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~ Correlation of consecutive interdeparture times characterizes the output process in a queue-
ing system. We present a recursive procedure for calculating the joint distribution of an arbitrary
number of consecutive interdeparture times in M/G/1 and M/G/1/K queues. We then obtain
explicitly the covariances of nonadjacent interdeparture times, and display the correlation coef-
ficients that reveal the long-range dependence.
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1. Introduction

In a network of queues such as those appearing in communication networks and manufactur-
ing systems, the customers departing from a queue constitute arrival streams for other queues.
It is therefore important to characterize the output processes in queueing systems [6, chap 6).
The output process of an M/G/1 queue with infinite or finite capacity can be formulated as a
Markov renewal process for (a) the number of customers left behind in the queue by departing
customers, and (b) the time intervals between two successive departures. The marginal pro-
cess for (a} is a simple discrete-time, discrete-valued Markov chain. The marginal process for
(b), which consists of consecutive interdeparture times, is more complicated because of their
long-memory correlation structure except for a few special cases.

The past studies for the output process in an M/G/1 queue with an infinite capacity include
the following. Burke [1] and Finch [7] showed that the output process of an M/M/1 queue is
a Poisson process at the same rate as the arrival process. Jenkins [9] analyzed the correlation
of consecutive interdeparture times for an M/E,,/1 queue, where E,, denotes the Erlang-m
distribution. For an M/G/1 queue, Conolly [2, sec. 5.5.1] (see also Takagi [12, sec. 1.5]) gives the
joint distribution for two consecutive interdeparture times  and 73, from which the covariance
Cov[ry, 73] is derived. Daley [3] derives the generating function for the sequence {Cov{r, m];n =
2,3,...}, where 7, is the n—1st interdeparture time after 7. Daley [4] and Reynolds [11] present
surveys of the available results. In the present paper, we show a procedure for calculating the
joint distribution for the arbitrary number n consecutive interdepa.rture times 7,79, ..., Ty from
which we can obtain Cov|r, 7).

For finite-capacity M/G/1 queues, which we denote by M/G/1/K where K is the capacity
including a customer in service, Daley and Shanbhag {5} and King [10] showed that Cov|r, 7] =
Oforn>2inM/G/1/1and M/D/1/2 queues, and that Cov[ry, 7] =0forn > 3 inan M/G/1/2
queue. See also Ta.kagi (13, sec. 5.2]. Rather recently, Ishikawa (8] proved an interesting result
that Cov[ri, ] = a7~ 2Cov|m, 73] for n > 4 in an M/G/1/3 queue, where a; is the probability



that exactly one customer arrives during a service time. He also derived an explicit expression
for Covfry, ] for n < K in an M/M/1/K queue. His analysis is based on the formulation of a
Markov renewal process as mentioned above. Our paper provides a different approach by taking
advantage of a recursive structure in the set of interdeparture times.

The rest of the paper is organized as follows. In Section 2, we introduce notation and give as
a preliminary a set of equations for calculating the queue size distribution at departure times. In
Section 3, we show a procedure for calculating the joint distribution of n consecutive interdepar-
ture times from that of n — 1 consecutive interdeparture times. In Sections 4 and 5, we present
the explicit expressions for the covariances of nonadjacent interdeparture times in M/G/1 and
M/G/1/K queues, respectively. We also display some numerical results for the covariances, and
give a few remarks. '

2. Queue Size Distribution at Departure Times

We deal with an M/G/1 queue with a Poisson arrival process at rate ), independent and
identically distributed service times, and a single server in the steady state. We also consider
an M/G/1/K queue with similar settings and a finite capacity such that at most K customers,
including one in service, can be accommodated in the system at a time. The density function
and its Laplace transform for the service time are denoted by b(z) and B*(s), respectively, so
that B*(s) := [;° e *®b(z)dz. The mean b and the second moment b2 of the service time are
then given by b = —B*1)(0) and (2} = B*)(0), respectively, where B*()(s) := d'B*(s)/ds’ for
i =1,2,.... When the service times are exponentially distributed, the service rate is denoted
by p so that b= 1/p.

In the steady state, let 7 be the probability that & customers are left behind in the queue
by a departing customer. If K = 1, we have mp = 1. Otherwise, the set {m;0 < k < K —~ 1}

satisfies
k+1

T = Toay + E T50—jt1 0<k<K-2 . (1)
j=0

K-1 o
Y. =1 (2

- k=0
where ay denotes the probability that k customers arrive during a service time, and is given by
© (Az)* _ —A)*
ar = fo ch-!_)-e A2p(z)de = %B*(")(A) k>0 (3)
Thus we can calculate 7 /7o (1 < & < K — 1) by (1), and then evaluate 7 by (2). If K = oo,
we have mo = 1 — Ab which is assumed to be positive for the stability of the queue.

3. Joint Distribution of Consecutive Interdeparture Times

' The time interval between two successive points in time at which customers depart from
the queue after the service is completed is called an interdeparture time. Note that we exclude
those points in time at which customers are blocked upon arrivals in the M/G/1/K queue. The
Laplace transform A*(s} of the density function for the length 7 of a single interdeparture time
is then given by

s

A'(s) =m0 s+ A

B*(s) + (1~ mo) B*(s) = (1 _ ) B*(s) (@)

s+ A

2



from which we get the mean and the second moment of the interdeparture time as

A A?
When K = oo, we have E[r] = 1/A as no customers are lost or created.
We denote by A*(s,s') the Laplace transform of the joint density function for the lengths
and 7' of two consecutive interdeparture times. By considering several conditions in' the queue

size at departure times, we can obtain (2, 13]

(5)

As'B*(s + )\)] _ms'B*(s+1])
s+ A s+ A

A*(s,s") = {B‘(s) - 3:?/\ [sB"(s) + }B*(s") (6)

with 1 = [L — B*(A)]mo/B*()). From (6) we get the covariance of the two consecutive interde-

parture times as
@[B*(A) B*W(x) ; wol

(7)

! —_— — — — ——
Covl[r, 7] = 3 3 B0) 3

for K > 2. For K =1 {an M/G/1/1 loss system), we simply have

A*(s) = ;%B*(s) . A*(s,8) = A*()A™(S) ; Cov[r, 7] =0 (8)
as the departure process is a renewal process. For an M/M/1 queue, we have
A*(s) = s-l-% ; A*(s,8') = A*(s)A*(s') ; Covlr,7] =0 (9)

as the departure process is a Poisson process at rate .

In order to obtain the covariance of nonadjacent interdeparture times, we have to consider the
joint distribution for more than two consecutive interdeparture times. Let A(sn, $n—1,...,51)
be the Laplace transform of the joint density function for n consecutive interdeparture times
71 through 7, where the transform parameter s; corresponds to 7,41—; (1 < i < n). Also,
let A¥ . (8n, Sp—1,-..,81) and A}, >n(sn, 8p—1y...,81) be the similar Laplace transforms on the
condition that there are k and n or more customers, respectively, in the queue at a departure
time. Thus unconditioning yields

n—1 n—1
A} (8n,8n-1,...,81) = 2 T AY, k(sn, Sn—1y.--,81)F (1 - Z ﬂ'k) Arsn(8ny8n-1,...,81) (10)
k=0 k=0
We will show that {A},;(84,8n-1,...,81);0 <k <n—1}and A, >n(8ns8n—1,...,81) can be
expressed in terms of {A},_ .1 (80—1,8n-2,...,81);0 <k < n—2}and A%_ . Sn—1 (3n_1, Sp—2y.00481).
Therefore, starting with

folo) = 25 BY(s1) 5 Afpalor) = B*(s1) @)

we can calculate {AY..(sn,80—1,..., s1); 0<k<n-—1}and A} 5, (8n,8n-1,...,81) recursively

with respect to n for an arbitrary value of n in principle. Substituting them into (10) we get

A%(85n,8n~1,...,81), from which we can obtain the covariance of interdeparture times 7, and Tn

by

O2AY(Sny 8p—iy---,81)
Bsnasl

— (Efr})? (12)

En=8p—1=-=21=0

Cov[ry, ] =



We now present the recursive procedure. Let us first consider an M/G/1 queue. Obviously
we have

A;:zn(sm Snelysony 31) = B*(sn)A:;1;2n_1(3n—1: Sp—2,. 31) = B*(sn)B*(sn——l) 31)
(13)
In order to express A7 4 (8n; 8n—1,.-.,81), 1 <k <n—1, in terms of {A%_;.:(8n_1,8n—2,...,81);
0<j<n—2}and A}, >n_1(sn_1,sn,2, ., 81), we note that the joint Laplace transform of

the density function for the length of a service time and the probability that j customers arrive
in that service time is given by

=2V,
/ e (Aey e~ **b(z)dz = -———( A) B"(-T)(s +A) (14)
0 3! il
Thus we get the relation
"ot (= A) ()
A;:k(sna Sp—lyeeny 31) = Z: e B ( + A)If}‘n 1: k+g-—-1(3n—1’ Sp—=2;5--+, 31)
=0 .
n—k-—1 ( A) (15)
+ B*(-‘?n) z 7 B*(J)(3 + )\) 1:211—1(311—15 3p—2,... ,31) .
j=0

1<k<n~-1

If there is an idle period before the first interdeparture time, the joint Laplace transform of the
density function for the length of the idle period and a service time and the probability that j
customers arrive in that service time is given by

oo t j i
—at PV Ll Ul | O YR D SN Gt Ao
L e ﬁAAe e M e = T LB D4y (16)

Thus we get the relation

n—2
A;:O(Sn’sn_l’ Tt ’31) - _|. A Z J. B*(J)(s +A)A*—1 J(sn—l,sn—z, )
‘ (17)
A n— 2( A)
-+ *(s B*(J') +A N 1y 8ne2y e s
Sn+ A (sn) = JZ% 4! (8n )| A —1i>n 1(5n~1,80-2 $1)

Equations (13), (15), and (17) provide the recursive procedure for the M/G/1 queue.
In an M/G/1/K queue, equations (13), (15), and (17) hold for n < K — 1. In addition, we
have
Ak-vx-1(8K-1,8K-2,-..,81) = B*(sx-1)B*(sx—z) - - - B*(s1) (18)
For n > K, by similar arguments we get '

K—k—1 ’
/\
AL (8ns Sne1y - -5 81) E ( ) B*(J)( + M)A, k+g-—1(3n—ls Sne2yee., 81)
i=0 .

K—k-1 (19)

* A * * .
+ | B*(8,) ~ Z ( ) ~——B (J) +’\) An—l:K—l(sn-lasn—2:---’31)

1<k<K-1



and

A K—2 )
no(snssn—li )31) = +A E

B*(J)(s + A)Aﬂ.—l J(sn-—-ls Sn—2y.- 0, 31)

(20)
A ] . K- 2( A)
Sp+ A B'(sn) - Z

J=0

+

B*(J)( + A) n—l:K—l (Sn;1, Sn—2y+.4, 31)

These equations complete the recursive procedure for the M/G/1/K queue.
4. Covariance of Nonadjacent Interdeparture Times in an M/G/1 Queue

By the recursive procedure given in Section 3, we can calculate the Laplace transform
A¥ (35, 8n-1,...,81) for the joint distribution of n consecutive interdeparture times 1y, 73, ..., Tn.
Such calenlation is made possible by symbolic formula manipulation software, for example, Math-
ematice [14]. We can then obtain the covariance of 7y and 7, by (12).

In this section, we present the result for an M/G/1 queue. For the simplicity of notation,
let us use b; := B*()(X) for i =0,1,2,... in Sections 4 and 5. We have

1 1 b b '
Covlry,m] = (X —b) ["X + ;’ b:] (21a)
1 1 B b 2
Covln, 73] = ('X - b) [_X + -AQ — —=—boby — 5;— + Abzl (21b)
1 1 B b.
COV[Tl,T4] = (1- - b) I:—X -4 'X' — b_ - 2bgbl - /\b% - )\bob%
: (21c)
A2p3 A A2byb 2
+ T + b + Sb3b: + ﬁ - ’\—buba]
1 1 b b2 -
Cov[ry,Ts] = (X - b) [‘X + -19» - :—; — 3631 + ébo—l — Ab2 — Abob? + 3ABEHE
213 34
A b +2A2b3 ,\26063 _ é_‘;i_ +Ab2 +)\bsbz + A b bz
o bo 2bg
(21d)
3 312 3
—Nhyby + Xbobiby — SX2bbiby — 202 4 Sy, N
2 by 2 2
)\3 )\2 )\2 )\353 AS )\3
+ 7bob’* 5 bobs — —b3b3 — b— + 5-bobibs + —bob4

We note that (21a) is given in Conolly (2], while the results in (21b) —(21d) are new.
According to Daley [3], the sequence {Cov[r, malin = 2,3,...} for the M/G/1 queue satisfies
the relations

S Govfry, 7] = % (% ~ Varlr 1) (22)

n=2



> _ 1—-Ab Jw(z)—z zw'(z) —w(z)
Covln, m)2" 1t = + ] 23
nz::z 72, 7] M1 -2z) [1-w(k) wzw(z) (23)
where w(z) is the root of smallest modulus of the equation
w = 2B*[A(1 — w)] ‘ (24)
and w'(z) = dw(z)/dz. Thus (21a)-(21d) could have been obtained from (23) and (24).
We display the correlation coefficients of the interdeparture times defined by '
p(r1, 1) 1= Covln, 7] (25)

Var(r]

for the Erlang-m distribution of the service time

B*(3)=( m )m | (26)

s+m

which has the unit mean and the correlation coefficient 1/m, where m is a positive integer. Thus
the case m = 1 corresponds to an M/M/1 queue, and the case m = oo to an M/D/1 queue.
With (26), from (22) we have

| gCOV[Tl,Tn] = -2]: (1 - %) (27)

which is independent of the arrival rate A. Jenkins [9] gives the expression for p(r, r3) for the
M/En/1 queue, which agrees with our special case.

In Fig. 1(a)-(d), we plot p(71,75) for n = 2,3,4 and 5, respectively, for an M/E,,/1 queune
with & = 1 in the cases m = 2,5,10,30,100 and co against A. We make the following observa-
tions:

¢ p(71,7s) is always nonnegative. Thus, from (27) we always have

n]i_’ngo P(Tlsfn) :D (28)

e Given n and m finite, p(71, 7, ) is a unimodal function of A.

» Given A, p(71, ) increases with m, and decreases with n.
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Fig.1. Correlation coefficients of interdeparture times in an M/E/1 queue
(m = 2,5,10, 30,100 and oo from below).

5. Covariance of Nonadjacent Interdeparture Times in an M/ G/1/K Queue

Let us also present the covariances of the interdeparture times for M/G/1/X queues, and
display the numerical values of the correlation coefficients for the M/En/1/K queues such that
the service time distribution is given by (26).

For an M/G/1/2 queue, we have

bby + by
In particular, for an M/ D/1/2 quene we have by = e~ and b; = —be™™ so that Cov(r, 2] =0
as noted previously [5, 10]. PFig. 2 shows that the correlation is negative for the M/E../1/2
queue. ‘

Cov[r, ] = Covfry,m) =0 n>3 (29)

-0.0z2}p

~0.04

=0.06

-0.08r

-0.1

-0.12

-0.14}

-0,16

Fig. 2. Correlation coefficients p(ry, 7) of interdeparture times in an M/E/1/2 queue
(m=1,2,5,10,30 and 100 from below at X = 1).

For an M/G/3 queue, our result agrees with Ishikawa [8] as
bo(—Abbo + b — 5§ — Aby — A%bboby + Ab3by — AZD2)

COV[Tl,Tz] = A2(1 + Abl)z (30&)
- . _ L2 37 2 __ 212 2\213 2
Govlry 7] = Po(bbo = by = Abbuby — 8361 + boz;(l E\I;ll - ABBBE — X2B <+ Aboby + Nbobybs)
(30b)



Cov(r1, ] = a2 Cov|r, 73] n>4 (30c)

where a; = —Ab; is the probability that exactly one customer arrives during a service time. In
Fig. 3(a)-(d), we plot p(r1, ) for n = 2,3, 4 and 5, respectively, for an M/E,,/1/3 queue with
b =1 in the cases m = 1,2,5,10,30,100 and co. Here the correlation coefficient can be both
positive and negative but vanishes at A = 0 and as A — oo.
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~0.02 : -0.02t
(c) (71, 74) (d) p(r1,75)

Fig. 3. Correlation coeflicients of interdeparture times in an M/E,,/1/3 queue
(m =1,2,5,10,30,100 and co from below at A = 1).

Finally, for an M/G/1/4 queue, we have

biDy,

(T2 —ahh — 2020+ olbgny)? " odhS (31)

Covlr, ™) =

where

2
%Dz = —2bAbg + 202 — 25§ — 2\by — 4bAZhoby + 4AbEby — 4X2b7 — 2bA3bgb? -+ 2A2D2b2
—23 b‘;’ + b)\"ib%bg - Azbgbz + A3bgb1 by
(32a)
D3 = —2bAbg + 2b — 2b5 — 2Xby — 4bA%hob1 — 2Ab3by + AAb3b; — 6ADE — 2623 Bob?
—4A2B3b% + 2226307 — 6A307 — 2A32bT — 22461 + 2X%hoby + bABBZb2 — AZb5b,
+5A3bgb1ba + A3bZb1by + 3A%bpb3ba — N2bEHE
(32b)



ADy = —dbbo — 4by — 8bAboby ~ 8b3b1 + 8bgby — 12Xb% — 4bX%bob2 -+ 4Xb2b2 — 1604303
+4ABEET ~ 123255 + 8A%6EbT — BAZB3BT ~ 4N3b1 + 4A3B2bE + 4\bybs + 20A%02b,
+2Ab3b2 — 27\bgba + 12X%bob1by + 4X2b3b1 by + 4X2bEbyby + 10X3bob2bs + 2A4bob3 by
—2A%b3b7 — ASbgb] — A*83b102 — 2226%bs — 403b3b1bs — 2X%52b2b; + Abdbabs

(32¢
Dy = Bbboby + 8b] + 20bAbob? + 126367 ~ 12b%b7 -+ 2865 -+ 165X2b0bF — ANGZEY + 24\5343 )
—8AbgbT ++ 360701 -+ 46X\ bobf — 8AZB2b% + 12X%63b¢ + 202385 — 4)3b255 + 4248
—2bAbbs -+ 263y — 265b2 — 10Mboby by — 8bA2b3b1 by — 6AB3b1bg + 4Xbb1by + 4AB3h, by
—34A%bobibs — 4bA%BZbTb; — 122703020, — 4X?bEb2b, — 36A3beb3by — 4X3b353b,
—12X%boblbs -+ 2275303 + bA®BEbT — A2bF63 + 9N3b3b, b3 + 3A3bAb,b% + TALBZ2H3
—X‘bgbg + 4)\2585153 -} SAabngba + 4)\4bgb§b3 — 2/\4173515253

(32d)
We note that Ishikawa [8] derives Cov[ry, ] for an M/M/1/K queue as
Cov[r, ] = — aTH 2()\ yK~2 2<n<K (33)
Lyin] = \EK — #K H =nx

independent of n. We have confirmed that our results in (31) with (32a)~(32¢) reduce to (33).
However, Ishikawa’s results for Cov{ri, 5] and Cov{r, 4] do not. In fact, our results in (31)
with (32b)~(32d) are different from the corresponding results by Ishikawa.

In Fig. 4(a}~(d), we plot p(r1,7) similarly. By comparing with Fig. 3(a)-(d), we see that
the correlation coefficient generally increases with the capacity X.

(a) p{r1,72) (b) p(1,73)
.04} .08
0.02 b.02
T 7 q 5
003} 0.0z}
-0.08 | .
(c) p(r1,7e) (d) p(71,75)

Fig. 4. Correlation coefficients of interdeparture times in an M/E,,/1/4 queue
(m=1,2,5,10,30,100 and oo from below at A = 1).
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