No. 722

An Algorithm for Strictly Convex Quadratic
Programming with Box Constraints

by
Xiaojun Liu, Yong-Chang Jiao, and Satoru Fujishige

April 1997

An Algorithm for Strictly Convex Quadratic
Programming with Box Constraints*

Xiaojun Liu, Yong-Chang Jiao! and Satoru Fujishige?

Institute of Policy and Planning Sciences
University of Tsukuba

Tsukuba, Ibaraki 305, Japan
April 1997

Abstract

We propose an efficient algorithm for solving strictly convex quadratic programs
with box constraints (i.e., lower and upper bounds on each variable). Our algorithm
is based on the active set and the Newton method. We repeatedly compute relevant
inverse matrices efficiently and, starting from an initial feasible point, we find an
optimal solution of the problem in finitely many steps. Our experimental results
show that the new algorithm is practically efficient.

Key words: Quadratic programming, algorithm, active set method, Newton method,

box constraints.

*This is a revised and full version of our paper [7] presented at the Second International Sym-
posium on Operations Research and Its Applications held in Guilin, China on December 11-14,
1998.

1Visiting Research Fellow supported by Japan Society for the Promotion of Science. His perma-
nent address: Institute of Antennas and EM Scattering, Xidian University, Xi’an, Shaanxi 710071,
P. R. China.

{Present address: Division of Systems Science, Department of Systems and Human Science,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan.

1. Introduction

We consider a strictly convex (i.e., positive definite) quadratic programming problem

subject to box constraints:

(QP) Minimize f(z) = —;-mTAm +57z
subject to c<z <d. (1.1)

where A = [a;;] is an n X n symmetric positive definite matrix, and b, ¢ and d are
n-vectors. Let g(z) be the gradient, Az + b, of f(z) at z. Without loss of generality
we assume ¢; < d; for each 7 with 1 < < n.

Applications of the above-mentioned Problem (QP) with box constraints include
large linear least squares problem with bounded variables, linear complementarity
problems, and dual problems arising in a sequential quadratic programming algo-
rithm. This last application [9] motivated the present work. Other applications can
be found in [4].

Yang and Tolle [10] presented conjugate gradient-type algorithms for (QP). Our -
algorithm is based on the idea of the active set method and we keep the active (and
nonactive) set and compute related matrices efficiently.

In Section 2 we give some definitions and notations to be used later and describe
the optimality cendition for (QP), based on which an algorithm will be constructed.
We propose an algorithm for solving (QP) in Section 3. The proof of the validity
of the proposed algorithm is provided in Section 4. Repeated updating' of inverse
matrices is required in the algorithm. We give an efficient procedure of updating rel-
evant matrices in Section 5. Finally, in Section 6, we present numerical results and
compare our algorithm with other ones. We also give discussions on the behavior of
our algorithm. Conclusions are also given in Section 7.

2. Definitions and the Optimality Condition

We denote by K the set {1,2,---,n} of the subscript indices of the variable z ap-
pearing in (1.1).

Definition: Denote by 2 the current solution obtained at the Ith iteration in
the algorithm to be given in Section 3. For the current ¢ with ¢ <z < d

2

(I=10,1,--+) we define the nonactive set
NAD = {i|a <2 < d;,1<i<n) (2.1)

and n; = WAV

For the nonactive set N'AY, also define the n x n; matrix

-Pl = [Pij]nXm (2‘2)

with the row index set K and the column index set AA® such that pi = 1if
i e NAW and pi; = 0 otherwise. T'wo related matrices are defined as follows:

H = PTAP, B =H"™" (2.3)

Note that the row and column index sets of H; and B, are both &/ AV,
The Karush-Kuhn-Tucker optimality condition for (QP) is given as follows.

Theorem 2.1: A feasible point z* is an optimal solution of Problem (QP) if and
only if for =1,2,---,n

gi(z*) = 0, when z} =c¢; (2.4)
9;(z*) < 0, when z} =d; (2.5)
gj(:v*) = 0, when Cj<$;<dj. (2.6)

0

We derive an algorithm for solving (QP), based on Theorem 2.1.

3. An Algorithm

We give an algorithm for solving Problem (QP) as follows.

Step 1: Choose an initial feasible point z(® with ¢ < :c,(o) < d; (¢ € K) such that
for some i € K we have ¢;, < ‘5:(2) < di,. Compute NA® Py Hy, no, Bo, and set
I[=0.

Step 2: Compute

¢ = Az® 4 (3.1)

" = Prg¥ (3.2)

s = —pgt (3.3)
L0 di — 50
o = min{l, min G5 , min J—,xj-} (3.4)
FEN AW, 35.”(0 Sg-l) JEN AW, s_(,-l)>0 S_E-)
IE(H-I) — .‘1:(!) + CXU)P[S(I)- (35)

(Here, note that the index set of vector s{) should be regarded as A/ AY).)
Step 3: If o) < 1 and n; > 1, choose some v € N AY such that

—
ol = 2 (r)mw <o, (3.6)
Sy
or d O]
a0 =D sy, 3.7
Sy
set
NASD = NAO\ {3}, miy=m 1, (38)
204) . (3.9

and go to Step 5; otherwise go to Step 4.
Step 4: Compute

gD = Az 4 (3.10)
oy = {i | 3"V = ¢, o™ < 0}, (3.11)
B ={i] & = d;, ¢!V > 0}, (3.12)
¢ =9, U b, (3.13)

If @; # @, compute for each € §;

(+1)

9:
)\i = m’ (3.14)

(H-l) 2
¥ = arg max{ ——(9’2)

i

withi € @3 and — X; < 1;

1
-—E(dg — C,')za,,'; — g,(H.l)(d,- —_ C,') with: € & and — X; > 1;

§I+1) 2
(_gl_) withi € $); and A; < 1;

Qi
1
—~2-(d,; - c,-)zo;ﬁ -+ g§l+1)(d,' - C,‘) with s € ‘I’m and /\i 2 1}
(3.15)
There are four cases (a)~(d) with respect to ¥ as follows:
(a) f # € & and —A5 < 1, set
w1, i3,
gD = (3.16)
(t41)
Ci — Ejﬂ_{;_’ 1= ;}':
NAED = & AD U {5}, (3.17)
N1 = 1Y -+ 1, (318)
and go to Step 6.
(b) If ¥ € &) and —X5 > 1, set
5T, i3,
U+ = (3.19)
di, =7,
and go to the beginning of Step 4.
(C) If ’7 e @12 and /\:,,. < 1, set
#, i#7,
2+ = (3.20)
g
di - 'JE;"I-_, t=7,
N A = N AD U {7}, (3.21)
N1 = Ny + 1, (322)
and go to Step 6.)
(d) If 7 € ®izy Ay = 1, set
#0473,
U+ = (3.23)
Ci? ?: = f_)}’

and go to the beginning of Step 4.
If & = @ and max lg,-aﬂ)[= 0, STOP (the current #(*Y is an optimal so-

iEN ALY
lution), and if ®; = @ and max lggtﬂ)] # 0, go to Step 2. (Here, we judge
TENAU+L)
a= max lg,(H'l)I =0 if o < ¢(=10""°), and a # 0 otherwise.)

fEN A+ _
Step 5: Form P4y by deleting column + from F;, B; by deleting row v and column

7 from B; and a vector A by deleting component 4 from column -y of B;. Compute

Hl+1 = P:THAPHh
t= [B[]’)"h
By = B — kAT, (3.24)

set [=1+1, and go to Step 2.
Step 6: Compute Py and Hyy corresponding to NAMY, Form a vector b by
deleting component ¥ from column 7 in Hyyy, set t = [Hi41]55, compute

1
t— RTBA’
b = —aBh,
Bi+hhT/a h }

R
il

B[+1 = (325)

A

AT o

set /=141, and go to Step 2.

4. Validity of the Algorithm

We can show the following.

Lemma 4.1: For all1>0,0<a® <1.
(Proof) For all § € N A" we have ¢; < .7;_5” < d; by definition.

Hence,
()

. ¢; —

min =~ Z—L >0, (4.1)
jenA®, Mo sg—)

and 0

min - z
JeNAD, {P5p sf-)

> 0. (4.2)

6

Lemma 4.2: In Step 4 we have
fD) < £(EH) o f(EED) < f(2HY), (4.3)

where ZUFD) is the new point obtained from #*+1) in Cases (b) and (d) in Step 4.

(Proof) We only consider Cases (a) and (b) here. Cases (c) and (d) can be proved
in the same way.

In Case (a), since A <0, we have
__gﬁ“’l)
0< =Xy = 4 <1, (4.4)
T (dy —cq)anm
that is,
_g£‘+1)
C.f < C,—T e a'i_ < d:?- (4 5)
Y
Thérefore,
oy < 2§t < d. (4.6)
We thus have

1 1
FEEY - fety = E(%(m))'fAﬁ(m) 4 BT _ E(x(H'l))TA:E(H'l) — pTpU#D)

_ £(~(1+1) 0T 4G 4 (D) 4 T (504D _ 504D
2

_ __1_(3:,(1+1) —)T 4(5041) _ 5041
2

+(A§:(£+1) £+ b)T(fﬁ.(Hl) _ m(l+1))

I (5000 O C 0
2 as @55
(I41)~2
1 (gt
2 o
In Case (b) we also have
FE0) — FED) = (6 —)T 4G — alD)
{450 4 5)T(3040 — 54D)
1 !

= _§(d’7 — ¢q) azy — 9»(7+1)(d:r — ¢5)

= 5(ds— &x)asy — g5 (ds — e5) — (dy = ¢3)%ass

1
= 5lds— ¢3) amy + (d5 — ¢5) azy(—Ay — 1)

> é‘(da — ¢5)%asy > 0. (4.8)

Theorem 4.3: The proposed algorithm strictly decreases the value of the objective
function in each iteration.
(Proof) Since we have in Step 2,

) L0 4 00
= 2 - I pBgGY, (4.9)
then
FEW) - FEHY) = _;_(VT 420 4 5T 40 _ _;_(_:;;(1-!—1))1- A0 pT(4)
— %(mmf Az 4 b7 (20 _ 5041
_%(xm — a® BT A" — o BB

= a0 ARBG" — S(a) (BB A(PEI)
+aWp" P Bg"
= ¥4 4+ b PBFO — %(am)?(gmf Bg®

= QOB (As) 4] B0 - 2(a0) (g Big®
= o) Big® — (o) ¢ Bg®
— ol = ,;.a(z)]@u)f Bg".

We consider the following two cases :
Case 1: gl) = 0. We have s®) = 0 and hence #*1) = z(®. Since o = 1, we obtain

anew z(*1) in Step 4 where we go when &; # 0. From Lemma 4.2, we have
£ < F(ED) = fa0), (4.10)

8

Case 2: g% # 0. We have
- 1 _ -
f(m(f)) — f($(1+1)) — a(’)[l — Ea(‘)](g“))Tngm, (4.11)

0 < o <1 from Lemma 4.1 and B, is a positive definite matrix. Hence, we have
f(z®) - f(#+1) > 0, that is,

FE) < (a0, (w12
If o) <1 and ny > 1, then z{"tY) = §(*+1) and we have
Fa9) = F(E) < f(a0). (13)
I a® =1 or ny = 1, we have from Lemma 4.2
Fa) < FE) < £(a0). e
0

Lemma 4.4: For two iteration numbers I and I (I < L) with a®) =1 or

ny =1, and ol2) = 1 orny, = 1, respectively, if we have

N AW = AR (4.15)
then there exists at least one jo € K \ NAY) such that
25,11 # 25,2, (4.16)
(Proof) If we have z;(h) = 2,02 for all j € K\ N AW (= K \ N AY), then
2 — p B, Tz®) = 22 — p P, Tl (4.17)

since N A" = A A" we have n;, = n;,. We consider the following two cases:
Case 1: alt) = o®) = 1. Since N A") = N A2 we have

P, =P, H,=H, B,=B5,. (4.18)
In Step 2,
FH) = g0 4 gl o)
= ") 4 p [-B;, "]
= zW — P, B,[H,P, ") + P,To 4+ P,TA(I — P, P, ")2™)]
= o) _p, P, Te® — B, 7B, P,Tb— P, By P, Aja® — B, B, T2
= [[—P,B,P, Allz" — PP, "2} - P, B, P, 7. (4.19)

9

In the same way, we have
gV = [— P, B, P, " A][z" - P, P, T2 — P, B, P, b. (4.20)
iFrom (4.17)~(4.20), we have
5(!;+1) — ‘,E(Iz-l-l). (421)

Case 2: ny, =ny, =1, o) < 1 or o) < 1. In this case, there is only one element
in VA and M A" respectively. Suppose that &N/ A = A/ A®) = {k} for some
k with 1 < k < n. From (4.17), z{V) = g,(2) (1 # % 1 <14 < n) and from the

definition of F; we have
Py,=PR,= (0 1,0, O)Ta (4.22)

where the kth component is one. Then H, = H;, = [aw], By, = B, = [a5}] and we

also have x(l”'l "(12'*'1) In fact,
S(‘l) — _Blig(ﬁ)
= —Bh [Hh PhTm(ll) + Pth + PhTA(I - PllPh T)m(h)]
= —xg‘) —apbe — akk [aklwgl) +--4 akk_p’vgi)l + akk+1$g_;)1 + o gz
= —zgl) ~ agtby — s Z GpiT (1) (4.23)
=144k

Since o) < 1, we have
(h)

i Ck — Ty,
s <0 and ~—m— <1 (4.24)
or)
dr — =,
(1) .
s >0 and) < 1. (4.25)
cp—ztt? .
When s(*) < § and L= < 1, Le,
a:,(f‘) — ¢ < —stt), (4.26)
we have from (4.23)
W — ¢ < = 4 b + gy z aiziV,
—cp < a;klbk -+ a;,cl E ak,-a:,(-ll). (427)
=137k

10

In the same way, we have

n
! { -1 -1 I
5(2) = —‘-'rgf) = QrE bk = Qi E Gk{.’b's 2).
i=1,ixk

Since ™ = 2! (i # k, 1 <i < n), we have from (4.27)

n
s = _531(:2) — agebe — agy Z ak;a:,(“) <cp— 3:,(:2) <0,
i=1,i%k
(I2)
Cp ~ T
AR <1

5(i2)

Hence, (2™ = (%1 = ¢,
()

When s(%) > 0 and d%s_,%— < 1, we can also prove that

5&5:24'1) = ﬁ':}cll'l'l) — dk-

Therefore, for Case 2 we also have

. Fla+1) . z(l2+1)

Since {; < I, this is a contradiction to Theorem 4.3.

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Theorem 4.5: The proposed algorithm solves Problem (QP) in finitely many steps.
(Proof) Since the number of possible nonactive sets (and active sets) is finite, the

finiteness of the proposed algorithm follows from Lemma 4.4.

5. Computing Relevant Matrices

O

In the algorithm, the nonactive set AA!" is repeatedly changed by adding or re-

moving a nonactive or active constraint and the relevant matrices are updated ac-

cordingly. In this section we describe an efficient way of updating relevant matrices.

Before we get into the detail, we first describe how to initialize the data for the

algorithm. We choose an initial point given as follows. Choose an index iy € K and

t with ¢;; <t < d;y, and put

.7,'(0) = t, 2 = io’
: ¢ or d;i, iF#1p.

11

Then we can start the algorithm with very simple parameters:

NA® = {3} (5.1)
PD =(0a"':03110}"'10)1—7 (52)
Hy = POTAPO = [aioio]'» By = H(;-I = [l/aioio]' (53)

Notice that 1 appearing in F; is the zth component.

5.1. Removing a nonactive constraint

In this case, [N AD| = [N AD| — 1, then the number of columns in P, is one less
than that in Fj_;. Without loss of generality we assume that Pj_; = [P, p1]. Then
H;_; and H; have the following relationship:

H, PT Ap,
Hy_, = .

pr AP p] Apy

Bi_y hy
Bi,=)
RI 4

Bl = H[_l - Bl—l - hlh;r/tl

Also, we have

and

5.2. Adding a nonactive constraint

In this case, W A®| = [N A'| 41, then the number of columns in P, is one more
than that in F_;. We also assume that P, = [P_;, p;]. Then,

HI'—I P[I1AP2 }

H = (5.4)

ps APy p] Ap,

Letting

ho =Pl Apy, t,=p; Ap,, a= 1/(ty— h] Bi_thy), k= —aBj_ih,,

12

we have

B;=Hl—1=

Bf_1 + fZFLT/a ?2.
(5.5)

BT o

In this way we can efficiently compute H; .

6. Computational Experiments

6.1. The test problems

We generated problem instances as follows.

Given the size n of a matrix A, we generate a lower triangular matrix L = [lij]nxn
with i = 1and I; (i > j) (§,5 = 1,...,n) chosen at random from {—20, 20]. We then
set A= LDLT, where D is a diagonal matrix with positive diagonal elements taken
at random from [5,20]. We also choose lower and upper bounds ¢; {z = 1,...,n)
from [—10,10] and d; (i = 1,...,n) from [—5,15] at random, respectively (we swap
¢ for d; if g > d;). b (i =1,...,n) are chosen from [—10,10] at random. We call
the execution of the algorithm starting from Step 2 till the next Step 2 a cycle.

6.2. Discussions

We carried out computational experiments by using numbers in double precision in
C. The numerical results are shown in Figures 6.1~6.13. Figures 6.1~6.7 show basic
characteristics of our algorithm. The numerical comparisons with [8], [2] and [1] are
shown in Figures 6.8~6.13. All the experiments are made on SUN $-4/10 model 41.

Figures 6.1 ~ 6.5 show sample behaviors of our algorithm for problems generated
as above for n=10, 20, 30, 40 and 50, respectively.

Figure 6.6 shows a ten-sample average behavior of the number of cycle versus
the dimension. Figure 6.7 shows a ten-sample average behavior of the running time
(seconds) versus the dimension.

From Figures 6.1 ~ 6.5 we can see that the objective function f(z) decreases
very rapidly and an optimal solution can be found in only several steps for each
dimension n=10 ~ 50. As the dimension increases, the number of cycles increases
moderately (in Figure 6.6) and the required running time is nearly proportional to
the dimension (in Figure 6.7).

13

Weused 5. G. Nash’s code [8] to compare its CPU time to our algorithm in Figure
6.8 and Figure 6.9, where our algorithm is denoted by J.L.F.. In lower dimensions,
the required running times are nearly same, but our algorithm is getting faster than
5. G. Nash’s as the dimension increases.

We also compared our algorithm with codes L-BFGS-B [11] and LANCELOT [3]
denoted by B.L.N.Z. and B.C.G.T., respectively in the figures. From Figures 6.10
and 6.11 we can see that, when the dimension n is low (n < 70), the difference of
the running time between our algorithm and code L-BFGS-B is not so large, but the
running time of code L-BFGS-B increases more quickly than that of our’s. The same
fact is also demonstrated in Figures 6.12 and 6.13 that CPU time of our algorithm
is less than that of code LANCELOT in all dimensions shown here.

14

f(x)

60

100

80

40

number of cycles

Figure 6.1: a sample behavior (n=10).

15

f(x)

300

250

200

150

number of cycles

Figure 6.2: a sample behavior (n=20).

16

f(x)

1000

1400

1200

800

600

number of cycles

Figure 6.3: a sample behavior (n=30).

17

f(x)

1200 1400 1600 1800

1000

*®

number of cycles

Figure 6.4: a sample behavior (n=40).

18

f(x)

2500

2000

1500

1000

> 4 6 8 10

"number of cycles

Figure 6.5: a sample behavior (n==50).

19

12

14

12
|

o |
e
*
CD %
9 o _
3 ~
*

o
o / *
) ©
O . .
- ~
3 \ *
c /

q- 7] *

*
N -
O -

[|] | [I

0 10 20 30 40 50

dimension

Figure 6.6: Ten-sample average behaviors

20

60

time(sec.)

2.0

1.5

1.0

0.5

0.0

10 20 30 40 50

dimension

Figure 6.7: Ten-sample average behaviors

21

60

time(sec.)

2.5 3.0

2.0

15

1.0

0.5

0.0

dimension

Figure 6.8: a sample behavior

22

50

time(sec.)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

20 30 40

dimension

Figure 6.9: Ten-sample average behaviors

23

50

time(sec.)

—— B.L.N.Z /
------------- JLF
/".
2l
l T — l l
20 40 60 80 100

dimension

Figure 6.10: a sample behavior

24

time(sec.)

20 40 60 80 100

dimension

Figure 6.11: Ten-sample average behaviors

25

time(sec.)

14

12

10

— B.C.G.T

I |

50 100

dimension

Figure 6.12: a sample behavior

26

150

time(sec.)

14

12

10

I I
50 100

dimension

Figure 6.13: Ten-sample average behaviors

27

150

7. Conclusions

We present a new algorithm for solving convex quadratic programming problems
with box constraints. Our algorithm can efficiently compute relevant inverse ma-
trices and find an optimal solution in finitely many steps. We have carried out
numerical experiments and they indicate that our algorithm is practically efficient
and is faster than the existing codes of [11] and [3].

A cknowledgments

The second author would like to express his sincere appreciation to Professor Yoshit-
sugu Yamamoto for providing him the opportunity to work in the Institute of Policy
and Planning Sciences, University of Tsukuba for four months. Special thanks go
to Japan Society for the Promotion of Science (JSPS) for the financial support to
the second author. The third author’s work is supported by a grant-in-aid of the
Ministry of Education, Science, Sports and Culture of Japan.

28

References

[1] Bongartz, I, Conn, A. R., Gould, N. I. M., and Toint, Ph. L., 1993, CUTE:
constrained and unconstrained testing environment. Research Report, IBM T.
J. Watson Research Center, Yorktown, USA.

[2] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C., 1995, A limited memory algorithm
for bound constrained optimization. STAM J. Scientific Computing 16, 1190-
1208.

[3] Conn, A. R., Gould, N. I. M., and Toint, Ph. L., 1992, LANCELOT: a FOR-
TRAN package for large-scale nonlinear optimization (Release A). No. 17 in
Springer Series in Computational mathematics, Springer-Verlag, New York.

[4] Dembo, R. S., and Tulowitzski, U., 1983, On the minimization of a quadratic
function subject to box constraints. Working paper No. 71, Series B, School of
Organization and Management, Yale University (New Haven, CT).

[5] Goldfarb, D., and Idnani, A., 1983, A numerically stable dual method for solv-
ing strictly convex quadratic programs. Mathematical Programming 27, 1-33.

[61 Jiao, ¥. C., 1990, Study on constrained optimization and its application to
optimal design of antennas. Ph.D. Dissertation, Xidian University, Xi’an, May
1990.

[7] Jiao, Y. C., Liu, X. J., and Fujishige, S., 1996, An algorithm for strictly convex
quadratic programming with box constraints. Proceedings of the Second In-
ternational Symposium on Operations Research and Its Applications (Guilin,
China, December 11-14, 1996), pp. 27-36.

[8] Nash, S. G., 1984, Newton-type minimization via the Lanczos method. STAM
J. Numerical Analysis 21, 770-788.

[9] Nickel, R. H., and Tolle, J. W., 1989, A sequential qua,dra.tic.'programming
algorithm for solving large, sparse nonlinear programs. Journal of Optimization
Theory and Its Application 60, 453-473.

29

[10] Yang, E., and Tolle, J. W., 1991, A class of methods for solving large, convex
quadratic programs subject to box constraints. Mathematical Programming 51,

229-245.

(11] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J., 1994, L-BFGS-B: a limited
memory FORTRAN code for solving bound constrained optimization problems.
Tech. Report, NAM-11, EECS Department, Northwestern University, (Latest

revision June 1996).

30

