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Abstract

The important fixed point theorem for nonlinear mappings in metric spaces
is given by Caristi and Kirk [9]. Kasahara [7] extend this theorem to a common
fixed point theorem on collections of mappings. In this paper, we give a new
extension of Caristi-Kirk’s theorem. Our results contain some results of above
and other authors. ’

1 Introduction

The important fixed point theorem for nonlinear mappiflgs which need not be continu-
ous in metric spaces is given by Caristi and Kirk(see [9] and [2]). We recall the theorem
as follows:

Theorem 1 Let (X, d) be a complete metric space and f : X — X an arbitrary map.
Suppose there ezist a lower semicontinuous function ¢ mapping X into the set of the
nonnegative real numbers such that

dz, f(z)) < () — ¢(f(z)) for each z € X,
then f has a fizred point in X.

The advantage of Theorem 1 lies in the fact that it typically applies to non-continuous
mappings. Its proof is an immediate adaptation of the proof of Theorem 2.1 of [2]
(also see [4]). Their result sharpened a normal.solvability result of Browder [1] and was
applied to prove some general mapping theorems in metric and Banach spaces. After
that Kasahara [7] extend this theorem to a common fixed point theorem on collections
of mappings. On the other hand, Downing and Kirk [4] give a generalization of Theorem
1 with applications to nonlinear mapping theory. In this paper, to improve and unify
the results of above authors, we give a new extension of Caristi-Kirk’s theorem. Our
results contain some results of above and other authors(see (3], {4], {7, (8] and [11]).
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2 Preliminaries

We denote the set of all positive integers, the of all nonnegative integers and the set of
all nonnegative real numbers by N, w and R, respectively. We write R, = R, U{co}.
Let £ be a collection of subsets of the set X“ x X. Now we give certain definitions(see
[8] and [10]).

Definition 1 A pair (X, L) is called a L-space if the following two conditions are
satisfied:

(@) ({Zatnew ) €L ao=z€ X forallneuw,
(&) ({#n}icwr2) € £ if ({20} new, ) € L with {z,, }ic, is subsequence of {Zn }new-

The L-space (X, L) is said to be separated if each sequence in X converges to at most
one potnt of X. Letd: X x X — f{.{, be a function. The L-space (X, L) is said to be
d-complete if each sequence {z,}new € X with Yol 0d(Znt1,2,) < 00 converges to at
least one point of X. o

Definition 2 A nonnegative extended real valued function d: X x X — fL,. is called
to a premetric metric on X if the following conditions are satisfied:

(P1) d(z,z) =0 for everyz € X; ‘
(P2) d(z,y) < d(z,3) + d(s,3) for every 2,4, € X.

The pair (X, d) is called a premetric space. m|

Definition 3 A sequence {Z,}ae. in a premetric space (X, d) is called to be convergent
toz€ X ifd(zn,2) = 0 asn — oo and we write And (X, d) is called complete if each
Cauchy sequence converges to at least one point of X. o

We denote the subset of the form ({#n}new,z) with z, % 2 as n — oo by Lg.
If (X,d) is a premetric space, then it is obvious that (X,L4) is an L-space and that
the completeness of (X,d) implies the completeness of (X, Lq). Note that a complete
metric space is a complete premetric space.

Definition 4 A space X is called Kasahara space if it is a nonempty L-space (X, L)
which is d-complete for a premetric d in X such that the function z — d(z,y) is lower
semacontinuous for each y € X and d(z,y) = 0 implies z = y. 0

It is clear that a nonempty complete metric space is Kasahara space. In [7} and (8],
Kasahara gives some fixed points on such type of spaces.

Definition 5 Let (X,d) and (Y,d') be Kasahara spaces. The map g: X — Y is called
to closed if for any a net {za}aen in X, za — z* and g(zq) — y* imply g(z*) = y*.
0O



3 Main results

- In this section, we give our main results as follows.

Theorem 2 Let § be a family of mappings of an ordered set (X, X) into itself such
that there exists a p(z) € N for each z € X such that

z < P (z) for each f € .

Suppose there exists an element e € X such that each chain C which contains e has a
least upper bounded in C. Then there ezists zo € X and p(zo) € N such that

f”(“)(xo) =zy for each f € .

Proof. 1t is clear that there exists a maximal chain C in X containing e by Zorn’s
Lemma. Let zg be a upper bound of C in X. By the maximality of C, we have 2o € C.
Then there is p(zg) € N such that

zo < fP@)(z,) for each f € 8.
Since C is a maximal chain in X and z, maximal element in C, then
fp(“)(a:o) €C and fp(”"’)(:ro) < xq for each f € <.

Therefore
fp(""’)(wo) = o for each f € &. O

The next theorem is the main result of this section. Now we use Theorem 2 to prove
the theorem:

Theorem 3 Let (X, d) and (Y,d') be Kasahara spaces. The map g: X — Y is closed
and & denotes a collection of selfmaps of X. Suppose there exist a lower semicontinuous
function ¢ : g(X) — Ry and a constant ¢ > 0 such that for each f € S, the following
two conditions are satisfied:

(@) ¢lo(2) # (g(f(2)) if f(z) # 25
(21) For each x € X there exists ¢ p(x) € N such that

(1) max{d(z, /) (2)),cd (g(z), g(f")(2)))}
< ¢(g(=)) — $lg(f(2)))-

Then & has a common fized point.



Proof. First we declare that there exists p{z) € N for each z € X such that
(2)  Hg(f™(=))) < $(9(f())) for each f € 3.
In fact, the following inequality is always true for each z € X and f € & by above

condition (ii),
$(g(f(2))) < lg(z)).
For any n € N and f € S, we replace to = by f*~!(z) in the above

inequality, then
#(g(f*(2))) < $la(F*(2))).

We repeat the p(z) — 1 time to using the inequality, then obtain (2). And using (1)
and (2), we have

(3) max{d(z, f*?(2)), cd'(ge, 9(f7*)(2)))}
< ¢(9(2)) — #(g(f(=)))
< ¢(g(2)) - $(g(f7©)(2))).

Next we define the relation <4 on X as follows: For any z, ve X, .

z X3 y <= max{d(z,y), cd'(g(z), 9(¥))} < 8(9(z)) — d(g(y)).

It is easy to see that <y is a order on X. According to (3), for each z € X, there exists
p(z) € N such that
z =2y f”(“’)(m) for any f € S

Now we fixed a ¢ € X and assume that C = {z, | « € A} is a chain which containing
e in (X, =%;), where A is a totally ordered set such that

o e = oz, =y Ty
Then the set {¢(g(za)) | & € A} is a decreasing net, that is,
$9(22)) < Bo(zar)) i of > a
Thus there is nonnegative real number
B = int{4(g(s.))| @ € A}.
For arbitrary € > 0, there exists ag € A such that
0 < B < dg(za)) < B+e for each o > ap.

For any o' » a > oy, we have

Ta 2p 2o = B(9(x0)) < $(9(2a)),



and

(4) max{d(zq, 2q), cd'(9(zar), 9(zo))}
< #(9(zq)) — d(g(zar))
<B+te—-fF=c

Thus {zs | @ € A} and {g(z.) | @ € A} are Cauchy nets in X and Y, respectively.
Hence there exist 2* € X and y* € ¥ such that

ham:co, = z* and 115:19'(:100,) =y*,

whence g(z*) = y* because ¢ is closed.

Since ¢ is lower semicontinuous, we have
(3) ¢(9(=")) = ¢(limg(z,) < lim ¢(g(za)) < B+e.

Put lim at both ends of first inequality of (4) and use (5), we obtain

max{d(e", za), cd'(9(2"), 9(24))} < ¢lg(za)) — $g(z")).
Therefore z, <4 z* for any o € A. That is, C has an upper bound in X.

Since ¢ is lower semicontinuous, we have
(5) ¢(g(=")) = d(limg(zs) < limd(g(za)) < B+e.

Put lim at both ends of first inequality of (4) and use (5), we obtain

s e J o]

max{d(z", 4), cd'(9(2"), 9(za))} < B(9(2a)) — $(9(z")).
Therefore zo <4 z* for any @ € A. That is, C has an upper bound in X.
By Theorem 2, there exist £ € X and p(2) € N such that

fp(f)(i) =% foreach f €&

Therefore )

(6) #(g(2)) = d(g(F"*(2))) for each f € S
Finally we show that 2 is a common fixed point of the collection &. On the contrary,
assume that there exists f € ¥ such that f(#) # . According to (3) and (6), we have

| 0 < #(g(2)) - d(a(F(2))) < #(a(2)) — d(a(f7E)(2))) < 0,
i. e, $(g(2)) = ¢(g(f(2))).

This is a contradiction by the condition (i) of Theorem 3. The proof is completed. O



Remark 1. In above Theorem, if we let ¢ = 1 and p(z) = 1 for each z € X, then
the main result of Park [10] is obtained as the direct corollary. Since Kasahara’s (7]
Theorem is a special case of the theorem of Park [10], our results also contain Kasahara’s
result.

Remark 2. If we consider the case that X and Y are complete metric spaces and
& only contains one element f in Theorem 2. Then the main theorem of Guo [5] is
obtained immediately. And the theorem of Downing and Kirk [4] is obtained also,
because their main Theorem is the special case of Guo’s results.
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