No. 729

A New Extension of Caristi-Kirk's Fixed Point Theorem

by

Bao-Lin Guo

May 1997

A New Extension of Caristi-Kirk's Fixed Point Theorem

Bao-Lin Guo*

April 28th, 1997

Abstract

The important fixed point theorem for nonlinear mappings in metric spaces is given by Caristi and Kirk [9]. Kasahara [7] extend this theorem to a common fixed point theorem on collections of mappings. In this paper, we give a new extension of Caristi-Kirk's theorem. Our results contain some results of above and other authors.

1 Introduction

The important fixed point theorem for nonlinear mappings which need not be continuous in metric spaces is given by Caristi and Kirk(see [9] and [2]). We recall the theorem as follows:

Theorem 1 Let (X, d) be a complete metric space and $f: X \to X$ an arbitrary map. Suppose there exist a lower semicontinuous function ϕ mapping X into the set of the nonnegative real numbers such that

$$d(x, f(x)) \le \phi(x) - \phi(f(x))$$
 for each $x \in X$,

then f has a fixed point in X.

The advantage of Theorem 1 lies in the fact that it typically applies to non-continuous mappings. Its proof is an immediate adaptation of the proof of Theorem 2.1 of [2] (also see [4]). Their result sharpened a normal solvability result of Browder [1] and was applied to prove some general mapping theorems in metric and Banach spaces. After that Kasahara [7] extend this theorem to a common fixed point theorem on collections of mappings. On the other hand, Downing and Kirk [4] give a generalization of Theorem 1 with applications to nonlinear mapping theory. In this paper, to improve and unify the results of above authors, we give a new extension of Caristi-Kirk's theorem. Our results contain some results of above and other authors(see [3], [4], [7], [8] and [11]).

^{*}Institute of Policy and Planning Sciences University of Tsukuba, Tsukuba, Ibaraki 305, Japan.

2 Preliminaries

We denote the set of all positive integers, the of all nonnegative integers and the set of all nonnegative real numbers by N, ω and R_+ , respectively. We write $\hat{R}_+ = R_+ \cup \{\infty\}$. Let \mathcal{L} be a collection of subsets of the set $X^{\omega} \times X$. Now we give certain definitions(see [8] and [10]).

Definition 1 A pair (X,\mathcal{L}) is called a L-space if the following two conditions are satisfied:

- (a) $(\{x_n\}_{n\in\omega}, x) \in \mathcal{L} \text{ if } x_n = x \in X \text{ for all } n \in \omega;$
- (b) $(\{x_{n_i}\}_{i\in\omega}, x) \in \mathcal{L}$ if $(\{x_n\}_{n\in\omega}, x) \in \mathcal{L}$ with $\{x_{n_i}\}_{i\in\omega}$ is subsequence of $\{x_n\}_{n\in\omega}$.

The L-space (X,\mathcal{L}) is said to be separated if each sequence in X converges to at most one point of X. Let $d: X \times X \to \hat{\mathbb{R}}_+$ be a function. The L-space (X,\mathcal{L}) is said to be d-complete if each sequence $\{x_n\}_{n \in \omega} \in X$ with $\sum_{n=0}^{\infty} d(x_{n+1},x_n) < \infty$ converges to at least one point of X.

Definition 2 A nonnegative extended real valued function $d: X \times X \to \hat{\mathbf{R}}_+$ is called to a premetric metric on X if the following conditions are satisfied:

- (P1) d(x,x) = 0 for every $x \in X$;
- (P2) $d(x,y) \le d(x,z) + d(z,y)$ for every $x, y, z \in X$.

The pair (X, d) is called a premetric space. \Box

Definition 3 A sequence $\{x_n\}_{n\in\omega}$ in a premetric space (X,d) is called to be convergent to $x\in X$ if $d(x_n,x)\to 0$ as $n\to\infty$ and we write And (X,d) is called complete if each Cauchy sequence converges to at least one point of X.

We denote the subset of the form $(\{x_n\}_{n\in\omega}, x)$ with $x_n \stackrel{d}{\to} x$ as $n \to \infty$ by \mathcal{L}_d . If (X, d) is a premetric space, then it is obvious that (X, \mathcal{L}_d) is an L-space and that the completeness of (X, d) implies the completeness of (X, \mathcal{L}_d) . Note that a complete metric space is a complete premetric space.

Definition 4 A space X is called Kasahara space if it is a nonempty L-space (X, \mathcal{L}) which is d-complete for a premetric d in X such that the function $x \mapsto d(x, y)$ is lower semicontinuous for each $y \in X$ and d(x, y) = 0 implies x = y.

It is clear that a nonempty complete metric space is Kasahara space. In [7] and [8], Kasahara gives some fixed points on such type of spaces.

Definition 5 Let (X,d) and (Y,d') be Kasahara spaces. The map $g: X \to Y$ is called to closed if for any a net $\{x_{\alpha}\}_{{\alpha} \in {\Lambda}}$ in X, $x_{\alpha} \to x^*$ and $g(x_{\alpha}) \to y^*$ imply $g(x^*) = y^*$.

3 Main results

In this section, we give our main results as follows.

Theorem 2 Let \Im be a family of mappings of an ordered set (X, \preceq) into itself such that there exists a $p(x) \in \mathbb{N}$ for each $x \in X$ such that

$$x \leq f^{p(x)}(x)$$
 for each $f \in \Im$.

Suppose there exists an element $e \in X$ such that each chain C which contains e has a least upper bounded in C. Then there exists $x_0 \in X$ and $p(x_0) \in \mathbb{N}$ such that

$$f^{p(x_0)}(x_0) = x_0$$
 for each $f \in \Im$.

Proof. It is clear that there exists a maximal chain C in X containing e by Zorn's Lemma. Let x_0 be a upper bound of C in X. By the maximality of C, we have $x_0 \in C$. Then there is $p(x_0) \in \mathbb{N}$ such that

$$x_0 \leq f^{p(x_0)}(x_0)$$
 for each $f \in \Im$.

Since C is a maximal chain in X and x_0 maximal element in C, then

$$f^{p(x_0)}(x_0) \in C$$
 and $f^{p(x_0)}(x_0) \leq x_0$ for each $f \in \Im$.

Therefore

$$f^{p(x_0)}(x_0) = x_0$$
 for each $f \in \Im$.

The next theorem is the main result of this section. Now we use Theorem 2 to prove the theorem:

Theorem 3 Let (X,d) and (Y,d') be Kasahara spaces. The map $g: X \to Y$ is closed and \Im denotes a collection of selfmaps of X. Suppose there exist a lower semicontinuous function $\phi: g(X) \to \mathbf{R}_+$ and a constant c > 0 such that for each $f \in \Im$, the following two conditions are satisfied:

- (i) $\phi(g(x)) \neq \phi(g(f(x)))$ if $f(x) \neq x$;
- (ii) For each $x \in X$ there exists a $p(x) \in \mathbb{N}$ such that

(1)
$$\max\{d(x, f^{p(x)}(x)), cd'(g(x), g(f^{p(x)}(x)))\}$$
$$\leq \phi(g(x)) - \phi(g(f(x))).$$

Then 3 has a common fixed point.

Proof. First we declare that there exists $p(x) \in \mathbb{N}$ for each $x \in X$ such that

(2)
$$\phi(g(f^{p(x)}(x))) \le \phi(g(f(x))) \text{ for each } f \in \Im.$$

In fact, the following inequality is always true for each $x \in X$ and $f \in \Im$ by above condition (ii),

$$\phi(g(f(x))) \le \phi(g(x)).$$

For any $n \in \mathbb{N}$ and $f \in \mathfrak{I}$, we replace to x by $f^{n-1}(x)$ in the above inequality, then

$$\phi(g(f^n(x))) \le \phi(g(f^{n-1}(x))).$$

We repeat the p(x) - 1 time to using the inequality, then obtain (2). And using (1) and (2), we have

(3)
$$\max\{d(x, f^{p(x)}(x)), cd'(gx, g(f^{p(x)}(x)))\}$$

$$\leq \phi(g(x)) - \phi(g(f(x)))$$

$$\leq \phi(g(x)) - \phi(g(f^{p(x)}(x))).$$

Next we define the relation \leq_{ϕ} on X as follows: For any $x,y\in X$,

$$x \leq_{\phi} y \iff \max\{d(x,y), cd'(g(x), g(y))\} \leq \phi(g(x)) - \phi(g(y)).$$

It is easy to see that \leq_{ϕ} is a order on X. According to (3), for each $x \in X$, there exists $p(x) \in \mathbb{N}$ such that

$$x \preceq_{\phi} f^{p(x)}(x)$$
 for any $f \in \Im$.

Now we fixed a $e \in X$ and assume that $C = \{x_{\alpha} \mid \alpha \in \Lambda\}$ is a chain which containing e in (X, \preceq_{ϕ}) , where Λ is a totally ordered set such that

$$\alpha' \succeq \alpha \iff x_{\alpha} \preceq_{\phi} x_{\alpha'}.$$

Then the set $\{\phi(g(x_{\alpha})) \mid \alpha \in \Lambda\}$ is a decreasing net, that is,

$$\phi(g(x_{\alpha})) \leq \phi(g(x_{\alpha'}))$$
 if $\alpha' \succeq \alpha$.

Thus there is nonnegative real number

$$\beta = \inf\{\phi(g(x_{\alpha})) \mid \alpha \in \Lambda\}.$$

For arbitrary $\varepsilon > 0$, there exists $\alpha_0 \in \Lambda$ such that

$$0 \le \beta \le \phi(g(x_{\alpha})) \le \beta + \varepsilon$$
 for each $\alpha \succeq \alpha_0$.

For any $\alpha' \succeq \alpha \succeq \alpha_0$, we have

$$x_{\alpha} \preceq_{\phi} x'_{\alpha} \Rightarrow \phi(g(x'_{\alpha})) \leq \phi(g(x_{\alpha})),$$

and

(4)
$$\max\{d(x_{\alpha'}, x_{\alpha}), cd'(g(x_{\alpha'}), g(x_{\alpha}))\}$$

$$\leq \phi(g(x_{\alpha})) - \phi(g(x_{\alpha'}))$$

$$\leq \beta + \varepsilon - \beta = \varepsilon.$$

Thus $\{x_{\alpha} \mid \alpha \in \Lambda\}$ and $\{g(x_{\alpha}) \mid \alpha \in \Lambda\}$ are Cauchy nets in X and Y, respectively. Hence there exist $x^* \in X$ and $y^* \in Y$ such that

$$\lim_{\alpha} x_{\alpha} = x^*$$
 and $\lim_{\alpha} g(x_{\alpha}) = y^*$,

whence $g(x^*) = y^*$ because g is closed.

Since ϕ is lower semicontinuous, we have

(5)
$$\phi(g(x^*)) = \phi(\lim_{\alpha} g(x_{\alpha}) \le \lim_{\alpha} \phi(g(x_{\alpha})) \le \beta + \varepsilon.$$

Put $\lim_{\alpha'\to\infty}$ at both ends of first inequality of (4) and use (5), we obtain

$$\max\{d(x^*, x_{\alpha}), cd'(g(x^*), g(x_{\alpha}))\} \le \phi(g(x_{\alpha})) - \phi(g(x^*)).$$

Therefore $x_{\alpha} \leq_{\phi} x^*$ for any $\alpha \in \Lambda$. That is, C has an upper bound in X.

Since ϕ is lower semicontinuous, we have

(5)
$$\phi(g(x^*)) = \phi(\lim_{\alpha} g(x_{\alpha}) \le \lim_{\alpha} \phi(g(x_{\alpha})) \le \beta + \varepsilon.$$

Put $\lim_{\alpha'\to\infty}$ at both ends of first inequality of (4) and use (5), we obtain

$$\max\{d(x^*, x_{\alpha}), cd'(g(x^*), g(x_{\alpha}))\} \le \phi(g(x_{\alpha})) - \phi(g(x^*)).$$

Therefore $x_{\alpha} \leq_{\phi} x^*$ for any $\alpha \in \Lambda$. That is, C has an upper bound in X.

By Theorem 2, there exist $\hat{x} \in X$ and $p(\hat{x}) \in \mathbb{N}$ such that

$$f^{p(\hat{x})}(\hat{x}) = \hat{x}$$
 for each $f \in \Im$.

Therefore

(6)
$$\phi(g(\hat{x})) = \phi(g(f^{p(\hat{x})}(\hat{x})))$$
 for each $f \in \Im$.

Finally we show that \hat{x} is a common fixed point of the collection \Im . On the contrary, assume that there exists $\tilde{f} \in \Im$ such that $\tilde{f}(\hat{x}) \neq \hat{x}$. According to (3) and (6), we have

$$0 \le \phi(g(\hat{x})) - \phi(g(\tilde{f}(\hat{x}))) \le \phi(g(\hat{x})) - \phi(g(\tilde{f}^{p(\hat{x})}(\hat{x}))) \le 0,$$

i. e.,
$$\phi(g(\hat{x})) = \phi(g(\tilde{f}(\hat{x})))$$
.

This is a contradiction by the condition (i) of Theorem 3. The proof is completed.

Remark 1. In above Theorem, if we let c=1 and p(x)=1 for each $x \in X$, then the main result of Park [10] is obtained as the direct corollary. Since Kasahara's [7] Theorem is a special case of the theorem of Park [10], our results also contain Kasahara's result.

Remark 2. If we consider the case that X and Y are complete metric spaces and \Im only contains one element f in Theorem 2. Then the main theorem of Guo [5] is obtained immediately. And the theorem of Downing and Kirk [4] is obtained also, because their main Theorem is the special case of Guo's results.

References

- [1] F. E Browder. Normal solvability for nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc., 77(1971), 73-77.
- [2] J. Caristi. Fixed point theorems for mappings inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
- [3] J. Caristi and W. A. Kirk. Geometric fixed point theory and inwardness conditions, Proc. Conf. on Geometry of Metric and Linear Spaces (Michigan, (1974), Lecture Notes in Mathematics, Springer-Verlag, 490(1975), 75-83.
- [4] D. Downing and W. A. Kirk. A Generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math., 69(1977), 339-346.
- [5] B. L. Guo. A remark on a fixed point theorem of Caristi, J. Northeast Normal Univ., 1(1987), 17-19.
- [6] B L Guo. New common fixed point theorem for commutating map pair with the sequence of mappings on a metric space, Math. Japonica, 33(1988), 361-374.
- [7] S Kasahara. On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes, 3(1975), 229-232.
- [8] S Kasahara. On some generalizations of the Banach contraction theorem, Publ. Res. Inst. Math. Sci., 12(1976), 427-437.
- [9] W. A. Kirk and J. Caristi. *Mapping theorems in metric and Banach spaces*, Bull. de l'Academie Polonaise des Sciences, 23(1975), 891-894.
- [10] S. Park. On Kasahara's extension of the Caristi-Kirk fixed point theorem, Math. Japonica, 27(1982), 509-512.
- [11] R. E. Smithson. Fixed Points in Partially ordered sets, Pacific J. Math., 45(1973), 363-367.