No. 725

Optimal Stopping Problem
with Controlled Recall

by
Tsuyosi Saito

May 1997



OPTIMAL STOPPING PROBLEM
WITH CONTROLLED RECALL

Tsuyoshi Saito
University of Tsukuba

This paper deals with the following discrete-time optimal stopping problem. For fixed search cost s, a random offer,
w ~ F(w), will be found for each time. This offer is either accepted, rejected, or “reserved” for recall later. The
reserving cost for any offer depends on its value, regardless of how long the offer is reserved. The objective is to
maximize the expected discounted net profit, provided that an offer must be accepted. The major finding is that no
previously reserved offer should be accepted prior to the deadline of the search process.

1. Introduction

A problem of finding an optimal decision rule for accepting one of offers observed sequentially
is usually called the optimal stopping problem. The subsequent offers are assumed to have certain
stochastic values. The problem can be categorized into two groups in terms of its objective function:
Maximization of the expected value of an accepted offer [1,4-15,18-21,23-25] and maximization
of the probability of accepting the best offer [2,3,16,17,22]. The latter is usually referred to as
the secretary problem. Optimal stopping problems are also classified into three models in view
of the future availability of offers once inspected and passed up: Allowed recall, no recall, and
uncertain recall. In allowed recall, the searcher is permitted to accept any offer once passed up
[6,9,14,15,18,19]. In no recall, the passed up offer is instantly lost, unavailable forever; hence an
offer to be accepted is limited to the latest one [2,3,5,6,8,12,13-15,18,20-25]. In uncertain recall,
future availability is assumed to be probabilistic [4,10,11,16,17].

Not only in the models with allowed recall and no recall but in the model with uncertain recall,
the recallability of each offer is determined independently of the searcher’s will. In Karni et al.[10],
the probability of a successful recall is assumed fo decrease strictly with the time elapsed since
offer appearance. Petrucelli{17] assumes that the probability is nonincreasing in the quantile of the
offer as well as the passing of time. In Ikuta[4], the uncertainty is defined by the probability of a
presently available offer becoming unavailable at the next point in time,

This paper gives the searcher the ability to control the recallabilities of offers. More precisely, we
define a model of an optimal stopping problem where any offer is assumed to be forever recallable
if some cost, called reserving cost in this paper, is paid for the offer and to be irrevocable if it is
neither accepted nor reserved. The major finding in this paper is that accepting a reserved offer,
however good it may be, will never become an optimal action, except at the deadline of the process.

In Section 2, we present the general structure of this model and its assumptions. Section 3
defines two functions used in subsequent sections. The optimal equation of this model is formulated
in Section 4. In Section 5, the optimal decision rule is prescribed and its properties are revealed.
In Section 6, we summarize how reserving cost or distribution of offers influences reserving action.
Up to this point we deal with a finite planning horizon model. Its extension, an infinite planning
horizon model, is discussed in Section 7. We find that the concept of reserving is similar to that of

option buying in the option market. We state similarities and differences between these in Section 8.



2. Model

A searcher sequentially samples offers w, w', - - -, which are i.i.d.random variables having a known
distribution funcfion F' with a finite mean g where the worst value of an offer is ¢ and the best
is b where 0 < @ < b < co. After having drawn an offer w, he must decide whether fo (1) accept
one of current available offers, or (2) reserve the current offer w, or (3) pass up the current offer
w. Action (1) terminates the search process, while actions (2) and (3) force him to continue the
search. Although he can continue the search as long as he wishes within a given planning horizon,
he must accept an offer up to the deadline where offers once spurned cannot be taken up again
(no recall). If he continues, a fixed expense s > 0 (seaxrch cost) must be paid to elicit a next offer.
Reserving an offer w allows the searcher to recall and accept it at any time in the future but a
reserving cost r(w), depending on w, is required. Hence available offers at each time consist of the
current offer w and all offers reserved so far. Obviously, the economically meaningful reserved offer
is only that with the highest value. Let us call it the leading offer. Finally, let us assume:

1. r(w) is nondecreasing and continuous in w and satisfies 7o < r{w) < rp with given v, and 74

such that 0 < r, <7 < 00,

2. a < —s+fp

where 3 is a per-period discount factor with 0 < 8§ < 1. —s+fg implies the expected marginal net
profit from one more inspection and a is the value of the worst offer. Therefore, if a > —s+8u, no

one is willing to engage In the search process. This will be theoretically ascertained in Section 5.

The objective here is to find an optimal decision rule to maximize the total expected discounted
net profit, that is, the expectation of the present discounted value of an accepted offer minus that
of the amount of the search costs and reserving costs paid up to the termination of the search with

acceptance.

3. Preliminaries

For convenience of later discussions, we define, for all =,

S(z) = f: max{w, z}dF(w), (3.1)
K{z) =ﬁ/:ma.x{w,a;}dF(w)—:c—s = BS(z)—z—s. (3.2)

Lemma 3.1
(a) S(z) is continuous, convez, and sirictly increasing for a < z.
(b) Sz} =p forz<a,z<S(z) fora<z<b and §(z)=2 forb< z.
(c) K(z) =0 has a unique root h°® with h° < b. And ¢ < h® if and only if a < —s+Bp.

(d) h° is continuous and strictly inereasing in §.

Proof: See Tkuta[7] for the proofs of (a-c) (S(z) = T(z)+=z in Ikuta[7]). Assertion (d) is evident

from the fact that K(z) is continuous and strictly increasing n 5. 1



4. Optimal Equation

For convenience, we make a distinction between accepting the current offer w and accepting the
leading offer z. Throughout this paper, w is used as the current offer and 2 as the leading offer.
Let £ indicate the point in time with £ = 0 at the deadline and the time measured, equally spaced,

backward from this point. Hence ¢ also represents the number of periods remaining.

We define v;(z) as the maximum expected net profit attainable by starting from time ¢ with a

leading offer . The backward induction argument then gives

vo(z) = f:ma,x{ fl’j‘g - }dF(w), (4.1)
AS : w,
b .
"vt(m)zfa max I;;g ;-,r(w)—s-{-ﬁvt_l(w), dF(w), t2>1 (4.2)

PC : —s+Bv—1(x)

where symbols AS, RC, PS, and PC refer to the possible actions: “accept the current offer w and
stop the search”, “reserve w and continue the search”, “pass up w and stop searching by accepting
the leading offer 2, and “pass up w and continue searching”, respectively.

Originally, the expression corresponding to RC should be written —r(w)—s-+8v:—1(max{w, z}).
However, reserving a current offer w with w < & produces —r(w)—s+pBv;_1(z), which is less than
—s+fv;—1(x), the expression of PC. Accordingly, it is not optimal to reserve an offer w such as

w < 2z, and the expression of RC can be written as in Eq.(4.2).

Lemma 4.1
(2) vi(x) is continuous, convez, and nondecreasing in x, and nondecreasing in t.
(b) vi(z) >z for & < b, ve(b) = b, and v(z) > p for all z.

{c) ﬁvt(m) —z is strictly decreasing in z.

Proof: (a) The former part is established by induction starting with the fact that the assertion is
true for ¢ = 0 since vo(z) = S{z), and the latter part, with the fact of vo(z) < vi(x) from Eqs.(4.1)
and (4.2).

(b) By Lemma 3.1(b), it follows that vo(z) > x for < b and vo(b) = b. Hence we obtain the
first assertion v;(2) > = for 2 < b from (a). Letting vi—1(8) = b, we get —s+Pv—1(b) < b and
—r{w)—s+Pv_1{w) < b for w < b from (a). Coupling all of these facts, we can confirm that, for
z = b, each term in braces of Eq.(4.2) is less than or equal to b, and thus we get v:(b) = b. The

last assertion is obvious from (a) and the fact of vo(a) = S(a) = p.

(c) Choosing any z; and xs with z; < 22 < b, we obtain

ﬁvt(mg) — vg(q) < ﬁvg(b) — vg{zy )

4.
Tg — 1 b— T1 ( 3)
because Bv(x) becomes convex in z. According to (b), it follows that

ﬁvt(b) —'vt(ml) _ b— vt(ml) < b — & — ,8 S 1. (44)

b—x - b—mx b—a21



Eqs.(4.4) and (4.3) yields Buvg(z2)—Bui(z1) < zp—21, or Bue(ze)—z2 < Bve(zy)—2z1. N

We further introduce the following two functions z{(z) and z{(w):

zf(2) = max{z, —s+Pu_1(x)}, t2>1, (4.5)
z; (w) = max{w, —r(w)—s+fv;1(w)}, t2>1 (4.6)

where 2§(z) = = and z§(w) = w. The former consists of the third and fourth terms in braces of
Eq.(4.2), and the latter, the first and second. Their fundamental properties stated in the following

lemma are simply derived from their definitions and Lemma 4.1.

Lemma 4.2
(a) 2{(z) is continuous, convez, and nondecreasing in =, and nondecreasing in t.

(b) zT(w) is continuous in w and nondecreasing in f.
(c) z[(z) < 2¢(x) for all z.

The function z{(xz} is interpreted as the maximum expected net profit by first passing up the current
offer w and then doing what is optimal, and 2] (w) the maximum expected net profit by first deciding
either to accept or reserve w and then proceeding optimally. Suppose that we have just drawn an
offer w at time ¢ with the leading offer . Then, if w satisfies 2{(z) < 2] (w), we can expect to gain a
higher reward by not rejecting the offer w than rejecting. Let a set of such offers, or a set of all offers
which we should not reject, be denoted by Wy(z), that is, Wi(z) = {w | 2f(z) < 2 (w)}, t > 0.
These enable us to rewrite v;(z) as

b
ve(z) = fa max{z] (w), z{(z)}dF(w) (4.7)
_ fwz) 2 (w)dF (w) + fw_f,)c 2(@)dF (w). (4.8)

We also define h{ and h] as the values of « and w which equate two terms in braces of Eq.(4.5) and
Eq.(4.6), respectively. So that h? is a point of indifference between accepting = (PS) and continuing
the search (PC). The quantity A} is a point of indifference between accepting w (AS) and reserving
w (RC).

Therefore the optimal decision rule is described by using h¢, k], and W;(z). We shall reveal
some of their properties in the next section.

Remark. If r(w) = 0 for all w, or nothing is lost in reserving offers, we will reserve all offers.
So that our model is virtually reduced to the conventional model with allowed recall (see Ikuta[6]).
If »(w) > w for all w, or offers cost more than their values, we will never reserve offers. This implies
that our model is eventually reduced to the conventional model with no recall (see Sakaguchi[21]).

5. Optimal Decision Rule

This section is devoted to describing the optimal decision rule, characterized by h{, A}, and
Wy(z), and examining its properties.

Lemma 5.1



(a) Both h? and hi exist uniquely with —s+4+8p < h? < b and —rp—s+8u < hf < hS.
(b) & < w for all w € Wi{x).

Proof: (2) Let us introduce the following two functions: ¢f(z) = —s-+0vi—y(z)—=z and ¢} (w) =
—r(w)—s+pfvi_1(w)—w. Evidently h7 and A are respective roots of gf(z) = 0 and g¢f(w) = 0.
Lemma 4.1(a,c) affords that both ¢¢ and g} are continuous and strictly decreasing. As to h¢, it
follows from Lemma 4.1(b) that gf(—s+8x) = fve—1(—s+0x) — Bu > 0 and ¢?(b) = —s+6b—b < 0,
and thus ¢f(2) = 0 has a unique root h{ on [—s+8g,b). In the same fashion we have the assertion
with respect to hj.

(b) It is easy to show, by use of Lemma 4.2(a~c) and the intermediate-value theorem, that
Wi(z) exists for all 2. The proof is by contraposition. Letting w < z implies —r(w)—s+8v—1(w) <
~s+Bv;_1(z) by Lemma 4.1(a) and r{w) > 0, which yields 2} {w) < z{(z). Hence no w where w < z
belongs to Wi(z). H

Note that k7 satisfies & < Af < b by Assumption 2, whereas it is possible that A} < a. This is,
however, not important because the case hf < ¢ indicates only that AC is always preferable to RC.
This can be confirmed from the optimal decision rule(L.b) stated later.

From the proof of Lemma 5.1(a) we have the following corollary:

Corollary 5.2 Foranyt>1,

—s+Pvi1(z), @ < hf, —r(w)—s+Bvs_1(w), w < hf,
(a} zP(2)=1¢ —s+Pvi_1(z)=2, = =h, (b) 2f (w)=q —r(w)—s+Pve—q(w)=w, w=h,
z, h <. w, hi < w.

From Corollary 5.2 and definitions of A¢, A}, and W;(z), the optimal decision rule can be
prescribed as follows.
Optimal Decision Rule: Let us be at time £ with the leading offer £ and have just drawn a
current offer w:
(I) In the case of & < h:
(a) If w € Wy(z) and hi < w, it is optimal to accept the current offer w.
(b) If w € Wi(z) and w < A, it is optimal to reserve the current offer w.
(c} Otherwise (w & W;(z)), it is optimal to pass up the current offer w and continue the
search.
(IT} In the case of hY < z:
(a) If w € Wy(z), it is optimal to accept the current offer w.
(b} Otherwise (w € Wy(z)), it is optimal to pass up the current offer w and terminate the
search by accepting the leading offer z.

A graphic representation of this rule is provided at the end of this section.

We here note that reserving an offer never becomes an optimal action in the case (II) because
all w € Wy(z) satisfy h] < w due to A} < h? from Lemma 5.1(a,b).

Although the rule is classified into two cases, the following theorem shows that the case (II)

never occurs, implying that however high a value the leading offer has, it should not be accepted



prior to the deadline.

Theorem 5.3
(a) h? is a constant, which is given by o unique root h° of K(z) =0.

(b) ki is nondecreasing in t.

Proof: (a) To begin with, we demonstrate that hf = h{,, if and only if vs_;1(h?) = v;(h{). Assuming
vi-1(hg) = vi(h?), it follows that gf,, (A7) = g7(hg) = 0 where g{ is as in the proof of Lemma 5.1(a).
Hence hZ,;, a unique root of gp,;(x) = 0, must be equal to A?. The converse can be also verified

by a similar argument.

We can rearrange vg(hJ) and v1(h9) as follows:
vo(RS) = fbmaa({w h3}dF(w)
= f T he dF(w) + fh w dF(w), (5.1)
. 1
vi(h) = [ max{ai(w), (9)}F(w)
= / max{z! (), h2}dF(w) (5.2)
= hng&wA:LowdFﬁ@ (5.3)

where Corollary 5.2(a) is applied to get Eq.(5.2). Eq.(5.3) follows from Lemma 8.1 and Corol-
lary 5.2(b). Therefore vg(h¢) = vy (h{), that is, hS = h§ holds.

In order to show A?,; = h{,,, let an induction hypothesis be A = h{,,, or equivalently,
vp—1(hS) = v:(hY). In exactly the same way as the above, it follows that

oi(hGyy) = vn(h3) = f hS dF(w) + f w dF(w)

= / Byy dF (w) + fh w dF(w) = via(hdyy),
t+1

therefore, h{,, = h{,, holds.

Consequently h{ is independent of {. Furthermore, the value of h{ is equal to h°, a unique root
of K(z) =0, because g{(x) and K(z) coincide.

(b) It follows that 0 = gJ(h]) < g}, ;(h}) for all £ by Lemma 4.1(a), and this leads us to
hi < hi,, since gi ,(w) is strictly decreasing in w. N

The acceptable value of the leading offer is required to be at least A at any time. It is, however,
impossible for any leading offer itself to become an acceptable offer as time goes on because h{ is
independent of time ¢ (Theorem 5.3(a)). So the only way to retain an acceptable leading offer is
to reserve an offer w with A < w sometime in the past. This is, however, also impossible because
even if such an offer appears, the optimal action at that time is to accept it, not reserve it (A < w
implies h] < w). Therefore we never retain offers exceeding h?, that is, the case (II) never occurs.
Hence we should never recall and accept the leading offer before the deadline. This fact differs from



the result of the conventional model with no recall, that is, the optimal decision rule reduces the
lowest value of acceptable offers with passing time. {Theorem 5.3(b) is in accord with this point.
see Sakaguchi[21].) Therefore the aim to reserve an offer is only to avoid the risk that an offer
appearing on the deadline has a very low value. Having no permission to recall past offers, we must

accept the offer even if it is the worst one.

Remark. What effect does the lack of Assumption 2 produce? If —s+8u < a, then kY < ¢
by Lemma 3.1(c), and thus k] < a by Lemma 5.1(a). From these and Lemma 8.2(a), the optimal
decision rule is always to accept the offer you first draw.

So far, we have examined the critical levels of leading offers to be accepted (A?) and current
offers to be accepted (h}). Next, let us discuss the critical level of offers which should be reserved.

From now on, we use A° instead of h7.

Theorem 5.4
(a) Wi(z1) 2 Wi(z2) for any x1 and x5 such as z1 < z3.
(b) Wi(z) 2 Wipi () for all z.

Proof: (a) Using 20(21) < 2{(22) by Lemma 4.2(a) with recalling Wy(z2) = {w | 20(z2) < 2{ (w)},
we obtain 2f(x1) < zf(w) for every w € Wi(z2), so Wi(z1) D Wi(zs)-

(b} From Lemma 5.1(b), or & < w for all w € Wiy (z), and Lemma 8.3, it follows for w €
Wisi1(z) that 27, (w) — 2} (w) < 28, (x) — 22 (), or equivalently,

7 (W) — 2840 (2) < 2 (w) — 27 (). (5.4)

Since Wiy1(z) is a set of w such as 0 < 2], (w) — 28, (2), all w € Wy (=) satisfy 0 < 2 (w) —28(z)
from Eq.(5.4). That is, every w € Wy1(x) belongs to Wi(z). 1

Letting Ry(z) = Wi(z) N {w | w < hl} and Ay(z) = Wy(z) N {w | Al < w}, we immediately have
Ri(z1) 2 Ry(z2) and As(m1) 2 Ae(ze) for z; < z from assertion (a). The former, Ri(z;) D Ri(x2),
states that a better leading offer narrows down the range of offers to be reserved and a similar

reasoning holds for the latter.

Assertion (b) yields A;(z) O Agt1(z), but not Ri(z) O Repa(z). Because although the assertion
gives min R;(z) < min Reyy(z), Theorem 5.3(b) shows hf < hf,,, or equivalently, max R;(z) <
max R;y;(z). Accordingly it is possible that R;(z), the range of offers to be reserved, disappears
in spite of the approach of the deadline. This problem is taken up in the next section.

The remainder of this section is devoted to a graphic representation of the optimal decision rule
using an example where F{w) = won [0,1] (e = 0 and b = 1), 8 = 0.97, s = 0.005, and r(w) = 0.01
for w < 0.4, 0.4w—0.35 for 0.4 < w < 0.6, and 0.19 for 0.6 < w. Assume we are at time 1 and have
the leading offer of value 0.300. In this case we get h° = 0.760 and A] = 0.501.

Figure 1 illustrates z{(x) (the upper curve) and z7(w) (the lower curve with a dip) where the
horizontal axis represents both the leading offer 2 and the current offer w. The thick line on the
horizontal axis indicates W1({0.300) = {w | 0.332 < w < 0.448, 0.523 < w}, corresponding to the

7
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Figure 1. 2{(z), 27 (w), and W1(0.300). Figure 2. Optimal decision rule for ¢ = 1.

vertical thick line in Figure 2. By repeating this argument for other leading offers z, the optimal
decision rule can be schematized as Figure 2 where the horizontal axis represents the leading offer
2 and the vertical axis the current offer w.

Figure 2 tells us that if the current offer w is such that w < 0.332, PC is optimal. If 0.332 <
w < 0.448, RC is optimal. If 0.448 < w < 0.523, PC again becomes optimal. Otherwise, AS is
optimal.

As seen above, a situation may occur where Wi(z) is not simply connected. In the light of the
many numerical calculations the author made, the phenomenon tends to occur when r(w) is steady
or increases slightly up to a certain w and then rises steeply. Moreover, it can be theoretically
verified that the phenomenon never occurs if r(w) is concave due to the fact that 2] (w) becomes

convex.

6. Reserving Region
Let us define Ry = {{(z,w) | w € Ry(x)}. This indicates that if (x,w) € R, reserving the
current offer w becomes optimal. So let us call the set the reserving region.

In this section, we examine the properties of the reserving region. To begin with, we show the

necessary and sufficient condition for which the reserving region becomes empty.
Lemma 6.1 R; = ¢ if and only if 8{vi—1(w)~vi—1(a)} < r(w) for all w < —s+fv;_1(a).

Proof: From Lemma 5.4(a), the necessary and sufficient condition for R; = ¢ is Ri(a) = ¢. This
indicates that no offers are worth reserving when the leading offer is a.

Letting oy = —s+Fv:(a), we obtain a < oy for all £ by Assumption 2 and Lemma 4.1(a). Hence,
from Eq.(4.2), it is necessary and sufficient for R;(a) = ¢ that, for all w, —r(w)—s+Bv—1(w) <
max{w, e}, or equivalently, —s+Bvi—1(w)—max{w, oy1} < r(w). The left-hand side of the
inequality becomes —s+8v;—1(w)—ay_1 for w < a1 and —s+Bv;—1 (w)—w for oy—; < w. Since the

former is nondecreasing in w by Lemma 4.1(a} and the latter is strictly decreasing by Lemma 4.1(c),
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—s+fv—1(w)—max{w, a1} is maximized at w = ay_1. Therefore, since r(w) is nondecreasing,
Ri(a) = ¢ holds if and only if —s+fv_1(w)—as—1 <v(w) for w <az—q. 1

In some cases, the reserving region disappears even when the next time is the deadline, although

it does exist at a time when two or more searches remain. Roughly speaking, such a thing tends

to occur when —s+8u is small for fixed a and 5. This is because the smaller —s+8u is, the smaller

hi is. That is, the less the search attracts us, the sooner we want to quit the search.

Let us give three examples (Figures 3 to 5) withe =0, b= 1, 8 = 0.97, and s = 0.005. In
Examples A and B, F(w) = w, hence —s+8p = 0.48 and in Example C, F(w) = 9w for w < 0.1



and (w--8)/9 for 0.1 < w, hence —s+Fy = 0.092. r(w) in each example is plotted in the diagram
on the left (Examples B and C use the same 7(w)). The diagrams in the middle and on the right
indicate the optimal stopping rules for ¢ = 1 and ¢ = 2 where the shaded portions are the reserving

regions.

7. Infinite Planning Horizon
Let us now attempt to extend the discussion into an infinite planning horizon.

From the following theorem and the fact that leading offers are always less than A°, the optimal
decision rule with an infinite planning horizon becomes that if h° < w, accept the current offer
w, or else continue the search without reserving it. This is the same result as in the conventional

optimal stopping problem with an infinite planning horizon (see Ikuta[6] and Sakaguchi[21]).

Theorem 7.1 v:(z) converges to max{(h®+s)/8, S(z)}, Wi(z) to {w | max{h?,z} < w}, and A}
to the solution of w = —r(w)+h°, ast — oo.

Proof: Let v(z) denote a function to which v;(2) converges as ¢ — co. Then We can affirm
v(z) = S(z) for h° < z from Lemma 8.2(b). From this and the fact that v(z) is nondecreasing in
z by Lemma 4.1(a), we also obtain v(z) < S(h°) (= (h°+s)/8) for 2 < h°. Now, letting z°(x) and

z"(w) be functions to which z(x) and z{{w) converge, we have

ofe) = [ max{s'(u), (&)} (w) )

2°(z) = n(:ax{n:, —s+pBv(z)}, (7.2)

z"(w) = max{w, —r(w)—s+Lv(w)}. (7.3)

Accordingly, W(z), a set to which W;(z) converges, can be written W(z) = {w | 2°(z) < z"(w)}.
To prove the theorem, we consider two cases: (1) 8 <1 and (ii) 8 =1.

(1) In the case of 8 < 1, it suffices to verify that only the function v(z) = (h°+s)/8 for = < A?
satisfies Eq.(7.1). For this, we first check that it satisfies Eq.(7.1) and then show that the other
finite function %;(z) for z < h° cannot satisfy the equation.

Inserting v(z) = (h°+s)/B into Eq.(7.2), we have 2°(z) = max{z, h°} = h° for < h°, and thus
W(z) = {w | k* < 2"(w)} for z < A°. Under the assumption of v(w) = (A°+s)/8 for w < A%, it
follows that z"(w) = max{w, —r(w)+h°} < h° for all w < h°. Furthermore, h° < z"(w) (= w) for
all w > h° from Eq.(7.3). Hence we have W{z) = {w | h° < w} for z < h°. For these reasons, the
right-hand side of Eq.(7.1) for z < h° becomes

fW(w)z (wdFte) + /w(z)fo("‘)dF (w) = f: w dF(w) + f:o 1® dF(w)

b
= f max{h®, w}dF(w)
a
= 8(h%) = (h°+s)/B. (7.4)
Therefore, v(z) = (h°+s)/8 for © < h° satisfies Eq.(7.1).
Next, assume that another finite function #(x) for z < h° also satisfies Eq.(7.1), or,

3(z) = / ’ max{z"(w), 2°(z)}dF () (7.5)
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where z"(w) = max{w, —r(w)—s+p%(w)} and 2°(z) = max{z, —s+p88(z)}. Let A = sup, |v(z) —
9(z)| where clearly 0 < A < 00. By using the general formula

| max{ay, b1} — max{as,bs}| < max{|ai — a2/, [t — b2}, (7.6)

we immediately get from Eqgs.(7.1) and (7.5) that

v(z) — 2(2)| < f: max{|z"(w) — 2" (w)], |2°(2) — 2°(2)[}dF (w). (7.7)

Since |z"(w) — 2" (w)| < B4 and |z°(z) — 2°(z)| < BA from Eq.(7.6), it follows from Eq.(7.7)
that |v(z) — 3(z)| < BA, yielding A < SA. Since this is contrary to 8 < 1, no functions except
v(z) = (h°+3)/B for = < h° satisfy Eq.(7.1).

(ii) In the case of 8 = 1, we use the notation v(z, 8) and h°(8) instead of v(z) and h°.

As stated in the beginning of the proof, »(z,1) < (h°(1)+s)/1 holds for z < h°(1). Simply
inductive argument gives v(z, ) < v(z,1) for all z. It is already verified that (A°(8Hs)/8 < v(z, B)
for all z whenever 8 < 1. Combining these three facts, we obtain

(h°(B)+3)/B < v(=,B8) < v(z,1) < (B°(1)+s)/1 (7.8)

for ¢ < h°(1). Lemma 3.1(d) affords that (h°(8)+s) — (h°(1)+s)/1 as § — 1. Hence it follows
that v(z,1) = (h°(1)+s)/1 from Eq.(7.8).

From (i) and (ii), it follows that v;(z) converges to (h°+s)/8 for » < h°, and consequently,
v(z) = max{(h°+s)/8, S(x)}. For such v{z), we have W(z) = {w | h° < w} for & < h° as scen
in (i). From this and Lemma 8.2(a), we obtain W{z) = {w | max{h°, 2} < w}. Finally, since
2" (w) = max{w, —r(w)+h°}, it follows that h] converges to h" which satisfies A" = —r(R")-+h°.

8. Reserving and Option Buying

The purpose of reserving an offer is to keep it recallable in the future and that of buying an
option is to make a profit on it while limiting the risk.

Both actions are similar in the point that they can be regarded as a trade of the right to choose
whether or not to do a specified trade. In this model, the specified trade means accepting the
reserved offer by the deadline, and in option buying, it means buying (call option) or selling (put
option) the underlying asset at the exercise price by the expiration date. To acquire the right, we
must pay the reserving cost or the premium and what we may lose by each action is limited to at

worst the reserving cost or the preminm.

On the other hand, both actions are different in the point that although offers with the same
value always require the same reserving cost, options with the same underlying asset, exercise
price, and expiration date have premiums varying with the market fluctuation. Furthermore, the
profit from any reserved offer is fixed at the moment of reserving, whereas that from any option
is not fixed until the moment of exercising or reselling. This is because the profit by accepting a
reserved offer depends only on its value and this remains unchanged, while that by exercising an
option depends not only on the exercise price but on the underlying asset price at the moment of

exercising. In addition to this reason, reserved offers are assumed not to be resold to someone else,
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whereas held options can make a profit by being resold in the market. Hence, it also can be said
that only the leading offer is to be kept in mind, while all previously bought options are to be so.
Finally, although we deal with the reserving cost paid in the past as the sunk cost (see Eqs.(4.1)

and (4.2)), the premium should not be dealt as such since it is a critical factor in reselling.

For the reasons mentioned above, reserving an offer is apparently similar to buying an option,
but essentially different, so it is hard to directly apply the results of this study to the option trading
as it is. However, it should prove interesting when this study is extended in the direction of the

option trading problem.
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Appendix: Supplementary Lemmas

Lemma 8.1 2[(w) < kY for w < h?.

Proof: For all w < h{, it follows from Lemma 4.1(a) and Corollary 5.2(a) that
—r(w)—s+Pve_1{w) < —r(w)—s+Pvi_1(h7) < —s+Bve_1(h7) = R.

Hence, if w < h7, then two components of z{(w) are both less than AJ. 1

Lemma 8.2 For h° <z, (a) Wi{z) = {w | z < w} and (b) v(z) = S(x).

Proof: (a) From Corollary 5.2(a,b), if h° < z < w, then 20(z) < z[{w), and hence {w |z < w} C
Wi(z) for h° < z. Conversely, Lemma 5.1(b) shows W;(z) C {w | z < w} for all .

(b) We have already shown the case of ¢ = 0 in Lemma 4.1(a). For ¢t > 1, by using the assertion
(a), it follows that, for h° < z,

v(@) = f i (w)dF () + / * 2(2)dF(w) = f v dF(w) + f " dF(w) (8.1)

where the right-hand equation follows from Lemma 5.2(b,a). Since the last expression in Eq.(8.1)
becomes S(z), we have completed the proof. N

Lemma 8.3 z],;(w)—z] (w) < 2§, (2)—z{(x) for all w and = such that w > =.

Proof: To prove this lernma, it is enough to show (a) zf,,{w)—2{(w) < 2f,;(w)—z{(w) for all w
and (b) 28, (z)—2z{(2) is nonincreasing in 2.

(a) For any w, the inequality 2f..(w)—z{ (w) < 20\, (w)—2zf(w) is clearly of the form
max{w, —r+68} — max{w, —r+n} < max{w, 0} — max{w, 5} (8.2)

where 7 > 0 and 7 < & by Lemma 4.1(a).
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(b) Corollary 5.2(a) affords that 2, ,(z) — 2f(x) becomes B{vi(z)—vi_1(z)} for z < h° and 0
for h? < z. So it suffices to show that v;(z)—v;—;1(2) is nonincreasing in z < h°.

For any =1 and 2y with 2; < zs < h®, we obtain
wlor) = [ AP+ [ Aen)dF (), (8.3
w(or) = [ A@NF@) + [ 2a)dF(w) (5.4)
where W, = Wy(z1) and Wy = Wi(x3). From Theorem 5.4(a), or W) D W5, it follows that
wlea) —wler) = [ {etlan) — @)WF )+ [ (eben) A @)F@). (69)
Applying the fact of z{(x1) < 2f(w) for w € Wi to the second integral above, we obtain
wlea) ~walar) < [ {e0(en) = @}dF @) + [ {z2(es) = flen)}aF(w)
= (#e2) ~ () [, 4F@) < veaer) ~ s

where the last inequality follows from Corollary 5.2(a) and S fwg dF(w) < 1. Therefore it follows
that vi(z2) —ve—1(m2) < ve(z1) —vi—1(y) for all 1 < 22 < h°. Consequently, we also complete the
proof of the latter assertion (b). N
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