9] was obtained. In Section 5, then
we discussed the computations involved in playing a game, and provided the desiderata
for our mathematical theory.

In Sections 6 and 7, we gave two theories satisfying the desiderata. The real closed
field theory, (P¥(Logr), Brer), With real algebraic numbers given in Section 6 is complete
- Theorem 6.2 ~, and works for our purpose as well as for the other purposes such as the
consideration of refinements. The ordered field theory (P(Lof), ®osst) With the Sturm
axiom given in Section 7 is weaker than (PY(Log ), ®rere), but works for the consideration
of Nash equilibrium. In both theories, the undecidability of Kaneko-Nagashima [12]
is completely removed. Although the construction of the latter is more complicated,
the second is purely constructive in the semse that it allows only the four arithmetic
operations and the axioms determining real algebraic numbers.

Overall, our answer to the question of the playability of a game fulfills the desider-
ata discussed in Section 5. In this sense, our answer may be regarded as affirmative.
Nevertheless, if we look at the details of our constructions of the theories, we would find
that our theories may require tremendous numbers of steps for calculations involved.
Returning to the epistemic consideration of a game, these calculations are required for
each player. From this point of view, our answer should be said to be afirmative under
no constraints on complexities of calculations. To have a better understanding of our
problem, we would need more theoretical developments on complexities of logical and
mathematical calculations. This remains open.

Appendix

Proof of Lemma 2.4. First, we assign 2 rational number 7(t) to every closed term
¢ by induction on the structure of a term: i) 7(0) = 0 and 7(1) = 1; and if rational
numbers 7(?1) and 7(tz) are already assigned to t; and 22, then 7(2; +12) = n(t1) +n(tz),
n(ty—t2) = n(t1) ~n(t2), n(t1-t2) = n(t1) X n(t2), and n(t1/t2) = n(t1)/n(t2) if n(tz) # 0,
and 7(t1/%2) = 0 if n(t;) = 0.

Second, we will show, by induction on the structure of a term, that for any integer
m > 0 and k, if 7(t) = k/m, then & Fq ¢t = [k/m], which is Lemma 2.4.(1). For
0 and 1, we have @5 ko 0 = [0/m] and 34 Fo 1 = {1/1]. Consider a term t; + t
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with n(t1 + %2) = k/m (k/m are irreducible). We make the induction hypothesis that

Af n(t1) = ki/ma and g(ts) = ka/my (my,ma > 0 and ky/my, kg/m; are irreducible),
then @of Fo t1 = [k1/my] and o Fo 2 = [k2/ms3). It follows from this hypothesis
that ot o ¢y + 22 = [k1/my] + [k2/ma] = [kim2 + kamy]/[mimg). From this, we have
Bof Fo 11 + 12 = [k]/[m] if k/m = n(ts + t2) = 9(t1) + n(t2) = (kyma + kemy )/mymy
(k/m is mutually irreducible).

In the cases of the other function symbols —, - and /s we can prove the assertion in
similar manners.

From the above result, we have ®of Fo 83 — t3 = [k])/[m] if 5(t; — t2) = k/m for
integers k and m > 0. Thus ¥ > 0 implies &o ko [k]/[m] > 0, and k < 0 implies
Bof o ~[k]/[m] > 0. This is equivalent to that n(¢;) > n(t;) implies $of o £; > 22, and
'r)(tl) < 17(':‘,2) implies ®4¢ kg "l(tl > ‘tg). Thus ®or Fo 81 = 13 or @5 Fo —l(tl > t2). This
is the second assertion. O
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