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Abstract  In a well-known asset selling problem [4] as the optimal stopping problem,
conventionally, & buyer has been assumed to offere a buying price. In this paper, contrary,
a seller is assumed to offer a selling price.

1 Introduction

Suppose that there exist some homogeneous items that are to be sold out by a given deadline.
If we progress with a contingency that those items remaining unsold at the deadline will be
accepted by a dealer who is willing to buy all of them. The selier desires naturally enough
to obtain as large a total revenue as possible, so he will try to find other buyers by paying
a search cost. In this situation we ask ourselves, what is the best selling policy to maximize
the total expected revenue 7 This type of problem has been investigated over the years
using different models of optimal stopping problems [1-12]. In all of them, the selling price
is assumed to be that proposed by a buyer rather than a seller. In our paper we assume
that the selling price is proposed by the seller.

A typical example of the problem is the following housing sale problem. Suppose that a
real estate agent has a deadline to sell a certain number of houses by a certain date and
the price is offered by the agent after a buyer has been found. The seller has by this time
incurred some cost, say in advertising, for example. If some houses remain unsold at the
deadline, the seller will sell all of them at a contracted price with the dealer. In this case,
if the agent proposed too higher a price, the buyers will of course refuse while if too low
a price is offered, the revenue will be so small as to render the deal useless. This problem
of formulating a selling policy to maximize the total expected present discounted revenue
by taking the number of unsold units and remaining periods of time into account, is the
problem under consideration.

Other pricing problems such as in airline seat tickets with a fixed departure date, per-
ishable items remaining unsold, and ecomomic value deteriorating products, say personal
computers, fashionable clothes and so on carry with them, similar problems. The purpose
of this paper is to provide a general model for such problems and examine the properties of
the optimal decision policy.

2 Model

Consider the following discrete time sequential stochastic decision process with a finite
planning horizon. First, for convenience, let points of time be numbered backward starting
from the final point of time of the planning horizon time, 0, as 0, 1, and so on. Let an
interval between two successive points of time, say time £ and £ — 1, be called the period .



Suppose there exist a certain number of items to be sold within a given planning horizon.
Assume that if a fixed cost ¢ > 0 (search cost) is paid at the beginning of a period, a buyer
can be found at the next point in time. Assume that each buyer buys no more than one
item. Let w denote the maximum permissible buying price of a buyer; that is, the buyer is
willing to buy an item if and only if the selling price offered for the item is lower or equal
to w. Here, let w be a random variable having a known continuous distribution function
F(w) with a finite expectation p. Let F'(w) be strictly increasing for @ < w < b and assume
that for a given a and b such that 0 < a < b < 00, F(w) = 0 for w < a, 0 < Fw) < 1 for
a <w<b,and F(w) =1 for b < w. Then, the probability that a buyer will buy the item,
provided that a price z is obtained, can be expressed as

plz) = 1—F(z). (2.1)

Here, p(z) =1forz <a,0 < p(z) <1lfora <z < b, and p(z) = 0 for b < z. If ¢ items
remain unsold at time 0 (the deadline), they can be disposed of at a price «(z), which is
nondecreasing and concave in ¢ with @(0) = 0. Let

Aali) = af) —a(i—1) <b, i>1. (2.2)

Furthermore, let 8 € (0, 1] be a per-period discount factor. Finally, we assume

mxaxp(m)m >c (2.3)

which is a realistic assumption implying that the maximum expected revenue from dealing
with a buyer is larger than the search cost paid.

The objective here is to find the optimal decision rule maximizing the total expected
present discounted net profit over the planning horizon, the expectation of the total expected
present discounted value of revenues obtained at each point in time minus the total expected
present discounted value of search costs paid.

The decision policy of this model consists of the following two rules: The search rule
prescribing whether or not to search for a buyer at the beginning of every period and the
pricing rule prescribing how much should be proposed to a buyer when found.

3 Preliminaries
In this section we introduce the two functions, defined below, which will be used in the
subsequent sections. For any real number v and g8 € (0,1) let us define
T(v) = maxp(z)(z — v), (3.1)
K(v) = Bmax{T(v) —¢,0} — (1 — B)v. (3.2)

Let z(v} denote the smallest = attaining the maximum T'(r), and let v* and h* be the
solutions of the equations, respectively, T'(v) — ¢ =0 and K(v) = 0. The unique existences



of v* and A* will be proved in the lemmas below.

Lemma 3.1  we have

(a) a <z(v) for dl v,

(b) 1. If v < b, then T(v}) >0 and v < z(v) < b,
2. if v 2 b, then T(v) = 0 and z(v) = b,

(¢) 1. T(v) is nonincreasing in v,

2. T'(v) is strictly decreasing for v < b,

3. T(v} + v is nondecreasing in v,

4. T(v) + v is strictly increasing in v > q,

(d) z(v) is nondecreasing in v,

(e} If 11 < o, then max{T(11) — ¢,0} — max{T(vn) —c,0} < vp — vy,

(f) If B <1, K(v) is strictly decreasing in v.

Proor (a) Clearly we have p(z){z —v) = z — v for 0 < z < a, which is strictly increasing
in z. Hence, it must be a < z(v).

(bl) If v < &, then p(z)(z —v) < 0for z < v, p(z)(z —v) >0 forv < z < b, and
plz){(z —v) =0for b < z, hence T(v) > 0 and v < z(v) < b.

(b2} If v > b, then p{z){z — v} < 0 for z < b and p(z}(z —v) = 0 for z > b, hence
T(v) =0 and z(v) = b.

(e1) Immediate from the fact that p(z)(z — v) is nonincreasing in v for all z.

(e2) If ' < v < b, then p(z(r)) > 0 due to z(v} < b from (bl). Hence we have

T(v)

plz())z(v) — plz(v))v
< p(

z(v))z(v) — plz(@))V
pz@)(z(v) —v) <T@).

(¢3) Immediate from the fact that p(z)(z—v)-+v (= p(z)z+ (1 —p(z))v) is nondecreasing
in v for all .
(cd) If a < v < 1/, then p(z(r)) < 1 due to z(v) > a from (b). Hence we have

Tw)+v = ple@) @) —v) +v
= p(z(v})z(v) + (1 — plz())v
< ple())z(v) + (1 - pla()))
= pl@)(z) - )+ < T )+ .
(d) For any £ > 0 we have
T(v + ) = maxpla) (@ — (v + £)

= plz(v +§))(z(v +£) — (v +¢))
= plz(v + )z + &) —v) —pla(v +£))
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<T(v) —plz(v +£)§

= plz())(=(v) —v) — pla(v +£))§

= plz())(2(v) — (v + §) + £(p(z()) — p(z(v +£)))

ST+ 8) + &) —pl+£)),
from which we have 0 < p(z{v)) — p(z(v + £)), that is, p(z(v)) > plz(v -+ §)), therefore
z(v) < z(v+€) dueto a < z(v) < band a < z{v + £) < b from (a) and (b) and the fact
that p(zx) is strictly decreasing on a <z < b.

(e) Suppose v < va. Then, we have T(1) —T(ve) < 1a—1y due to T(v1) +vy < T(vg) + 15
from (c3). From this and by using the general formula max{a;,b; } —max{as,b:} < max{a,—
ag, by — by}, it follows that max{T (1) —c, 0} —max{T(re) —c,0} < max{T () —T(r2),0} =
T(1) — T(s) < v — 1y due to T(1n) = T(vs) from (cl).

(f) Clearly from (c1). m
Lemma 3. 2
(a) v* uniquely exists where 0 < v* < b.

(b) If B <1, h* uniquely exists where 0 < h* < v*,

Proor (a) T'(v) is strictly decreasing on v < b from Lemma 3.1 (c2) with T(b) — ¢ =
—¢ < 0 from Lemma 3. 1 (b2) and T(0) — ¢ = max, p(z)z > 0 from the assumption Eq. (2.3}
. Hence the statement holds true.

(b} K (v) is strictly decreasing in v for § < 1 from Lemma 3. 1 (f} with K(0) = Smax{T(0)—
c,0} = Bmax,p(z)z > 0 and K(v*) = —(1 — f)v* from (a). Hence, the assertion holds
true. m

4 Optimal Equation

Let v,(¢) be the maximum of the total expected present discounted values of the revenue
obtained at each point in time minus the total expected present discounted value of search
costs starting from time ¢ with ¢ unsold items. Then, clearly v(z) = a(3) for all £, v,(0) =0
forallt,and foré >1and t>1

S max{ple) @+ fua(i—1) — G — 1))
wli) =max]  +(1—p@)(Bus6) —ih)} o @
N: Bu_1(@) —ih

where S and N means, respectively, “Search” and “Don’t search” . Now, let

z(8) = Blwl)) —w(i—1), t20,¢21 (4.2)
Then, Eq. (4.1} can be expressed as follows:
(i) = Pu_1(2) —th + max{T(z_1(f) —h) —¢,0}, i2>1, t=>1, (4.3)
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For convenience of later discussions, we define 2(0) = h - b for t > 0, so max{T'(z_1(0) —
h) —c,0} = 0 for t > 1 from Lemma 3.1 (b2). Therefore, by definition it follows that
Eq. (4.3) holds true also for ¢ = 0. From Egs. (4.2) and (4.3) we have

z(1) = Blze-1(8) — B) + B(max{(T(2-1(z) — k) — c,0}
—max{T(z_1({ —1)~h) ~¢,0}), 221, t>1, (4.4)

5 Optimal Price

The optimal pricing for any given ¢ > 0 and ¢ > 1 is given by the smallest z attaining
the maximum T'(2,_;(2) — k), denoted by z,(¢) = z(2,_1(z) — k). It is generally conjectured
that the optimal prices are nondecreasing with the time remaining and nonincreasing with
the number of the items remaining. The answers turn out to be affirmative only for the
latter, in other words, the optimal price is not always nondecreasin in . With the aid of
the following lemma we will show the statements.

Lemma 5.1 We have

(a) z(d) <b for allt and <,

(b) 2:(Z) is nonincreasing in ¢ for all t,

(c) Suppose § < 1. Then
1. if a(1l) > A*/B and Aa(i) > BAa(i — 1) for ¢ > 2 where Aai) = a(z) — a(i — 1),
then 2(z) is nonincreasing in ¢ for all ¢,
2. if h=0 and Ba(l) < h*, then 2(1) is nondecreasing in ¢,

(d) Ifeither h=0and 8 =1 or “h=0and a(i) = 0" for all 7, then 2(i) is nondecreasing
intfori>1.

PROOF (a) It is clear from Eq. (4.2) that z(f) = BAa(f) < b from the assumption.
Suppose z_1(%) < b, since max{T(2—1(¢ ~1)) —¢,0} > 0 for Z > 1, from Eq. (4.4) fori>1
we have

z(t) < B(2-1(8} — b+ max{T(2:-1() — k) — ¢,0})
= fmax{T(z1(i) — k) + z2-1(8) ~ h — ¢, 2.1 (3) — h}
< Pmax{b—c,b}=pb<b
due to T(2_1(2) — h) + 2-1(2) — h < T(b) + b = b from Lemma 3. 1 (c4).
(b) The assertion for ¢ = 0 is clear from the assumption that SAa(Z) (= 2(4)) is nonin-

creasing in 4. Suppose the assertion holds true for t — 1. Then, z_,(%) is nonincreasing in 4.
From Eq. (4.4) we have

z(8) — (i —1)
= B(%-1(5) — z2-1(i — 1))



+ B(mex{T(z-1(i) — k) — ¢,0} — max{T(z-1(i — 1) — h) — ¢,0})
+ B(max{T(z_1(z — 2} — k) — ¢,0} —max{T(2,_,(i — 1} — k) — ¢,0}).

Here, note that from Lemma 3. 1 (&)
max{T(z_1() — h) —¢,0} —max{T(z_1({ — 1) —h) —¢,0} < 21 (i — 1) — z0.1(8), 72>2,
and from Lemma 3. 1 (cl)

max{T(z1(f — 2) — h) — ¢,0} — max{T(z (- 1) — k) —¢,0}

{: —max{T(z-1(1) —h) —¢,0} <0, =2,
<0, ;> 3.

Consequently it follows that for 7 > 2

z(0) — 2(i — 1) < B21(8)) — 2102 — 1)) + Bl2e—1(i — 1) — 2-1(d)) = 0.
(cl) By Eq. (4.4) and Lemma 3.1 (¢3), we have

z1(1) = B(zo(1) — A) + fmax{T(z0(1) — k) —¢,0}
— pmax{T(z0(1) — B) + 2(1) — h—c, (1) — B}
< Bmax{T(zo(1)) + 20(1) — ¢, 20(1) }
= Pfmax{T(2(1)) — ¢,0} — (1 — Bzo(1) -+ z0(1)
= K (20(1)) + 20(1)
< (1)
since K(z(1)) = K{(Ba(l)) < K(h*) = 0 from Lemma 3.1 {f). For i > 2, since from
Lemma 3. 1 (e), we have
max{T(29(z}) — h) — ¢,0} — max{T(2p(¢ — 1) — h) — c,0} < 25(i —1) — z(5),

it follows that

21(1) < Bz0(z) — B) + Blzo(E — 1) — 20(2)) = Bl20(s — 1) — h) < z0(3)
since 2(5 — 1) = BAa(i —1) < BAa(i) = B 12(z). Assume that z,_1(i) < z_»(i) fori > 1.
From Eq. (4.4) we have
z4(8) — z-1(2) = B(z-1(2) — 2_2(8))
+ B(max{T(z_1(é)) — ¢, 0} — max{T(z_2(i)) — c,0})
+ Blmax{T (220 — 1)) — ¢, 0} — max{T(z-1(i — 1)) — ¢, 0}).

From Lemma 3.1 (e) we have



max{T(z-1(2)) ~ ¢,0} - max{T'(z-2()) — ,0} < z2(d) — 2-1(), 21,
and from Lemma. 3. 1 {cl)
—0 i=1,
<0, i>2.

Hence, it follows that 2(i) — 21 (2) < B(2-1(2) — 2—2(2)) + B(2:_2(2) — z_1{¢)) = 0. Thus
Zt(?;) < zt—l(i) for ¢ 2 1.
(c2} From Eq. (4.4) we have

max{T'(z.2(i — 1)) — ¢,0} — max{T(2_1( — 1)) — ¢, 0} {

21(1) = Bz(1) + fmax{T(20(1)) — ¢, 0} = K{(20(1)) + 20(1) = 20(1)

since K(20(1)) = K(Ba(1)) > K(h*) = 0 from Lemma 3.1 (f). Assume that z,_,(1) >
z2(1) for ¢ > 1, then from Eq. (4.4) we have

z(1) = 2_1(1) = B(2-1(1) — (1))
+ B(max{T(z-1(1)) — ¢,0} — max{T{z_2(1)) —¢,0})
> B(2-1(1) — z-2(1)) + B(z—-2(1) — 21(1)) =0

from Lemma 3. 1 (e).

(d) Suppose k. = 0 and 8 = 1. From Eq. (4.3) we have w{f) > v_ (i) for all £ and ¢
due to max{7T(2-1(¢)} —¢,0} > 0. Consequently, z(1} — z_1(1) = (1) — v;_1(1) > 0. For
i> 2, from Eq. (4.4) we have

z(8) — z1(2) = max{T(2-1(7)) — ¢,0} — max{T(z_1(i — 1)) —¢,0} > 0

from (b) and Lemma 3. 1 {c1). Hence 2,(z) > 2_1(%).
Suppose k = 0 and (i) = 0 for all i. Noting that z(f) = fAa(i) = 0. From Eq. (4.4) ,
and by Lemma 3.1 (c1) and (b} we have
‘ ) max{7T(z(1)) —¢,0} > 0 i=1,
1 =20 = { _ . .
max{T(z(#)) —c,0} —max{T(20(¢ — 1) —¢,0} >0 i>2.

Hence, 21(5) > 2p{¢} for all &. Assume that 2._1(f) > 2z.2(:) for ¢ > 1. Then from Eq. (4.3)
we have

z(1) — z-1(2)
= B(z-1(4) — z—2(7))
+B(max{T(z-1(3)) — ¢,0} — max{T'(2-2(i)) —,0})
+B(max{T (z2(i — 1)) — ¢,0} — max{T(z,1(i — 1)) — ¢,0}).

From Lemma 3. 1 (e) we have



max{T(z-1() — ¢, 0} — max{T(z-2()) — ¢,0} 2 2-9(5) — 2..1(4)

and from Lemma 3. 1 (c1) we have

max{T(z_2({ — 1)) — ¢,0} — max{T(2_1({ — 1}) — ¢,0} > 0.

Hence, it follows that

2(1) — 2-1(1) = B(2-1(8) — z-2(3)) + B(z1-2(d) — 2:-1(8)) = O,
50 z(2) > z1(). =

Theorem 5.1  We have

(a) a <z(é) < b for allt and i,

(b) z:(f) is nonincreasing in i for all t,

() If B <1, then
1. If Ba(l) = h* and Aa(Z) > BAcli — 1) for £ > 2, then z,(¢) is nonincreasing in t.
2. If h=0 and Ba(1) < h*, then z:(1) is nondecreasing in ¢.

(d) If either “A4=0and 8 = 1" or if “h = 0 and afi) = 0” for all 4, then z,(2) is
nondecreasing in ¢ for ¢ > 1.

PROOF The proofs below are based on the fact that the monotoncity of 2,_;(¢) in ¢ and ¢

is inherited to z,(¢) due to Lemma 3.1 (d). (2) is immediate from Lemma 3.1 (a), (b1) and

(b2), and (b), (¢} and (d) are immediate from, respectively, (b), (¢} and (d) of Lemma, 5. 1
|

From the above theorem we have the following corollaries.

Corollary 5.1  Suppose <1 and h =0. Then

(a) if Ba(l) > h*, then 2:(1) is nonincreasing in t, or else nondecreasing in t,
(b} if Ba(l) = h*, then (1) = z(a{1)) for all t.

Corollary 5.2  Suppose f < 1 and a(i) = af with o > 0. Then for any given i > 2,
(a) if Ba > h*, then z:(3) is nonincreasing in t,
(b) i B < h*, then x4(z) is not always nondecreasing in t.

As an example of Corollary 5. 2 (b) we shall consider the following case. Let a(i) == ia
where a > 0. Let F'(w) be a uniform distribution on [0, 1]. Since T'(v) = max (1 —z)(z—v),
we have (v} = 0.5(1 + v). Now 2(3) = Ba for £ > 1 and 21 () = fPa + S(max{T(Ba) —
¢,0} — max{T(Ba) — ¢,0}) = FPa for i > 2. Hence 2,(3) < 2z(z). Consequently, z1(i) =
z(z0(2)) > z(21(2)) = z2(¢) for ¢ > 2, implying that z;(£) is not always nondecreasing in ¢
fori>2. m

Theorem 5.2 As ¢ tends to oo, the optimal price z:(i) converges to z; = o(B(F* ' Aa —
Y2 Bh)) for t > 2 and z1 = w(BAc) where Aa = lim;_, Ac(z).
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PROOF By definition Aa(%) is nonincreasing in 4 and nonnegative, so Aa(i) converges to
a finite number. Now, we will show that z(z) is lower-bounded in ¢ and 2. It is clear zy(z) =
BAx(i) > —B32_o B7h. Assume that z;_4(i) > —BY 5L §h. Then, since max{T(z_1 (i) —
h) —¢,0} —max{T(z_1(f — 1) — h) — ¢,0} > 0 from Lemma 5. 1 (b) and Lemma 3. 1 {c1),
it follows that

z(t) = B(z-1() — k) = B(— ﬁZB"h h) = —ﬁZﬂ"h>—ﬁ/(1— p. (1)

n=0 n=0

Hence, 2(z) is lower bounded in ¢ and ¢. Combining this and the nonincreasity of z(z) in ¢
from Lemma 5. 1 (b), 2.(£) converges to a finite number. Let the limits of Aa() and 2(:) be
defined by Aca and 2, respectively. From Eq. (4.4) we have 2, == 8(z_, — h) for t > 1 and
zg = BAa. Note, by mductlon it follows that z, = B(8'Aa — 4% BR) for ¢ > 1, hence
7 = (BB 1Aa — T2 B7h)) for t > 2 and z; = 2(BAc). =

6 Optimal Search

In this section we will discuss the search rule to decide whether or not to search at the
beginning of every period. From Eq. (4.3) the optimal searching rule can be stated as
follows: If T(z.1(f) — h) — ¢ < 0, then it is optimal not to search, or else to search. Thus,
from Lemma 3. 1 (c1) this can be restated as follows: For any given 7 if z._1{¢) > v*, then
it is optimal not to search, or else to search.

Lemma 6.1

(a) If Aa(i) <v*/f for any given i, then 2(i) < v* for all .

(b) Ifh=0, B=1 and Ac(z) > v* for any given i, then z(i) > v* for all L.

(€ If B < 1, Aafs) > v*/B fori > 1 and Aa(i) > BAa(i — 1) fori > 2, then z(i)
converges, as t tends lo oo, to a finite number 2(f) < v* with 2(z2) > v*.

PRrROOF (a) Since 2(7) = fAa(Z) < v*, the assertion is clear for ¢ == 0. Assume that the
assertion holds for £ — 1. Then, we have 2,_1(f) — h < v* — h < v* for all . Thus, by
Lemma 3. 1 (¢3) and Eq. (4.4) , it follows that

z(1) < B(z-1()) — h+ max{T(z:-1(3) — k) — ¢,0})
= Pmax{z_1()) — b+ T(21(2) — h) — ¢, z-1(2) — h}
< Bmax{v’ + T(W") —c,v'} =v".
(b) It is clear from the fact that zy(¢) = Awe(Z) > v* and (%) is nondecreasing in t from
Lemma 5. 1 (d).
(c) It is clear that zp(¢) = BAa(i) > v* + h. Since 2(%) is lower bounded in ¢ and ¢ from

Eq. (5.1) and 2(7) is nonincreasing in ¢ for all ¢ from Lemma 5. 1 (b), it follows that 2(z)
converges to a finite number z(£) as ¢ tends to co. From Eq. (4.4) we have



2(7) = B(2(2) — b) + lmax{T(2(?) — h) — ¢,0} — max{T(z(i — 1) — k) — ¢, 0}).

Now, assume 2(z) > v*+ h (> 0), so z(§) —h > v* for £ > 1. Then, since max{T'(2(z) — k) —
¢, 0} = max{T'(z( — 1) — h) — ¢,0} = 0 from Lemmas 5. 1 (c1), we have z(3} = B(z(¢) — k).
Hence, 2(2) —h = —h/(1 — 8) — b < 0, which contradicts the assumption. Thus, it must be
zE) <v*+h  m

Theorem 6.1

(a) If a(f) <v*/f for a given i, then it is always optimal to search for the i.

(b) IfB=1, h=0 and Aa() > v* for a given i, then it is always optimal not to search
for the i.

() If B <1, Aa(z) > v* fori > 1 and Aa(i) > BAa(i — 1) fori > 2, then for a given i
there exists t(i) such that if t < {(2), then it is optimal not to search, or else to search.

ProoF (a) Clear from the fact that T'(z_1(f)) — ¢ > T(*) — ¢ = 0 due to z(i) < v* for
all £ from Lemma 6. 1 (a).

(b) Clear from the fact that T'(2—:(2)) —¢ < T(v*) — ¢ = 0 due to 2:() > v* for all £ from
Lemmea 6. 1 (b).

(¢) Since T(2(7)) —c < T(v*) — e = 0 from Lemma 6. 1 (c), it is optimal not to search at
t = 1. Since z(¥) < v* for any sufficiently large ¢ from Lemma 6. 1 (c), we have T(2(i)) —c >
T(v*}) —c = 0. From this and the fact that z(f) is nonincreasing in ¢ from Lemma 5. 1 (d1),
it follows that there exists ¢(¢) such that if ¢ < ¢(¢), then it is optimal not to search, or else
to search. =

7 Summary of Conclusion

For convenience, let us define the following two statements :
Si: “h=0and B8=1" or “h =0 and a(i) = 0 for all 5",
Sa: B <1, faf(l) > h*, and Aa(i) > fAa(i — 1) for i > 2.
Then, the conclusions that were obtained in the previous sections can be summerized as
follows :
(a) Suppose Aa(z) is nonincreasing in i (concave). Then

1. (%} is nonincreasing in £ for all ¢,

2. If 5 is true, then 2,(%) is nondecreasing in ¢ for all 2,

3. If S, is true, then 2(Z) is nonincreasing in ¢ for all 2,

4. If both &1 and S» are not ture, then nothing can be said as to the monotonicity of
z(%) in ¢. Indeed, we can demonostrate a case such that x:(2) is nonmonotonic in ¢
(Figuer 7.1).

(b) Suppose Aa(i) is nondecreasing in 7 (convex). In this case, nothing can be said as to
the monotonicity of z;(¢) in not only t but also 7. Indeed, we can demonostrate a case

such that z;(7) is nonmonotonic in ¢ and ¢ (Figuer 7.2).
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Now, in general, it can be conjectured that the optimal selling price =;(¢) is nondecreasing
with the remaining periods ¢ and nonincreasing with the number of remaining items on
hand. However, this does not always hold as above in (a3), (a4) and (b) (See. Figuer 7.1
and Figuer 7.2) .

Numerical examples: Let 8 = 0.97, ¢ = 0.02, and h = 0, and let F'(w) be union distribution
on [0, 1].

o Concave case: Let Aa(i) = Aa(i—1) —0.0025 with Aa(l) = 0.013. Figuer 7.1 shows that
2¢() is is not monotone in ¢.

0.85 ’-

=4 (10)

—

0.62

a.59 F

0.56

0.53

0.50

a 5 0 13 20 25 30 35 40 43 502

Figure 7.1: concave

o Convex case: Let Aa(i) = Aafi — 1) + 0.0025 with Ac(l) = 0.015. Figuer 7.2 in an
example shows that z;(z) is not monotone in ¢ and i.

0.85 0.85

0.80 z(10)

0.62

.75}
ook 0.59
0.85 ¢ o.56}
0.60}
z3p(i) 0.53 1
055
0.50 1 : 1 L M 1 N L L J i 0.50 N L 1 : L 1 1 i 1 N t
6 3 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 5O

Figure 7.2: convex

8 Some limitations and future work

In this paper we presented a basic model with some assumptions. However, in order to
make the model more realistic, it will be necessary to investigate the following variations:

1. The seller of the items can dispose of a part or all of the remaining items at a known
price ofz) at any point in time even before the deadline.

11



2. I'(w) depends on the search cost ¢ paid.
3. A buying and selling problem.
4. Game theory problems with negotiations between sellers and buyers.
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