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Abstract

From the Ez Ante point of view, an axiomatization of decision making in a
game with pure strategies is given with considerations of its epistemic aspects in
propositional game (epistemic) logic, Qur axiomatization consists of four base ax-
ioms for predicted final decisions. One of them is an epistemic requirement, which
together with the others leads us to an infinite regress of the knowledge of these
axioms. This infinite regress is, in fact, the common knowledge of them. We give
meta-theoretical evaluations of the derivation of this infinite regress, and consider
its implications in the cases of solvable and unsolvable games (in Nash’s sense). For
a solvable game, it determines predicted decisions to be the common knowledge
of a Nash equilibrium, and for an unsolvable game, it is the common knowledge
of a subsolution in Nash’s sense. The latter result needs the common knowledge
of the additional information of which subsolution would be played. We give also
meta-theoretical evaluations of these results. :

1. Game Logic Approach and Meta-Theoretic Evaluations of Some Game
Theoretic Considerations

In this paper, decision making in a game is considered from the Ez Ante point of view
in an axiomatic manner. For such decision making, players’ knowledge and thinking
on the game situation are essential. To describe these epistemic aspects as well as
the game situation, we will use the propositional fragment of game logic developed in
Kaneko-Nagashima [14] and [15]. In the framework of game logic, Kaneko-Nagashima
[12], [14] presented base axioms for decision making, and showed that the axioms lead to
an infinite regress of the knowledge of the base axioms, which is the common knowledge
of them. Then they solved this infinite regress and showed that it determines the

*The research of this paper was partially supported by the Tokyo Center of Economic Research.



final decisions to be the common knowledge of a Nash equilibrium under the common
knowledge of the interchangeability of Nash equilibria. The objectives of this paper are
to evaluate the derivation of the infinite regress in a meta-theoretic manner; and to give
a full consideration of decision making in an unsolvable game as well as meta-theoretic
evaluations of it.

In the Ez Ante decision making, since each player makes a strategy choice before the
actual play of a game, the knowledge of the structure of the game as well as predictions
on the other players’ strategy choices may be needed. In the literature of game theory,
the Bayesian approach to this problem has been dominant since Harsanyi [6]. In the
Bayesian approach, the players’ knowledge is described by means of subjective proba-
bility on possible types of each player, and classical game theory is treated as a trivial
case — games with complete information. A game with complete information itself is,
however, not trivial in that it has at least the description of the constituents of a game.
Although the Bayesian approach has been shown to be quite rich in capturing various
economic problems, it is incapable in treating players’logical and mathematical abilities
as well as their knowledge of the descriptions of a game in a direct manner. This leads
us to the development of the game logic framework. .

Game logic is an infinitary predicate logic: infinitary conjunctions are allowed to

" describe common knowledge explicitly as a conjunctive formula, and it is a predicate
logic for the purpose of describing real number theory in its scope, since classical game
theory often relies upon real number theory. The objectives of [14] and [15] were to
develop the new framework and to show some possible applications. The purpose of
this paper is to give fuller discussions on the epistemic axiomatization of the Fz Ante
decision making in a game.

We meet two kinds of basic problems arising in the Ez Ante decision making:

(1): solution-theoretic problems;
(ii): existence-playability problems.

The first is the problem of how strategy choices are made; and the other is the existence
and playability of the solution concept obtained in (i). These problems interact with
each other. In this paper, we give the solution-theoretic consideration of the Ez Ante
decision making problem for a finite game with pure strategies, and will give small
results on the playability problem. .

When we restrict our attention to games with pure strategies, some games might
not playable because of no Nash equilibria in pure strategies. When we allow mixed
strategies, existence is obtained, but some form of real number theory is involved and
is assumed to be known to players, which is a stringent requirement. If a game has
a Nash equilibrium in pure strategies, playability is not so serious as in the case with
mixed strategies, though some playability problems may remain for such a game. From
the playability point of view, the cases with and without mixed strategies are totally



different, but from the solution-theoretic point of view, they do not make much differ-
ences. The solution-theoretic considerations given in this paper can be carried over to
the case with mixed strategies.

The playability of a game with mixed strategies will be discussed in a separate paper.
Restricting our attention to games with pure strategies, the propositional fragment of
game logic suffices for our considerations. oo ‘

A merit of the game logic approach is not only to help us describe the epistemic
aspects of decision making in an explicit manner, but also to enables us to evaluate
such descriptions and resulting outcomes from them in a meta-theoretic manner. The
undecidability result given in Kaneko-Nagashima [14], that the existence of a unique
Nash equilibrium is common knowledge (in mixed strategies) but the players cannot
know what the Nash equilibrium is specifically, is an example of such meta-theoretical
evaluations. The main contributions of this paper are meta-theoretical evaluations of
the axiomatization and of the resulting outcomes from it.

Our axiomatization consists of four base axioms for predicted final decisions: D1:
Best Response to Predicted Decisions; D2: Identical Predictions; D3: Knowledge of Pre-
dictions; and D4: Interchangeability of Predicted Decisions. The first two simply induce
Nash equilibrium, but they together with the others go much further. The third is an
epistemic requirement, and the fourth is a requirement of independent decision making.
These two additional requirements differentiate substantially our theory from classical
Nash equilibrium theory.

The third axiom together with the second leads us to an infinite regress of the
knowledge of those four axioms, which forms the common knowledge of them. We will
evaluate this derivation. The evaluation states that to complete the axiomatization, we
‘meet necessarily, the infinite regress. The introduction of an epistemic structure also
enables us to demarcate playability from the mere knowledge of the existence of a Nash
equilibrium, which will be discussed in Subsection 5.2. One result differentiates the case
where the players have abstract knowledge of a game from the case where they know
the concrete structure of it.

The fourth axiom demarcates between the solvable and unsolvable games in Nash’s
[19] sense. For a solvable game, a predicted final decision profile is characterized to be the
common knowledge of a Nash equilibrium. For an unsolvable game, it is characterized
to be the common krowledge of a subsolution, where the players need to share some
information of which subsolution would be played. Without such information, the game
is not playable.

Our axiomatization can be regarded as a materialization of Johansen’s (8] informal
argument on Nash equilibrium. The seemingly self-referential nature of his argument
corresponds to our infinite regress of the base axioms. His claim that his postulates
determine a Nash equilibrium for a game with a unique Nash equilibrium is consistent
with our results. The comparison between his and ours will be given in Subsection



3.2. This paper is related also to Aumann-Brandenberger [1] in their objectives and
scopes. These authors considered some epistemic conditions for Nash equilibrium in
a Bayesian framework. The difference is that they concern necessary conditions for
Nash equilibrium, while our concern is the complete characterization of predicted final
decisions with meta-theoretical evaluations (the direct comparisons are difficult since
the frameworks are different).! _

As already stated, we use a propositional fragment of game logic of Kaneko-Nagashima
[14] and [15]. In fact, it is shown in Kaneko [9] that common knowledge logic developed
in Halpern-Moses [5] and Lismont-Mongin [18] can be faithfully embedded into our logic
{with a slight restriction on our logic). This implies that the results obtained in this
paper are all translated into common knowledge logic.

We repeat some results given in [12] and [14], but give proofs to some of them for
completeness. We distinguish the results already given by putting * from new ones.

2. Preliminaries

2.1. Game Theoretical Concepts in the Nonformalized Language

In this subsection, we give basic game theoretical concepts in the nonformalized lan-
guage, which will be redescribed in the formalized language in Subséction 2.3.

Consider an n-person noncooperative game g. The players are denoted by 1,...,7,
and each player i has {; (pure) strategies. We assume that the players do not play
mixed strategies. Player i’s strategy space is denoted by &; = {s;, .y Sit; }, and his
payoff function is a real-valued function g; on T = {s13,...,814,} X -+ + X {Sn1, e 8ns, }
for i=1,...,n. We call a vectorin T = Z; X --- X I, a strategy profile.

A strategy profile ¢ = (ai,...,an) is called a Nash equilibrium iff for i = 1, ..., 7,

gi(a) 2 gi(b;; a—;) for all b; € %,

where a.; = (@1, .; Gic1y g1y ey @n) A0A (bi58i) = (81, e Qimty By Gig1y ooy @n). We
denote the set of Nash equilibria by E,.
Consider a maximal nonempty subset E of E, which satisfies the interchangeability

condition:
a,b€ Eand i=1,..,nimply (a;;b-;) € E. (2.1)

This is equivalent to that a!,...,a™ € E implies (al,...,a?) € E, which states that if
each player i independently chooses his equilibrium strategy ai, the resulting profile
(a},...,aR) is also an equilibrium. We call such a maximal set a subsolution, which was

!Bacharach [2] is the seminal paper along the line of the research of this paper. Nevertheless, his
framework is not sufficient to facilitate the considerations of the epistemic aspects — for example, common
knowledge is not formulated in his framework explicitly.



introduced by Nash [19]. Each Nash equilibrium belongs to at least one subsolution. We
denote the subsolutions of game g by El ..., EJ. We stipulate that when E, is empty,
o = 0. When E, is nonempty, ¢ > 1. When ¢ = 1, game g is said to be solvable.?

521 Sg2 ’ 521 522
511 (2, 1)"l (0,0) . 811 »(2,2)*- (1,2)*
512 (0, 0) (1,2)* " S12 (2, 1)* (0, 0)
Table 2.1 Table 2.2.

The game (Battle of the Sexes) of Table 2.1 has E, = E} UE? = {(s11,591)}JU
{(s122,522)}, and is not solvable. The game of Table 2.2 is not solvable either and has
E; = E; U E? = {(s11,821), (S11,522) }U {(s11,821), (812, 521)}. Here (s11,52;) belongs
to both subsolutions. The games of Tables 2.3 (Prisoner’s Dilemma) and 2.4 have the
same equilibrium sets £y = {(s12,592)} and are solvable.® :

S21 S22 S21 S22
s11 (5,5) (1,6) si1 (5,5) (1,1)
512 (6,1) (3,3)* 812 (6,1) (3,3)*
Table 2.3 Table 2.4

In the next subsection, we give a formal logic in which a game as well as such other
- epistemic constituents are described. ‘

2.2. Game Logic GL,

In the following, we use some terms of predicate logic. Since, however, we use neither
variables nor quantifiers, the following logic is essentially propositional.

We start with the following list of symbols:

constant symbols: s13, ..., 814;; 8215 104352455 +er} Splyeeey Sndy,

binary predicate: = ;

2n—ary predicates: R;,..., R, ;

n-ary predicates: Dy,...., D, ;

knowledge operators: K, ..., K, ;

2Zero-sum two-person games are solvable if they have Nash equilibria. Other sufficient conditions
for solvability are found in Kats-Thisse [17). A study of subsolutions is found in Jansen [7] (see also its
references). '

3We can modify the games of Table 2.2-2.4 5o that they keep the same equilibrium sets but have no
dominance structures. See Subsection 7.3,



logical connectives: - (not), D (implies), A (and), V/ (or) ;
parentheses: (1, ). '

As introduced in Subsection 2.1, the constants s;;, vy S14} 521540352857 +oe Splyeeer Snly
are the players’ (pure) strategies. The birary predicate = is intended to describe iden-
tity between strategies for each single player. The 2n-ary predicate R.(...;...) is player
i's preferences over strategy profiles describing his payoff function g;. The n-ary pred-
icate Dy(...) describes player i’s prediction of the players’ strategy choices, that is,
Di(ai,-..,an) means that player i predicts that players 1,...,n could choose @1, .00y Gy, @S
final decisions in their ez ante decision makings. Of course, a; itself is i’s own possible
decision. These predicates Dy, ..., D, will be determined by the specific axioms which
will be given in Section 3. By the expression K;(A), we mean that player 7 knows that
a formula A is provable from his basic knowledge.

First, we develop the space of formulae. For any strategies a;,b; in Z; (a; and b;
may be identical and j = 1,...,n), (a; = b;) is an atomic formula, and for strategy pro-
files (ay, ..., @n), (b1, ..., bs) in T, the expressions Ri(ai, .., an; by, ..., b,) and Di(ay, ..., a5)
(i = 1,...,n) are also atomic formulae. These atomic formulae correspond to proposi-
tional varjables in the standard formulation of propositional logic. Since the number of
strategies is finite, so is the number of atomic formulae. :

Let P° be the set of all formulae generated by the standard finitary inductive defi-
nition with respect to -, > and Kj, ..., K, from the atomic formulae. That is, P° is the
set of 0-formulae defined by the following induction:

(0-i): any atomic formula is a 0-formula;
(0-ii): if A and B are 0-formulae, so are (m4), (A4 D B) and K;(A).*

Suppose that P* is already defined (k = 0,1,...). Then P*+1 is the set of (k + 1)-
formulae defined by the following induction:
((k+1)-i): any formula in P* U {(A ®),(V®) : & is a nonempty countable subset of
P*}is a (k + 1)-formula;
((k + 1)-ii): if A and B are (k + 1)-formulae, so are (~A),(4 D B) and Ki(A).

We denote [ Jy,, P* by P¥.® An expression in P¥ is called a formula. We abbreviate
A{A; B} and V{A,B} as AN B and AV B, and (A > B)A(B D A) as A = B. We also

*and all O-formuale are obtained by a finite applications of theose steps. We will not add this
qualification in the following inducitve definitions.

5Note that A @ and \/ & may not be in P“ for some countable subsets & of P¥. However, the space
P islarge enough to discuss common knowledge.

The space P is a relatively small fragment of the space of infinitary formulae corresponding to that
in Karp [16]. Nevertheless, P* is already uncountable. Some smaller, countzble, space of formulae
suffices for our purpose. For example, a countable and constructive space of formulae is provided in
Kaneko-Nagashima [12]. We adopt the above space for presentational simplicity.



abbreviate some parentheses in the standard manner. Also, we call & an allowable set
iff @ is a nonempty countable subset of P* for some k < . ,

The primary reason for our infinitary language is to express common knowledge
explicitly as a conjunctive formula. The common knowledge of a formula A is defined
as follows: For any m > 0, we denote the set {K; K;,..K;,, : each K}, is one of Ky, K
and 4 # deqy for ¢ = 1,...,m — 1} by K(m). We assume that K(0) consists of the null
symbol e (i.e., e(4) is A itself for any A). We define the common knowledge formula of
A as

NE(4): K €. | K(m)}, (2.2)

m<w
which we denote by C(4).If A is in P¥, the set {K(4) : K € {J,,,, K(m)} is a countable
subset of P¥, and its conjunction, C(A), belongs to P*¥+1 by ((k+1)-i). Hence the space
P¥ is closed with respect to the operation C(-).

Note that A itself is included as a conjunct in C(A), since K(0) = {e}. In this sense,
according to the literature of epistemic logic, C(4) is “common knowledge” instead of
“common belief” which is defined to be the conjunction obtained from (2.2) by excluding
A,

Base logic GLyg is defined by the following five axiom schemata and three inference
rules: for any formulae 4, B, C and allowable set P,

(L)} AD(BD A);
(L2): (AD(BD2C)D>((ADB)>(A>C));
(L3): (=AD-B)D((~ADB)> A);

(L4): A® D A; where 4 € &:

(L8): AD V@&, where A € &;

ADB A

5 (MP)

{A>B:Bcd) {ADB:Ac®)
A5 pAe  (ARue) YERY:

These axioms and inference rules determine base logic GLo.
We define game logic GL, by adding the following axiom schemata and inference
rule to GLg: for any formulae 4, B and § = 1,

(MP,‘): K (AD B)/\K,'(A) D Ki{(B);
{Li): -Ki(~AAA);
(PL): K (A) D K K;(A);

(V -Rule).



(C-Barcan):  A{K:K(A): K € Upne, K(m)} D KiC(4);®

and
A
Ki(A)
We will abbreviate Necessitation as Nec, and use MP;, .L;, PI; as generic names for those
for different 7 . ’

A proofin GL, is a countable tree with the following properties: (i) every path from
the root is finite; (ii) a formula is associated with each node, and the formula associated
with each leaf is an instance of the axioms; and (iii) adjoining nodes together with their
associated formulae form an instance of the above inferences. We write ,, A iff there
is a proof P such that A is associated with the root. For any subset I' of P¥, we write
by Aiff b, A® D A for some nonempty finite subset & of I'. When I' is empty,
I'ky, A is assumed to be k-, A itself. We also abbreviate TU® F, A,TU {B}F, A as
IOk, A,T,BF, A,etc.”

We will use the following facts without references (see Kaneko-Nagashima [14)).

(Necessitation):

Lemma 2.1. Let T', © be sets of formulae, and @ an allowable set of formulae. Then
(1: '+, ADFBand®r, BD>C,thenT,0F,ADC:

(2): Fu A® if and only if F, 4 for all A € &;

(3): Fu K A®) D A Ki(®), and if ® is a finite set, then ., Ki(A 8) = A K:(®), where
K;i(®) is the set {K;(A): 4 € 3);

(4): Fu VE(®) D Ki(V &).

Axiom MP; and inference rule Nec in addition to GlLg give the complete logical
ability to each player (see [14]). Axiom L; requires the knowledge of each player to be
consistent. This is considerably weaker than the Veridicality Aziom: Ki(A) D A.In
the literature of epistemic logic, K; is sometimes called the belief operator in the logic
without the veridicality; but we use the terminology “knowledge” since the distinction
does not play an important role in this paper. Axiom PI;, called the Positive Introspec-
tion, means that if player 1 knows A, he knows that he knows A. In fact, these logical

*Kaneko [10] imposes a further restriction on C-Barcan that (i) each Barcan formula 4 contains no
infinitary disjunctions and (ii) if it contains an infinitary conjuction, then it is C(B) for some B. Then
he proved that common knowledge logic, based on KD4-axioms), considered in Halpern-Moses [5] and
Lismont-Mongin 18] into game logic GL. and that GL, is a conservative extension of the fragment
obtained by this embedding. The restriction does not prevent any argument in this paper (here we did
not assume it because we do not use it). Hence all the results in this paper can be converted to common
knowledge logic.

"Since QL. has Nee, nonlogical axioms should be introduced in this manner, instead of being initial
formulae in a proof. For the treatment of nonlogical axioms in a logic with Nec, see Kaneko-Nagashima
[13}. .



and introspective abilities of the players are common knowledge in GL, (see [14]). Since
the finitary propositional modal logic defined by MP;, L;, PI; and Nec in addition to
classical propositional Idgic is called KD4, our logic is an infinitary extension of KD4
with C-Barcan.® :

Axiom C-Barcan is called the common knowledge Barcan aziom. For the develop-
ment of our framework, C-Barcan will be used to derive the property: ' '

Fo C(4) D KiC(4) fori=1,..,n. (2.3)

That is, if A is common knowledge, then each player i knows that it is common knowl-
edge. This property will play an important role in the epistemic axiomatization of final
decisions in later sections. It is proved as follows:

Proof of (2.3)": Let K be an arbitrary element in Ume<w K(m). When K; is not the
outermost symbol of K, we have , C(4) D K; K (A) by L4. When K; is the outermost
symbol of K, we have -, K(A) D K;K(A) by PI;. This together with +,, C(A) D K(A)
implies Fy, C(A4) D K;K(A). Thus b, C(4) > K;K(A) for all K € Um<w K(m).
Hence b, C(4) O A{K:K(A): K € Upeo K(m)} by A-Rule. By C-Barcan, we obtain
o C(A) D K;C(A). 0

In fact, it is proved in Kaneko [10] that (2.3) is not provable without C-Barcan.

When we restrict the use of axioms and inference rules to those of GLg, we denote
the provability relation by kg . Logic GLg is an infinitary extension of classical finitary
propositional logic; and also, it can be proved that it is sound and complete with respect
to the standard two-valued semantics with the straightforward modifications of validity
for infinitary conjunctions and disjunctions. We briefly review those results to make
subsequent argutnents simpler,

An assignment 7 is a function to {T, L} from the set of all formulae which are
atomic or are expressed as K;(5) for some B and i. We first define the truth relation
[=r relative to an assignment 7 by the following induction on the structure of a formula,
in Pw :

(T0): for any formula A which is atomic or is expressed as K;(B) for some B and 1,
= A if and only if 7(4) = T; '
(T1): = A if and only if not |=, 4;
(T2): =+ A D B if and only if not |=, A'or =, B;
(T3): |=» A®if and only if =, A for all 4 € ®;
(T4): =y V & if and only if |=, A for some 4 ¢ &.
*The logic obtained from KD4 by the replacement of Liby Veridicality is called S4. In 54, the truth

of knowledge can be defined relative to the investigator, while in KD4, knowledge is required only to be
consistent within each player. In this sénse, KD4 is a logic of cognitive relativism.




Then the following soundness-completeness holds.

Theorem 2.1.*(Completeness for GLg): For any formula 4, ko A if and only if }=, A
for any assignment 7. 9

When =, A for any 7, A is called a tautology in GLg. Then we can use tauntologies
as initial formulae in a proof in GL,, instead of instances of L1-L5. This fact may be
used in the subsequent analysis. ' '

For subsequent uses, we mention the standard soundness-completeness theorem.
We say that a formula A is finitary iff it contains no infinitary conjunction and no
disjunctions, and that A is nonepistemic iff it contains no K;, 7 = 1,...,n. We denote
the set of all nonepistemic finitary formulae by P% The space Pf is closed with respect
to =, D and finitary A,V . When we restrict the language of base logic GLg to P!, the
resulting logic is classical propositional logic, which we denote GLE. Base logic GLyg is
a conservative extension of G4, i.e., for any 4 € P¥,

if ko A, then A is provable in GLE, . (24)

and, of course, the converse holds. Therefore soundness-completeness is modified as
_ follows: for any A € Pf,

Fo A if and only if =, A for any assignment 7 over the atomic formuale.  {2.5)

The equivalent soundness will be used: if there is an assignment 7 over the atomic
formulae such that =, A, then A is consistent with respect to lo. We will refer to this
as Soundness for GLE.

Let A be a formula in P“. Then ¢4 is the formula obtained from A by eliminating
all the occurrences of K1,..., Ky, in A, and T is the set {¢4 : A € I'} for any set ' of
formulae. Formula ¢4 is nonepistemic, and if A is nonepistemic, 4 is A itself. For ex-
ample, e(Ki(A) AKi(A D B) D Ki(B)) is eAA(eA D €B) D B, and e(-K;(AA-4))
is =(¢eA A—eA). For every instance A of the epistemic axioms, ¢4 is a nonepistemic
provable formula with respect to ko and every instance of Nec becomes a trivial infer-
ence with an application of €. This is the reason for Lemma 2.2.(1). We have also the
other lemmas (see Kaneko-Nagashima [14]).

Lemma 2.2.(1)*: If ', A, then <l Fg £A.

(2)*: T ko Aor '+, A, then C(T) ., C(A), where C(I') = {C(B): B € T'}.
Lemma 2.3.(1)*: +, C(A D B) D (C(4) D C(B));

(2)*: if C(T) ky A4, then C(T) by, Ki(A) fori=1,...,n.

®This can be proved with 2 slight modification of the staridard proof of the completeness theorem
for classical propositional logic (cf., the previous version (1991) of Kaneko-Nagashima [14]).

10



Lemma 2.4. Let ® be an allowable set of formulae. Then
(1)*: Fu C(A®) D AC(®), and if & is 2 finite set, then F,, C(A )= AC(®);
(2)*: F,VC(@) D C(V 8).

2.3. Game Theoretical Concepts in the Formal Language. Ppw

Now we describe, in the formalized language P, the game theoretical concepts given
in Subsection 2.1.
First, we make the following axiom: for all distinct a;,b; € E,-_ (i=1,..,n),
Axiom (Eq): ¢; = a; and ~(a; = b;).
We denote the set of instances of this axiom by Eq, which is a finite set of formulae. In
the following, we identify the set of instances of an axiom with the axiom itself,
Second, we describe the payoff functions g;, .y gn In terms of predicates Ry, ..., R,
as follows: for strategy profiles a,b,a’,b’ with gi{a) > gi(b) and g:(a’) < gi(¥") and
t=1,..,n, :
Axiom (G): Ri(e;b) and -R;(a’; ¥'). :
This axiom describes the payoff functions g, -y gn as preferences Ry,...,R,. It holds
that for any a,b € I, either G Fy Ri(a;b) or G kg =~ Ri(a;d).
In the game of Table 2.1, Eq is the set {s;; = sy :i= 1,2 and ¢ = 1,2} U {-sy =
siwit=1,2andt,/ = 1,2 witht # ¢/ }, and G is the union of the preferences of players

1 and 2. Note that G contains both positive and negative preferences.
We define the Nash equilibrium property to be the formula:

/f\ /\ Ri(a: yi;a-), (2.6)

) i=1 yEL;
which we denote by Nash(a). Since either G I Ri(a;b) or G k¢ ~R;(a;b) for any
a,b € I, Nash{a} is also decidable for any ¢ € £ under Axiom G, that is,
either G o Nash(a) or G ko -Nash(a). (2.7)
Also, it holds that
G ko Nash{a) if and only if a € E,. (2.8)

The right-hand side of (2.8) is a statement in the nonformalized language. Thus (2.8)
relates the statement “a is a Nash equilibrium” in the formalized language to the nonfor-
malized eztensional counterpart. The right-hand side can be described in our formalized
language as follows: .

V (/n\ o= w) - 29)

yeE; \i=1

11



This is the extensional definition of Nash equilibrium in our language. This formula is
denoted by Nash®(a). Of course, Nash(a) is the basic definition of Nash equilibrium,
and Nash®(a) is a representation of it. Under Eq, this is also decidable for any a € &,
i.e., Eq Fo Nash®(a) or Eq ko ~Nash®(a). Without Axiom G, however, Nash®(a) does
not have the meaning “Nash equilibrium”.

If we try to give an intensional definition of a subsolution, it would involve the
second-order consideration, which is not allowed in our language.’® Hence we give the
extensional definition of a subsolution in our formal language. We denote the following

formula by Sol*(a): .
V (/\ a; = y:') (2.10)

yEE# i=1

for k = 1,...,0. The formula Sol*(a) describes “a belongs to the subsolution Ek,
Lemma 2.5.(1): Eq,G ko /\a:EE (‘Na,sh(m) = NashE(m)) ;
(2): Eq,G ko /\z (Na,sh(a:) = \/:=1 Sol’“(a:)) .
Proof. We prove (1). Let a be an arbitrary profile. Suppose G FoNash(a). Then
a € E; by (2.8). Thus Eq k¢ vyeE, (/’\i a; = y‘-), i.e., Eq kg Nashﬁf(a). Since Nash(a)
is decidable under G by (2.7), we have proved Eq,G Fp Nash(a) O NashZ(a). Noting
that Nash®(a) is decidable under Eq, we can repeat a similar argument to have Eq,G
o Nash®(a) > Nash(a). Thus Eq,G b Nash®(a) = Nash(a). Since a is an arbitrary
profile, we have Eq,G o /\z (Nash(:t:) = Na,shE(:n)) . O

In Section 6, we need to assume that these equivalences are common knowledge

among the players. If we assume that Axioms Eq and G are common knowledge, these
equivalences are common knowledge, particularly, (2) becomes

C(Eq),C(G)F, AC (Na,sh(a:) =\ Solk(a:)) . (2.11)
z k=1
This follows from Lemmas 2.5, 2.2.(2), 2.3.(1), and 2.4.(1). Note, however, that the com-
mon knowledge of the equivalence of Nash®(a) and \/:: 1Sol"(a) is provable without
these axioms, Le., ko A_C (Na.shE(m) = v:zl Sol"(:c)), since this is simply exten-
sional equivalence.
In Section 4, we argue that if Eq and G are not common knowledge, the common
knowledge of the equivalence of (2.11) is not provable.

1%A logic including variables representing sets. Kaneko-Nagashima [12] formalized a subsolution in
the first-order language, but it was not satisfactory.
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Note that Axioms Eq and G are consistent with respect to kg, i.e., there is no formula
A such that Eq,G kg ~A A A. This can be proved by constructing a model for them by
the Soundness Theorem for GL§. This consistency implies that C(Eq) and C(G) are
also consistent with respect to I, by Lemma 2.2.(1). We will use this consistency in
Sections 5 and 6.

3. Final Decision Axioms and Johansen’s Afgument

3.1. Final Decision Axioms

In a given game g, each player deliberates his and the others’ strategy choices and may
reach some predictions on their final decisions. Now we describe these “predictions”
by n-ary predicates Dy, ..., Dy, that is, each D;(e;, ..y 85,) means that player ¢ predicts
that players 1, ...,n could choose (a1, ...,a,) as their final decisions, where @, is his own
decision. Note that each player’s prediction may not be uniquely determined.

The following are base axioms for D;(), ..., Dn(-): for each i = 1,...,n,

Axiom D1f: A\ (D,-(a:) p) /\w Ri(ziz_i:yii o ) ;
Axiom D20 : A_ A (Di(=) > Dj(=));

Axiom D3¢ : A_(Di(z) > Ki(Di(x)));

- Axiom D4¢ : A, A AL (Di(=) ADily) D Di(=539-3)) -

These are verbally as follows:

D1¢: (Best Response to Predicied Decisions): If player i predicts final decisions L1y T
for the players, then his own final decision z; maximizes his payoff against his prediction
z_;, that is, z; is a best response to z_;.

D2P: (Identical Predictions): The other players reach the same predictions as player i’s.
D3?: (Knowledge of Predictions): player i knows his own predictions.
D49: (Interchangeability): Player i's predictions are interchangeable.

In fact, D27 may be unnecessary for each player’s decision making, depending upon
a game. In some games such as Prisoner’s Dilemma having dominant strategies, each
player does not need to predict all the others’ decisions for him to make a decision.
In this case, he does not infer the others’ decisions. However, of course, it is possible
to assume that each player predicts all the others’ to make a decision. This is a basic
assumption for our axiomatization, and ‘we focus on the above system of axioms exclu-
sively in this paper. A “weaker” system of axioms is considered in Kaneko [11], which
is remarked in Subsection 7.3.
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These axioms are requirements for decision (prediction) making in the mind of each
player i = 1,...,n. Hence we assume that these axioms hold and are known to player i.
These are described by

KF(D19) .., K}(D4Y),

where K;*(A) denotes A A Ki(A). We denote these formulae by D1; ,..., D4;, respectively.
Now, the problem is whether these axioms-determine “unknown” predicate D;(-) in
terms of the “primitives”, sy1,...,814; -} Snl,-+»Sntys R1yeeey Bn and Ky, ..., Kp. In the
following, we denote D1 A ... AD4? and D1; A ... AD4; by D(1-4) and D;(1-4).

Notice that D;(-)’s occur in Axiom D2; for all j. These D;(-)’s are determined by
other D;(1-4)s. If D;j(1-4)’s are not known to player ¢, then D;(-)’s would be just
symbols without meaning. Hence D2; do not make sense for h1m without knowing
D;(1-4)’s. In fact, the axiom, D;(1-4), of player i does not imply D;(1-4).

Proposition 3.1. Let 4,7 be distinct players. Then

(1): neither D;(1-4) k-, D%(1-4) nor D;(1-4) b, ~DY(1-4);

(2): neither Dy(1-4) I, D;(1-4) nor D;(1-4) k-, -D;(1-4);

(8): neither D;(1-4) F,, K:(D;(1-4)) nor D;(1-4) - K;(D;(1-4)).

Proof. We prove only the first assertion of (3). Suppose D;(1-4) k-, K,-(D_,-(l—é)),
i.e., Fy Di(1-4) D Ki(D;(1-4)). By Lemma 2.2.(1), ko €D;(1-4) D eK;(D;(1-4)), which
lmphes Fo DY(1,2,4) D DY(1,2,4), since eD3 is equivalent to /\ (Dr(z) D Di(z)).

Hence |=r D?(1,2,4) > D9(1,2,4) for any assignment T over the atomic formulae by

Soundness for GLf However, we can construct an assignment 7o over the set of atomic
formulae such that [Fro D(1,2,4) but not =5, DY(1,2,4), a contradiction. Therefore it
is not the case that D;(1-4) b, Ki(D;(1-4)). O

We denote /\ij(1—4) by D(1-4). Proposition 3.1 implies that for D;(-)’s to be

meaningful in Axiom D2;, we should assume K;(D(1-4)) as well as D{1-4). In fact,
these are still insufficient to determine the meanings of all D;(+)’s in K;(D(1-4)), which
will be discussed in Section 4. Here we state only the following undecidability:

neither D(1-4) Fy, K; (D(1-4)) nor D(1-4) ko =K (D(1~4)). (3.1)

That is, the knowledge of D(1-4) is not derived from D(1-4). In Section 4, we will give
a general version of this claim, which leads to the infinite regress of the knowledge of
D(1-4), i.e., the common knowledge of D(1-4).

Before going to the next subsection, we give some simple observations on the above
axioms. In the following, we denote /\ Dt2 and /\ Dt; by Dt® and Dt for t = 1,...,4,

and D1° AD29 and DIAD2AD4 by DO(1,2) and D(1,2,4), etc.

14



Lemma 3.2. D%(1,2) by /\x {Di(z) D Nash(z)).

Proof. Let a be an arbitrary profile. Since D20 o Di(a} D Dj(e) and D1° k¢ Dj{a) D
/\y_,- Rj(aj;a—; : yj;a-;) for all 4,5, we have D%(1,2) +o Di(a) D /\w Ri(ajia_; :
yj;a~;) for all 5. Thus D9(1,2} ko Di(a) D /\j /\y,- Ri(aj;a_; @ yj;a-;) by /\-R‘uFe,
ie., D°(1,2) ko Di(a) D Nash(a). Hence we have the assertion. O

Thus, Nash equilibrium is a necessary condition of Axioms DO(1,2). In fact, we will
show in our full axiomatization that D;(a) implies C(Nash(a)), i.e., it is the common

knowledge that a is a Nash equilibrium. The following lemma is indicative of this com-
mon knowledge result,

Lemma 3.3. D(2,3) I, /\z (Dj(z) O Ki(Dy(z)))for any i, 7, k (3, j, k may be identical).
Proof. Let a be an arbitrary profile. Since D2 ., K; (Di(a) > Di(a)), we have D2
bo Ki(Di(a)) O Ki(Dr(a)) by MP; and MP. Since D2 F, Dji(a) D Di(e) and D3
o Di(a) O Ki(Di(a)), we have D(2,3) ko, Dj(a) > Ki(D;(a)). Hence we have D(2,3) b,
Dj(a) D Ki(Dg(a)). This implies the assertion. 0O

We prepare one more lemma, which will be used in the later sections.

Lemma 3.4.(1): eD(1-4) is consistent with respect to i (eD(1-4),D;(a) is also
consistent). ‘

(2): ko D(1-4) does not hold.

Proof.(1): £D(1-4) is equivalent to D%(1,2,4) with respect to o . To prove that
D%(1,2,4) is consistent, it suffices to show one assignment = on the atomic formulae
so that =, D%1,2,4), by Soundness for GLf. Define an assignment r so that T(Di(a)) =
L for all profiles @ and ¢ = 1,...,n. Then D1°,D2° and D4° are true in 7 in the trivial
sense. Hence D(1,2,4) is consistent with respect to .

(2): Suppose ko, D(1-4). Then ko eD(1-4), i.e., ko D°(1,2,4), by Lemma 2.2.(1). How-
ever, we can construct an assignment 7 in a similar manner as in (1) so that D%(1,2,4)
is false. Hence o D°(1,2,4) is not the case. Thus F,, DO( 1-4) is not the case, too. O

3.2. Comparisons with Johansen’s Argument

Now we look at Johansen’s [8] argument on Nash equilibrium from the viewpoint of the
above axiomatization. Johansen proposed four postulates for rational (individuglistic)
decision making in a game. We reproduce them with slight modifications in terminology:

(J1): A player makes his decision a; € E; on the basis of, and only on the basis of
information concerning the strategy sets Zy,..., Xy, and preferences Ry, ..., B,.
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(J2): In choosing his own decision, a player assumes that the other players are rational
in the same way that he himself is rational. :

(J8): If some decision is the rational decision to make for an individual player, then
this decision can be correctly predicted by the other players.

(J4): Being able to predict the actions to be taken by the other players, a player’s own
decision maximizes his preference relation corresponding to the predicted actions of the
other players.

Johansen (8] argues that if a game possesses a unique Nash equilibrium, then each
player’s Nash strategy is the unique choice satisfying these four postulates. He claims
also that the uniqueness of a Nash equilibrium is for simplicity and that interchange-
ability suffices for his argument ([8], p.424).

To make comparisons between Johansen’s postulates and our approach, we should
be conscious about one important difference. Johansen’s postulates describe the whole
situation he is considering. On the other hand, our axioms conmstitute a part of the
description of the game situation — the description of logical abilities is made separately
in GL,. Therefore we should consider the correspondence between his postulates and
our entire approach, and then compare our results with Johansen’s claim.

Postulate J1 can be regarded as fulfilled by our approach in that the primitives
are available strategies Iy, ..., ¥, and preferences Ry, ..., Ry but the players’ knowledge
described by Ky,..., K, are implicit in Johansen’s postulates.

Postulate J2 may be interpreted in our axiomatization as meaning that each player
i follows the final decision axioms assuming that the other players assume these axioms,
too. This interpretation may be formulated as assuming D(1-4) A K;(D(1-4)) for i =
1,...,n. At the more fundamental level, it is interpreted also as including the assumption
that every player has a (complete) logical ability as well as knows (or assume) that the
other players have the same logical abilities. In the latter sense, J2 partially corresponds
to our GL,, (which may be an overinterpretation of Johansen).

Postulate J3 corresponds to the assertion of Lemma 3.3 rather than Axiom D3 1tself
This postulate requires that each player be conscious about his and others’ “rational
decision making”. These four postulates require each player to know the postulates
themselves for his “rational decision making”. In this sense, Johansen’s postulates look
self-referential. Bernheim [4], p.486 criticized Johansen’s postulates as ambiguous and
self-referential. The same difficulty is involved in our axiomatization: we need to assume
that each player ¢ knows D(1-4), and this leads to an infinite regress of the knowledge
of D(1-4), i.e., the common knowledge of it. In our case, the ambiguity is avoided
by formulating the whole situation in game logic, and the self-referential becomes the
infinite regress, which will be solved later.

Postulate J4 corresponds to Axiom D1. This has often been used, but we should
be critical of its use. It is imposed since, in Johansen’s argument as well as in ours, we
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consider predicted final decisions after sufficient deliberation before the actual play. We
do not assume it in intermediate steps in decision making. This is a totally different
Justification of the best response property than the one by the “perfect” competition in
economics.!?

We claim that our entire approach is a materialization of Johansen’s [8] argument.
This claim will be clearer in Sections 4-5, where we will show that the knowledge of
our axioms lead to an infinite regress and show that the infinite regress determines the
commorn knowledge of Nash equilibrium as its solution.

The last comment is on the nonstochastic treatment of our notion of “predictions”.
Our formulation is a full description of a game situation, and nothing relevant for each
player’s decision making is hidden, which was stated above. Even if predictions are not
uniquely determined, there is no reason to put more weights to some than to others.
This does not mean that every prediction is assigned an equal probability. Instead, each
prediction is logically possible. In this sense, we are treating “intrinsic” uncertainty.12

4. Infinite Regress of the Knowledge of the Axioms and its Evaluations

In this section, we show that the process of making Axioms D1 to D4 meaningful leads
to an infinite regress of the knowledge of D(1-4), i.e., the common knowledge of D(1-4),
and then make proof-theoretical evaluations of this infinite regress.

4.1, Infinite Regress of the Knowledge of the Final Decision Axioms

Axioms D1 - D4 seem to need each player to know these axioms. This necessity could
.be found by looking at Lemma 3.3 carefully. It requires that each player know any
other players’ predictions on final decisions, but this requirement could not be fulfilled
unless the meaning of “predictions on final decisions” is given to the players. In fact,
the meaning is determined by the above four axioms themselves. Therefore we should
assume in addition to these axioms that each player knows them, i.e., Ki(D(1-4)) for
i = 1,...,n. Recall that D(1-4) is D1A ... AD4.

Once the players are assumed to know these axioms, each knows the consequences

In the definition of the rationalizability of Bernheim [3] and Pearce [21], the best response property
is assumed in the intermediate steps in the hierarchy of “beliefs”. There seems to be little reason to
assume this best response property in such intermediate steps.

2Contary to our theory, the Savage-type subjective probablity theory is a black-box decision theory.
The capability of making decision is the central postulate, which is based on something hidden in the
black-box - such as past experiences. This differentiates the philosophical background of our approach
from Savage’s [22] as well as from the Bayesian game theory based on Savage,

17



from these axioms such as the assertion of Lemma 3.2, /\x K; (Di(z) D Nash(z))), i.e.,
D(1-4), A\ Ki(D(1-4)) ko, A Ki (Di{z) D Nash(z))),

The following, however, is also provable: for any j,k = 1,...,n,

D(1—4),AK;(D(1—4)) Fu /\ (Di(z) D K; Kp(Di(2))). - (4.1)

In (4.1), “imaginary” player k in the mind of player j knows that z is a profile of
predicted decisions. This imaginary player & is not given the meaning, D(1-4), of “final
decisions”, though “real” k is assumed to know D(1-4). This means that (4.1) does not
make sense for the imaginary k. Thus we need to assume K;K(D(1-4)), that is, we
reach the assumption set:

{L(D(1-4)): L e [JK(®)}.

<2

Once we assume this set of axioms, we would again meet the problem parallel to that
arising in (4.1), that is, it holds that for any K € K(3),

{Z(D-4)): L € | JK®} Fu A (Dil=z) D K(Di(2))).

t<2 T

That is, if we assume the knowledge of D(1-4) up depth 2, the knowledge of depth 3
is necessarily involved. The imaginary players in the epistemic world of depth 3 should
know D(1-4).

In general, we have the following proposition.

Proposition 4.1*. For any players 1, 7, finite m > 0 and X € K(m + 1),

{L(D(2,3)) : L € |J K@)} Fu A (Dilz) D K(Di(z))).
t<m z

Proof. Let a be an arbitrary profile. We prove that for any X € K(m+1), {Z(D(2,3)):
Le UKm K(t)} Fo Di(e) D K(Dj(a)). For m = 0, this is Lemma 3.3. Now we assume
the induction hypothesis that the assertion holds for m. Let K = K'K k € K(m+2).
Then XK' € K(m + 1). By the induction basis and some applications of Nec, MP and
MP;, K'(D(2,3)) b, K'(Di(a) > Kx(Dj(a))), and then K'(D(2,3)) ko K'(Di(a)) D
K'Ki(Dj(a)). This together with the induction hypothesis implies {L(D(2,3)): L €
Uecmss K@} Fu Difa) 5 K'Ki(Dj(a)). T -

Thus, if we assume the knowledge of Axiom D(1-4) up to depth m, the knowledge of
depth m + 1 is necessarily involved. Hence the knowledge of D(1-4) up to depth m+ 1
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should be added. The following theorem states that this addition is inevitable, which is
a general version of (3.1). This will be proved in Subsection 4.2.

Theorem 4.A. For any finite m > 0 and for any K ¢ me K(2),

neither {L(D(1-4)): L € [ J K(¥)} ko K(D(1-4)) : (4.2)
nor {L(D(1—4)) :Le | K@)} ko mK(D(1-4)). (4.3)
i<m '

This theorem states that without assuming & (D(1-4)) for all X of all depths, some
imaginary players living in the mind of the players in some depth could not know the
definition (meanings) of D;(-)’s. To avoid this problem, we need to assume

{E(D(1-4)): K € [ K(1))}.

t<w

This is an infinite regress of the knowledge of azioms D(1-4). This infinite regress is,
in fact, the common knowledge of D(1-4). More explicitly, taking the conjunction of
this infinite regress, we obtain the common knowledge of D(1-4), i.e., C(D(1-4)). This
corresponds to the self-reference indicated in Johansen’s [8] argument.

We will adopt this infinite regress as an axiom and consider its implications. The
. following result holds, which was given in Kaneko-Nagashima f12] and [14]. For com-
Pleteness, we will give a brief proof. In the following, when we write Di(), D;(-) without
quantification of ¢, j, they are arbitrary players.

Proposition 4.2.(1)*: C(D(2,3)) by /\z (Di(z) O C(D;(2))).
(2)*: C(D(1-3) F,, /\z (Di(z) > C(Nash(z))).

Proof. (1) follows Proposition 4.1. Consider (2). Let a be an arbitrary profile.
First, D(1,2) o Di{a) DNash(a) by Lemma 3.2. Hence, by Lemma 2.2.(1), we
have C(D(1,2)) Fuw C (Di(a) > Nash(a)), and C(D(1,2)) . C(Di(a}) > C(Nash(a))
by Lemma 2.3.(1). Since C(D(2,3)) ., D;(a) > C(Di(a)) by (1), we have C(D(1~
3)) Fw Di(a) > C(Nash(a)). O

In fact, C(Nash(z)) will be shown to be the solution of the infinite regress, C(D(1-
4)), for a game satisfying interchangeability, which will be the subject of Section 5. Here,
we can ask whether the conclusion of Proposition 4.2.(2) is provable from the knowledge
of D(1-4) up to some finite depth. The following theorem states the negative answer.
Since this can be proved in the same manner as in the proof of Theorem 4.A, we omit
the proof, '
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Theorem 4.B. For any finite m,

neither {L(D(1-4)): L € U K(®)} Fu A\ (Di(z) D C(Nash(z)))

t<m z

nor {L(D(1-4)): L € [ J K()} Fu = A (Di(z) D C(Nash(z))).

t<m

The above derivation of the infinite regress, C(D(1-4)) is, so far, heuristic. However,
it can be formulated in the following manner.

Theorem 4.C. Let I' be a set of formulae. Suppose that T' I, \/x K(D;(z)) > K(D(1-
4)) forall K € Um<w K(m). Then I k-, Vm D;(z) D C(D(1-4)).

Proof. Since D(2,3) F, D;(a) D Kx(Di(a)) for k = 1,...,n by Lemma 3.3, we have, by
repeating Nec, MP and MP;,

K(D(2,3)) b K(Di(a)) O K Ki(Di(a)) for any K € [ ) K(m). (4.4)

m<w

Now we prove

Ik, \/ Di(z) > K(D(1-4)) : (4.5)

T, V Di(e) o\ K(Di(z)) (4.6)

for any X € K(m),m = 0,1.... Then (4.5) implies ' &, \/_Di(z) > C(D(1-4)) by
A-Rule.

For m = 0, the first is written as I' b, \/m Dji(z} D D(1~4), which is the assumption
of the theorem for null K. The second is a trivial statement.

The induction hypothesis is that (4.5) and (4.6) hold for m. Since & (D(2,3)) Fw
K(Di{a)) > K K(D;(a)) by (4.4), we have

K(D(23)) ko \ K(Di(z)) 2\ KEi(Di(z))

Hence this together with the induction hypothesis implies T |-, \/m Di(z) D \/z K Ki(D(z)).
Thisis (4.6)for m+1. Then I I, \/I KKi(Di(z)) > KKx(D(1-4)) by the assumption
of the theorem, we have (4.5). O

This theorem states that for any K & Um.<w K(m), if the knowledge of all players to

reach final decisions in the sense of K implies the knowledge of D(1-4) in the same sense,
then the possibility of final decisions implies the common knowledge of Axioms D(1-4).

20



Thus this is a formulation of the above heuristic argument for the infinite regress. In the
next subsection, we will show that this set I' needs to contain some common knowledge.

The results given in this section are still purely solution-theoretic: they do not
require the players to know the game, i.e., neither Axioms Eq nor G. The knowledge of
the structure of the game will be needed in Sections 5 and 6.

4.2. Evaluations of the Infinite Regress

To prove the undecidability theorems given in the above subsection, we need the depth
6(A) for a formula A. Using this concept, we will evaluate the provability of an epistemic
statement.

We define the depth 6(A) by induction on the structure of a formula from the inside:
(0): 6(A4) = @ for any atomic A;
(1): 6(-4) = 6(A);
(2): 6(A > B) = §(A)u 8(B);
(3): 6(A®) = 8(V @) = Upee 6(4);

{()} if 6(A) is empty

{(G,i158m) £ (81, ey i) € 6(A4) and j £ i1 }U
{(i1yeerim) t (81, 000y im) € 6(A) and § = 4,}  otherwise.
For any set T' of formulae, let 6(T") be |J s 6(A). Define sup 8(T) = sup{m : (41, ...,ip) €
6(T)}. Forexample, 6(D39) = §(D1;) = {(©)},6(D3)={(3):i=1,...,n} and 6(/\;‘ K;(D(1-
) = {(,5) : i # j}.

The following lemma is the key to prove the undecidability results presented, and is
proved in the Gentzen-style sequent calculus formulation of GL,, in Kaneko [10] using
the (cut,Barcan)-elimination theorem for GL,. 13

Lemma 4.3* (Depth Lemma). Let K = K, ..K;,, € K(m),T a set of formulae and
A a formula. Assume Ik, K(A). Assume (4, wnrtm) € 6(T).

(1): Let sup §(TU{A}) < w. Then (a) T is inconsistent with respect to I,; or (b) k. A.
(2): (a) €T is inconsistent with respect to Fo; or (b) . £A.

The first states that if K; ...K; (A) is derived from the premise I', then, in fact, T
is inconsistent or A is a trivial formula. The second is essentially the same, but needs
some modification for some technical difficulty if sup 6(I' U {A}) is infinite.

(4): 6(K;5(A)) =

*This lemma is an extension of the depth lemma proved in Kaneko-Nagashima [13] for the proposi-
tional epistemic logic S4 based the cut-elimination theorem proved by Ohnishi-Matsumoto [20],
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We use this lemma to prove Theorems 4.A. Before it, we can give one more result
corresponding to Theorem 4.C.

Theorem 4.D. Let T be a set of formulae with sup§(I") < w, and assume that
T, \/m D;(z) is consistent with respect to F,, . Then T I, \/m Di(z) D C(D(1-4)) doés
not hold. ' . -

Proof. On the contrary, suppose Tk, \/m Di(z) > C(D(1-4)). This is equivalent to
that F,, (A @) /\(\/m Di(z)) > C(D(1-4)) for some finite subset & of I'. Let K € K(m}for
m > sup §(T). Then &, (AS)A(V_ Di(z)) D K(D(1-4)). The application of Lemma
4.3.(1) to this statement implies that either (A &) A(\/_ Di(2)) is inconsistent with

respect to k-, or k-, D(1-4). The former is impossible by the assumption of the theorem.
The latter is also impossible by Lemma 3.4.(2). O

This theorem implies that infinite depth is necessarily involved for I in Theorem
4.C. In fact, we can prove the knowledge structure of common knowledge is exactly
involved in T'. However, since it needs more detailed argument, we omit it.

We can see from Lemma 4.3 that the conclusion of (2.11) could not hold without
the common knowledge of Axioms Eq and G. That is, for any L € (U< K(m),

L(Eq), L(G) Fu AC (Na.sh(m) = VSolk(:c)) (4.7)
x k

is not the case. This is proved as follows: Suppose on the contrary that (4.7) holds. Let
L € K(m) and K € K(2) with t > m. Since L(Eq), L(G) ko X (Nash(a) = \/, Sol*(a)) ,
it follows from Lemma 4.3.(1) that L(Eq), L(G) Fu K (Na.sh(a) = \/,c Sol"(a,)) implies

either {L(Eq),L(G)} is inconsistent with respect to k-, .

or. , Nash(a) = V, Sol*(a),

neither of which holds.
We close this section with the proof of Theorem 4.A.

Proof of Theorem 4.A. Let us start with the proof of (4.3). Suppose, on the contrary,
that {L(D(1-4)): L € UKm K(t)} ko ~K(D(1-4)). Then ¢D(1-4) ko —eD(1-4) by
Lemma 2.2.(1), which contradicts Lemma 3.4.(1).

Now consider (4.2). Suppose {L(D(1-4)): L € UKm K()} bw K (D(1-4)) for some
K = K;,...K;, and £ > m. Then since K'(D(2,3)) b, K(D:(a)) D> K K;(D;(a)) for any j
and profile ¢, we have {L(D(1-4)): L € UKm K(®)} ko Di(a) D K K;(D;(a)). Let § be
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different from the index of the innermost symbol of K. This is written as

{L(D(1-4)): L € [J K(#)}, Di(a) ko K K;(Di(a)).
t<m
Since sup §({L(D(1-4)): L € U:<m K(t)}u {D,-(a)}) = m + 1, it follows fron_1 Lemma
4.3.(1) that either {Z{D(1-4)): Le UKm K(£}} U {D;(a)} is inconsistent or F,, Di(a).

In the former case, eD(1-4), Di(a) is inconsistent with respect to g, which is impossible
by Lemma 3.4.(1). In the second case, we have Di(a), which is also impossible. O

5. Solutions for the Infinite Regress: Solvable Games

In Section 4, we derived the infinite regress, C(D(1-4)), of the knowledge of Axioms
D(1-4). We adopt this infinite regress as an axiom and consider its implications, It
was shown in Kaneko-Nagashima [12] and [14] that this infinite regress determines
the final decision predicate D;(a) to be C'(Nash(a)) under the common knowledge of
interchangeability. Here we will evaluate epistemic aspects of this result. We consider
also the playability of a game. '

5.1. Determination of the Final Decision Prediction and its Evaluations

Proposition 4.2.(2) states that under C(D(1-4)), Di(e) implies C(Nash{a)). Axiom D4
requires D;(-) to be interchangeable, while C(Nash(-)) is not necessarily interchangeable.
Hence C(Nash(a)) may not capture all the properties of C(D(1-4)). However, if we
assume that the interchangeability condition,

A A (Nash(z) A Nash(y) > Nash(y;;z_;)), (5.1)

T Yy j

is common knowledge, then C'(Nash(-)) can be regarded as capturing all the properties
of C(D(1-4)). We denote the formula of (5.1) by Int. The following proposition states
that C(Nash(-)) as D;(-)’s satisfies our axioms.

Proposition 5.1.(1)*: +, C (D(1-3)[C(Nash)));

(2)*: C(Int} k-, C (D4[C(Nash))),

where D(1-3){C(Nash)] and D4{C(Nash)] are the formulae obtained from D(1-3) and
D4 by substituting C(Nash(a)) for every occurrence of Di(a) (e € £ and i = 1, .y 1) in
D(1-3) and D4.

Proof. (1): Weprove only b, C (D3[C(Nash)]). Since I, C(Nash(a)) > K;(C(Nash(a)))
for all ¢ = 1,...,n by (2.3), we have F, /\i /\r[C(Nash(a:)) D> K;(C(Nash(z)))), i.e.,
FoD3{C(Nash)]. By Lemma 2.2.(2), k., C (D3[C(Nash))).
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(2): Since Int bp Nash(a) ANash(b) > Nash(b;; a_;), we have C(Int) F, C[Nash(a)
ANash(b) D Nash(bj;a—;)] by Lemma 2.2.(2). By Lemmas 2.3.(1) and 2.4.(1), C(Int)
ko C(Nash(a)) A C(Nash(b)) D C(Nash(bj; a;)). Since a,b, j are arbitrary,

C(tnt) by A A AIC(Nash(z)) AC(Nash(y)) > C(Nash(ys3 ;)

r y 3 ’

This is C'(Int) k-, D4{C(Nash)]. By Lemma 2.2.(2), we have C(Int) b, C(D4[C(Nash))). O

Thus, C(Nash(-)) is a solution of C(D(1-4)) under C(Int). Conversely, it can be
proved in the same way as Proposition 4.2.(2) that

C(D(1-3)[A]} Fu A (Ai(z) D C(Nash(z))) for i =1,...,n, (5.2)

where A = {(A;1(a),...,An(a)) : ¢ € T} is any set of profiles of formulae indexed by
a € X. Thus C(Nash(-)) is weaker than any formulae satisfying C(D(1-3)). Addition-
ally, Proposition 5.1 states that C(Nash(-)) satisfies C(D(1-4)) under C(Int). Hence
C(Nash(-)) is the deductively weakest formula among those satisfying C(D(1-4)). We
are looking for the deductively weakest formula for D;(-), since it contains no additional
information other than what we intend to describe by C(D(1-4)). -

The explicit formulation of the choice of the deductively weakest formula is given as
the following axiom schemata:

(WD): C(DI-4NAD AC (A, A, [Di(=) 5 4i(=)]) > A, A\ [Di(z) = Ao,

where A = {(41(a),...,An(a)) : @ € £} is any set of vectors of formulae indexed by

¢ € L. Although, in fact, we should, probably, regard C(WD) as our axiom, WD

suffices for the following results. Therefore we use simply WD instead of C(WD).
Since Proposition 4.2.(2) and Proposition 5.1 implies

C(D(1-4)), C(Int) +, € (D(1-4)[C(Nash)]) AC (/\(D;(m) S C’(Na,sh(m)))) .

Since this is the premise of an instance of WD), we obtain the following theorem.
Theorem 5.A*. C(D(1-4)), C(Int),WD ko A_(Di(2) = C(Nash(z))).

Ignoring the additional common knowledge operator for Nash(-), Theorem 5.A can
be regarded as consistent with Johansen’s {8] claim that if the game is solvable (has a
unique Nash equilibrium), then only Nash equilibrium satisfies his postulates.

Now we evaluate the above procedure of unique determination. First, we ask whether

any formula weaker than C{Nash(a)) satisfies'our axioms. In fact, for D(1,2) or D(1,2,4),
we can replace C(Nash(:)) by Nash(-), i.e., the following hold:

o C(D(1,2)[Nash]); and C(Int) k., C(D4[Nash]). (5.3)
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Thus C'(D(1,2,4)) does not require the common knowledge operator C{(-) for Nash(:).
The common knowledge is required by D3 together with D2, which is stated in the
following theorem.

Theorem 5.B. Let A = {(41(a), ..., An(@)) : @ € T} be a set of vectors of formulae.
(1): K+, D(2,3)[A], then k., 4;(a) D C(Ai(a)) for any i and a.

(2): Suppose max;q sup §(4;(a)) < w. Then k, D(2,3)[A] if and only if F,, -4;(a) or
Fu A;{a) for any 7 and a. :

Proof. (1): Suppose k-, D(2,3)[A]. It can be proved in the same way as the proof
of Lemma 3.3 that +, D(2,3)[A] D (4i(e) D K;(Ai(a))) for all 4,7 and a. Hence b,
Ai(a) D K;(Ai(a)) for all ¢, 5 and a. From this together with Nec, MP and MP;, we have
Fo Ai(a) O K(A:i(a)) for all K € (,,, K(2). Hence k-, 4i(a) > C(As(a)) by A-Rule.
(2): The if part is straightforward. The only-if part is proved as follows: Consider
an arbitrary A;(a). Since sup §(4i(a)) < w, we can choose K € K(m) so that m >
sup 6(Ai(a)). Since k-, A;(a) O K(4i(a)) by (1), Lemma 4.3.(1) states that F -~A(a)
or F, A(a). O '

Theorem 5.B.(1) states that if some formulae satisfy D2 and D3, then they includes
common knowledge. Then (2) implies that if nontrivial formulae satisfy D2 and D3,
they have infinite depths. :

From the viewpoint of logic, the C-Barcan axiom is indispensable for proving
D3[C(Nash)], i.e., C(Nash(a)) D K;(C(Nash(a)) for i = 1,...,n. As mentioned before,
Kaneko [10] proved that there is no (finitary or infinitary) formula A such that A D
K;(A) is provable for i = 1,...,n in GL, without C-Barcan.

The following theorem states that the common knowledge assumption, C(Int), is
needed to have C'(D4[C(Nash))).

Theorem 5.C. For any K € U, <, K(m),
neither K(Int) &, C(D4[C(Nash)]) nor K(Int) b, ~C(D4[C(Nash)))

Proof. Suppose K (Int) -, C(D4[C(Nash)]). This implies -, X (Int) > L(D4[C(Nash)])
for any L°€ (<. K(m). Let the depth of L is larger than that of X. By Lemma 4.3.(2),
Fo —Int or kg D4[Nash]. The first case is impossible. The second is kg Int, which is not
the case. Either is proved in a semantical way.

Suppose K(Int) ko, ~C(D4{C(Nash))). By Lemma 2.2.(1), we have Int kg —~D4[Nash],
i.e., Int ko —Int, which is impossible. O

5.2. Playability of and the Knowledge of a Game

The introduction of an epistemic structure enables us to consider the problem of playa-
bility. In our‘context, the playability of a game is formulated as \/m D;(z) - the existence
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of predicted final decisions. According to Theorem 5.A under the assumption of C(Int),
the question is equivalent to whether or not \/a7 C(Nash(z)) is obtained from some

axioms. This is different from G(\/zNa.sh(a:)). The former states that there is some
strategy profile z such that it is common knowledge that z is a Nash equilibrium, but
the second states that the existence of a Nash equilibrium is common knowledge.

The solvability of a.game is formulated as Int/\(\/.zNa.sh(z)), which we denote by
Solv. Since C'(Solv) contains the existence of a Nash equilibrium, we have

C(Solv) k, C(\/ Nash(z)).

Nevertheless, this together with C(D(1-4)),WD does not imply VI D;{z): Instead, we
need to have some I' so that

C(D(1-4)), WD, T I, \/ C(Nash(z)}). (5.4)

We prove that C(Solv) is not sufficient to have \/:c D;(z), but C(G) guarantees the
playability when g is solvable. Note that if g is solvable, then C(G) k., C(Int).

Theorem 5.D.(1): Suppose that some player j has at least two strategies, i.e., £; > 2.
Then

neither C(D(1~4j),WD,C(301v) ko V_ Di(e)
nor C(D(1-4)),WD, C’(Solv) Fo = V:x: D(z).
(2): Let g be a solvable game. Then C(D(1-4)),WD,C(G) F, vx D(z).

Thus C(G) suffices for ' in (5.4) with the condition that g is a solvable game, but
C(8olv) is not sufficient. The significance of this theorem is to demarcate the knowledge
of abstract conditions on the game from the knowledge of the specific structure of a
game. Abstract treatments are convenient for our (investigators’) considerations, but
the specific knowledge of the game is needed for the players who play the game.

The first assertion of Theorem 5.D corresponds to the undecidability result presented
in Kaneko-Nagashima [14] that there is a specific three-person game with a unique Nash
equilibrium in mixed strategies such that the playability statement is undecidable, while
the common knowledge of the existence of a Nash equilibrium is provable under the
common knowledge of real closed field axioms. Their undecidability is caused by the
choice of a language the players use. Contrary to theirs, our unplayability is caused by
the fact that a game is given abstractly and is not specified. The second assertion states
that once a game is fully specified, our undecidability is removed when it is solvable.
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In fact, the playability and existence of a Nash equilibrium could not be distinguished
without epistemic structures. Ignoring Axiom D3, Theorem 5.A is stated as follows:

C(D(1,2,4)), C(Int), WD(1,2,4) Fo A (D;-(:c) = Nash(z)) (5.5)

where WD(1,2,4) is the corresponding modification of WD. In this case, \/ Di( :1:) is
equivalent to \/ Nash(z). Hence

C(D(1,2,4)), C(Solv), WD(1,2,4) F, \/ Di(z).

Thus the abstract existence knowledge leads to \/ Di(z), contrary to Theorem 5.D.(1).

The first assertion of (1) needs a long proof, but (2) can be proved with what we
have already prepared. Therefore we give the proofs of those assertions in the reverse
order.

Proof of (2): Since g is a solvable game, it has a particular Nash equilibrium a.
Then G o Nash(a) by (2.7), which implies C(G) F,, C(Nash(a)) by Lemma 2.2.(2). By
Theorem 5.A, we have C(D(1-4)},WD, C(G) k, D;(a). Hence C(D(1-4)),WD, C(G) F.,
\/ Di(z). D

Lemma 5.2. Let A be a formula including no Dy, ..., Dy, If C(D(1-4)),WD, C(Solv) F,
A, then C(Solv) F, A.

Proof. Suppose C(D(1-4)),WD, C(Solv) -, A. Then
o C(D(1-4)) ACA &) A C(Solv) 5 A for some subset & of WD.

Hence there is a proof P of C(D(1-4)) A(A ) AC(Solv) > A. We substitute C(Nash(a))
for each occurrences of Di(a) (i = 1,...,n and a € Z) in P. Then we have a proof P’
of C(D(1-4)[C(Nash)]} A (A @[C(Nash)})/\C(Solv) D A. Note that C(Solv) and A are
not affected by these substitutions since they contain no D;,i=1,.

Since C(Solv) k-, C(D(1-4)[C(Nash)]) by Proposition 5.1, we have I- ( A @[C(Nash)])
A C(Solv) O A. Also, C(Solv) F,, /\@[C(Nash)] by (5.2) since & is a subset of WD.
Hence +, C(Solv) > A. O

Proof of the Second Assertion of(l) Suppose C(D(1-4)),WD, C(Solv) k-, = V Dy(=z).
By Theorem 5.A, we have C(D(1-4)),WD, C(Solv) I, —:\/ C(Nash(z)). By Lemma

5.2, we have C(Solv) F,, - v C(Nash(z)). By Lemma 2.2.(1), we have Solv k¢ - \/ Nash(z).

However, Solv kg \/ Nash(z), which implies that Solv is inconsistent with respect to
Fo . It can be proved that this is not the case. O
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For the first assertion of Theorem 5.D.(1), we need one metatheorem, which was
proved in Kaneko-Nagashima [15].

Theorem 5.E.* (Disjunctive Property): Let T be a set of nonepistemic formulae, and

A, ..., Ag nonepistemic formulae. If C(T) k-, v  C(At), then C(T) -, C(Ay) for some
t= 1 . k.

Proof of the First Assertion of (1): Suppose C(D(l-—4)),WD,C’(So]v) Fo \/x D(z).
Then it follows from Theorem 5.A that C(D{1-4))},WD,C(Selv) F, \/x C(Nash(z)).

Then we have, by Lemma 5.2, C(Solv) b, \/a: C(Nash(z)). Applying Theorem 5.E to
this statement, we have C'(Solv) b, C(Nash(a)) by some strategy profile a. By Lemma
2.2.(1), we have Solv ko Nash(a). Then we construct an assignment based on a game

g which has a unique Nash equilibrium different from a. Here we need the assumption
that £; > 2 for some j. By Soundness for GL§, it is not the case that Solv ko Nash(a).
O

6. Solutions for the Infinite Regress: Unsolvable Games

- When g is an unsclvable game, Proposition 5.1.(2), a fortior:, Theorem 5.A, fails to
hold: C(Nash(:)) does not satisfy Axiom D4. For an unsolvable game, subsolutions play
the role of Nash(-), instead, but we will meet two new difficulties. One, purely game
theoretical, is that an unsolvable game has multiple subsolutions and the individual
choice of one subsolution may lead to a double cross. Therefore they need to share
some information about the choice of a subsolution. The other is that, as already
discussed in Subsection 2.3, the subsolution concept needs an extensional description.
Therefore we need the common knowledge of G as well as Eq. Once these axioms as well
as the choice of a subsolution are assumed to be common knowledge, we would have the
result parallel to that obtained in Section 5.

6.1. Exchange of Some Information to Choose a Subsolution

Proposition 3.2 becomes the following form.

Proposition 6.1.(1): Eq,G,D(1, 2,4} o \/k 1/\ (D (z) D Sol"(:n))
(2): C(Ea,G),C(D(1.24) ke € (V;_, A, (Di(2) 2 S01*(2))) ,
where C(Eq,G) is C(EqUG).

Proof. (2) follows from (1) and Lemma 2.2.(2). Now we prove (1) in a semantic way.
Let 7 be any truth assignment in which Eq,g,D%1,2,4) are true. It follows from
Axioms D1° and D29 that if D;(a) is true, then @ is a Nash equilibrium. Hence
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{a : 7(Di(a)) = T} is a subset of E,. Then Axiom D4° implies that the set {e :
7(Di(a)} = T} satisfies the interchangeability condition. Since each subsolution is a
maximal set of Nash equilibria satisfying the interchageability condition, {a : 7(D;(a)) =
T} is a subset of some subsolution, say, E%. Thus [=, /\m (D;(m) > Solk(a:)) . This
k may depend upon T, but V:=1 /\z (D;(m) > Sol"(:n))_ is true in any truth assign-
ment 7 satisfying Eq, g,D°(1,2,4). By Completeness for GLg, we have Eq, £,D%(1,2,4) Fo
Vi, A, (Diz) o Sol¥(z)) . O

The first states that for a game g, if @ is a final decision profile, then it belongs to
one of the subsolutions, and the second statement is simply a conclusion of the first and
Lemma 2.2.(2). In the second, however, which subsolution is implied is unknown, since
the disjunction is taken over the subsolutions in the scope of common knowledge. To

choose one subsolution, the players need to exchange some information.
We denote the following formula

AV (Diz) A\ -80t¥())

k#t =

by Sub(#). This states that for any subsolution other than the t-th one, some predicted
final decision profile does not belong to the subsolution. If this is common knowledge,
the players can choose the subsolution Solf.
Proposition 6.2. Let ¢ be one of 1,...,6. Then C(Eq,G),C(D(14)),C(Sub(?)) k.,
/\x (Di(z) D C(Solt(z))). :
.Proof. Since \/Z=1 /\E (D;(m) ) Solk(:c)) is equivalent to Sub(t) D \/z {(Di(z) D Sol¥(z))
with respect to o, we have, by Lemma 2.2.(2), C(Eq,G), C(D(1,2,4)) F., C[Sub(t) D
/\I(D,-(:c) DSol*(z))]. Hence C(Eq,G), C(D(1,2,4)) ko C(Sub(z)) D /\E[C(D,'(:v)) )
C(Sol*(z))] by Lemmas 2.3 and 2.4. Since C(D(2,3)) Fo /\z (Di(z) D C(Di(z))) by
Proposition 3.2.(1), we have C(Eq,G), C(D(1-4)), C(Sub(2)} F., /\z (Di(z) D C(Soli(z))).
O

Thus the common knowledge of the information, Sub(t), suffices for /\x[D,-(m) D
C(Sol*(z))]. In addition to this, if C(Sol(-)) satisfies C(D(1-4)), then Axiom WD
implies that D;(a) is equivalent to C(Sol!(z)). The following proposition states that
C(Sol(-)) satisfies those axioms under the common knowledge of Eq and G, which can
be proved in the same manner as in the proof of Proposition 5.1.

Proposition 6.3. C(Eq,G)F, C (Dh[Q(Solk)]) fork=1,..,0and h =1,2,3,4.
By Propositions 6.2 and 6.3 together with Axiom WD, we have following theorem,

which is a generalization of Theorem 5.A.
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Theorem 6.A. Let ¢ be one of 1,...,0. Then C(Eq,G),C(D(1-4)),WD, C(Sub(t}) k.
/\x (Di(z) = C(Solt(z))).

6.2. Necessity of the Exchange of the Information

The next theorem states that without any knowledge of Sub(t), the choice of .one ‘sub-
solution is impossible. . .
Theorem 6.B. Suppose that game g has at least two subsolutions, i.e., ¢ > 2. Then
forany k=1,..,0and i=1,...,n,

neither C(Eq,G), C(D(1-4)) ko A_ (Di(#) > C(Solk()));

nor C(Eq,G), C(D(1-4)) ky = A\ (D;(m) > C(Solk(a))) 1

Proof. Suppose C(Eq,G),C(D(1-4)) F, /\x (D;(m) D C’(Solk(x))) for some k. Hence
we have, by Lemma 2.2.(1),

Eq, G,b°(1,2,4) Fo A\ (D;(w) > solk(z)). (6.1)

Now we will show that (6.1) is impossible, which implies that the supposition does not
hold. For this, we give an assignment 7 on the atomic formulae so that Eq,G,D(1,2,4)

are true in 7 but /\:.- (.D,-(m) ) Solk(m)) is false. This together with Soundness for GL§
implies that /\x (.D,—(:z:) D Solk(m)) is not provable from {Eq,G,D%1,2,4)} with respect
to ko . : l

Let Sol*'(-) be different from Sol*(-). Then we define a truth assignment = as follows:

- . — - —_ T ift = t’
(1) : 7(sjt = sj4r) = { 1 otherwise

(2): r(Ry(a:5)) = { T @ 2 50

otherwise

. ' _ )] T ifacEF
(3): 7(Dj(a)) = { 1 otherwise,

where j = 1, ...,n. Then every axiom of Eq,G,D%(1,2,4) is true, but not |=, D;(a) DSol*(a)
for some @ in E“ , since 7(Di(a)) = T but not |=, Sol*(a) for any @ € E¥ — EX. Hence

A, (Dz(:v) > Solk(n:)) is false in 7.

In fact, we can prove that the krowledge of Sub{t) up to a finite depth is not sufficient to derive
Theorem 6.A. To prove this, we need to extend /\ (D fz) > C(Sol"(z))), but this requires a more

development. We will discuss this problem in a separate paper.
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Next, suppose C(Eq,G), C(D(1-4)) ko - A\_ (Di(z) D C(Sol*(z))) for some k. By
Proposition 2.2.(1), we have Eq,3,D%(1,2,4) o A\, (Di(z) > Sol*(z)) . Equivalently,
Eq,G,D%(1,2,4) ko \/_ (D;(m)/\—-Solk(z)) Let b € EX — E5. We modify the above
truth assignment 7 by changing (3) into
(3): r(Dj(a)y=Lforall e and j =1,...,n.

In the truth assignment 7 defined, \/x (D,-(z) /\-ﬂSolk(w)) is false but D°(1,2,4) is true
in the trivial way. Hence this is a contradiction. O :

The above theorem implies that without sharing some information about a subso-
lution, a player could not reason which subsolution is played specifically. To choose one
subsolution, the players need to communicate with each other to share some informa-
tion. Hence purely independent decision making, described in Johansen’s (8] argument,
is not possible for an unsolvable game. :

The following theorem states that the sufficient condition given in the previous
subsection is the deductively weakest, whose proof is omitted.

Theorem 6.C. Let ¢ be one of 1,...,0, and T any set of formulae. If C(Eq,G),C(D(1-
9),T+. € (A_(Di(o) = C(Solt(2)))) , then C(Eq,G), C(D(1-4)), T F, C(Sub(2)).
The condition C(Sub(t)) eliminates all the possibilities other than the ¢-th subsolu-

tion. If the game g has a specific structure, then more specific information may suffice.
. For example, the following is one possible assumption on the game g,

(Dsub): E],..., B¢ are mutually exclusive.

The game of Table 2.1, the battle of the sexes, satisfies this condition. For a game
satisfying Dsub, an exchange of an indication of a final decision profile suffices, instead
of the elimination of possibilities. That is, for a game satisfying Dsub, the sufficient
condition, C'(Sub(t)), can be replaced by C (vz (Di(z) A Sol‘(:c))) . This can be proved
in the same way as Theorem 6.A. |

In the game of Table 2.2, the above condition is not sufficient, since \/x (Di(z) A Soli(z))

does not eliminate the possibility C (\/z (Di(z) A Sol"’(z))) . Nevertheless, it suffices to
exchange the information of some particular pair, for example, the common knowledge
that (s12,821) is a final decision pair is sufficient, that is,

C(Eq, ), C(D(1-4)), WD, C(Di(s12, 525)) Fo C (/\ (Di(z) = 0(5011(3)))) . (6.2)

T

Note, however, the exchange of the information of {s11,521) does not suffice.
An information exchange of a particular profile may not suffice. The following game
has six subsolutions: :
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821 S22 S23
11 (0,0) (L1 (1,1

5192 (1,1)* (1,1)* (0,0)

si3  (1,1)* (0,0) (1,1)*
Table 6.1
and each Nash equilibrium belongs to exactly two subsolutions. In this game, the

exchange of the information of choosing one subsolution needs to have the original
form, C(Sub(i)).

7. Remarks on the Final Decision Axioms

7.1, Role of Each Axiom

Consider the role of each of Axioms D1-D4 by eliminating it from the others. The
elimination of D1 or D2 makes our theory almost meaningless, and without Axiom D3
or D4, the theory would still have some structure but be much poorer. '
(1) Axiom D1: Without D1, we would have the same infinite regress. The deductively
weakest formula satisfying C(D(2-4)) is given as the common knowledge of a strategy
profile under the assumption C(Eq,G), i.e.,

C(Ba, B), C(D(2-4)), WD(2-4) b, \ (D;m = C(\/ i = y.-,-))) ,

where WD(2-4) is the modification of WD by eliminating D1. This states that the
prediction is the common knowledge of a strategy profile. Under these axioms, the
players think about the entire situation carefully, but do not make a choice.

(2) Axiom D2: Without D2, we would not meet the common knowledge of the other
axioms. Each player has Di(...) but does not think about the other players’ predictions.
Hence the others’ choices remain arbitrary for him. That is, we have

D(1,3,4), WD™(1,3,4) ko, A (D;(z‘) = KN\ Ri(z: : x_,-))) fori=1,..,n.

T Ty

Here WD=(1,3,4) does not require the common knowledge operator for its premise.
Thus, there are n independent decision probléms without interactions, though the sit-
uation itself may be interactive.

(3) Axiom D3: We already discussed the case without D3 in Subsection 5.2.
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(4) Axiom D4: Without D4, our theory would be simpler. The infinite regress discussed
in Section 5 remains unchanged. The main becomes .

C(D(1-3)), WD(1-3) Fy, A (Di(z) = C(Nash(s))).

This does not depend upon the interchangeability assumption. In this case, we would
loose the demarcation between the solvable and unsolvable games. Thus, the entire
consideration of Section 6 would disappear.

The role of D4 could be found by looking at a different formulation of our axioma-
tization, which is given in the next subsection.

7.2. The I-System of Final Decision Axioms

We presented the axioms on final decisions Dy(-), ..., Dy(-) as n-ary predicates. A pre-
diction is an attribute of a final decision profile. Therefore each player 7 makes simulta-
neously a prediction of a strategy profile for all the players. Kaneko-Nagashima [12],[14]
and Kaneko [11] adopted different axiomatic systems so that predictions are separately
made for each player. Player i makes a prediction of player j’s choice, i.e., it is an
attribute of a strategy for each player instead of a strategy profile. We call this system
the I-system, and the system of the present paper the D-system.

To formulate the I-system, we prepare unary predicates Iy )y e Tan()s oo s Taa () oon,
Inn(-) and assume the following base axioms: for each i = 1,..,n,

Axiom 119 : /'\z (/\‘T Lii(z;) D /\y._ Ri(ziiz_ii gy ) ;
Axiom 120 . /\zl/\j /\k (Li;(z5) D Iii(z;));
Axiom I39 /\z /\J. (Li(=) O Ki(Iij(z)));

Axiom 49 :/\i /\j /\k (\/mJ Iii(%5) D vxk Iik(.'zk)) )

We define I1;, ...,I4; to be K7 (11?), ..., K7 (14?). Axioms D4 and I4 connects the D-system
and I-system in the following sense:

ko 14 A (/\[D;-(m) = /\Isj(wj)]) = DA (/_\ Ni(z5) = p,-(z,-,y__,-)]) -

Thus, we can start either with the I-system together the definition of D;(a) to be
/\J,I,-j(a) or either with the D-system together the definition of I;;(a;) to be \/y Di(a;,y-5).
~J

Furthermore, we can prove the entire equivalence between {L(1-4H A K [/\z(D,-(z) =
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ANl i =1, n} and {Di(- A KA A (Bis(e) =V, Dilasoy-5)) i =
1,.n} '

7.3. Fully and Partially Interactive Games

Ignoring the difference between the D-system and I-system, the axiomatization in this
paper is a special case of that in Kaneko [11]. In his axiomatization, multiple systems
of axioms for decision making may be permitted, depending upon a game. A necessary
and sufficient condition on a game for only the system in this paper to be permissible
is given in [11], which states that each player needs to predict all the others’ decisions
for his decision to maximize payoffs. A game is called fully interactive iff it satisfies this
condition, and otherwise, it is called (properly) partially interactive. The system in this
paper is permitted for any games, though partially interactive games may have multiple
“weaker” systems of axioms.

Here we give some simple examples of fully and partially interactive games. In
Prisoner’s Dilemma (Table 2.3), since each player has a dominant strategy, s;z, it is
possible for each player 4 to make a decision satisfying utility maximization only with
the knowledge of his own payoff function but without predicting the other’s decision.

- This argument is formulated as one system of axioms in [11], but the solution for this
system does not give the knowledge of the other player’s decision. This argument is not
applied to the game of Table 2.4, since only player 1 has a dominant strategy, s12. In
this game, 1 can ignore 2’s choice, but 2 needs to predict 1’s choice. This situation is
also formulated as a system of axioms. In these games, if we require each player to infer
the other’s decision, we would have the system in this paper.

S21 822 843 541 542 843
si1 (5,5) (1,6) (3,0) sa1 (3,3)  (6,1) (0,2)
siz (6,1) (3,3 (0,2 sz (1,6) (5,5) (3,0)
sz (0,3) (2,00 (2,2) s33 (2,0)  (0,8)  (2,2)
Table 7.1 (and 3,4’ payoffs if (513, s22) is played) Table 7.2 (otherwise)

The game of Table 7.1 obtained by adding one strategy to each player to Prisoner’s
Dilemma is fully interactive: this has the same Nash equilibrium (s12,S22), but without
predicting the other’s decision, each player cannot make a decision to maximize his
payoff. This game differs from the games of Tables 2.3 and 2.4 in that the system in
this paper is only permissible.

In fact, there is a great spectrum of games from those with dominant strategies
to fully interactive games. One typical (4-person) example is as follows: each player 4
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(¢ = 1,...,4) has three pure strategies si1,s;2, si3. The payoffs for players 1 and 2 are
determined by their own strategies, which are given by Table 7.1. Those for 3 and
4 depend upon their strategies as well as the choices of 1 and 2 : if 1 and 2 choose
(s12,822), then the payoffs of 3 and 4 are given also as Table 7.1 with the replacements
of players 1,2 with 3, 4; and if 1 and 2 choose a strategy pair other than (s;,s22), then
their payoff matrix is given by Table 7.2 (obtairied from 7.1 by permuting thé roles of
si1 and siz for © = 3,4). In this game, if 1 and 2 ignore 3 and 4, then 1 and 2 are facing
the game of Table 7.1, which is fully interactive. Players 3 and 4 still need to infer the
choices of 1,2, and their part is fully also regarded as fully interactive.

We can find a similar structure in the game of Table 2.4. Player 1 can ignore 2 but 2
needs to predict 1’s decision. However, each interactive part consists of a single player.

When a partially interactive game permits a “weaker” system of axioms, it has a
part which can be regarded as fully interactive in that each player needs to predict the
others’ decisions in the part, though sometimes it is trivial in the sense that it consists
of a single player. The system of axioms restricted to such a fully interactive part of
the game is regarded as the same as the system in this paper. Therefore our analysis is
applied also to the fully interactive parts of partially interactive games.
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