No. 715

A Characterization of Perfect {0,+ 1}-Matrices

by
Kazutoshi Ando

March 1997



A Characterization of Perfect {0, +1}-Matrices

Kazutoshi Ando
Institute of Policy and Planning Sciences
University of Tsukuba
Tsukuba, Ibaraki 305, Japan

March 12, 1997

Abstract

The concept of perfect {0,=£1}-matrix was introduced recently as a gen-
eralization of perfect {0, 1}-matrices. A {0,+£1}-matrix A is called perfect if
the associated generalized set-packing polytope

P(A)={z]|0<z <14z <1-n(4)}

is integral, where n{A) denote the vector which r-th component is the num-
ber of negative components in the r-th row of A. Several characterizations for
perfect {0, %1}-matrices are already known. Here, we associate a bidirected
graph for a {0, +1}-matrix in an obvious way and give a simple characteriza-
tion of perfect {0, £1}-matrices in terms of bidirected graplhs.

1. Introduction

Let 4 be a {0, £1}-matrix of size m x n. The generalized set-packing polytope P(A)
associated with A is defined as

P(A)={z|r€R"0<x <1 Ax < 1—n(4)}, (1.1)

where for any scalar v € R we denote by « the vector of dimension m which com-
ponent are all v and n(A) denotes the vector which r-tli component is the number
of negative components in the »-th row of 4. A {0,%1}-matrix is called perfect
if its associated generalized set-packing polytope P(A) is integral. The concept of
perfectness was introduced by Conforti, Cornugjols and de Francesco [6]. Perfect
matrices encompass a large variety of classes of {0, :1}-matrices related to integral
polyhedra such as totally unimodular matrices and balanced {0, £1}-matrices ([15];
see also [3]).



Recent years, perfect {0, 31}-matrices have received considerable attention and
several authors gave characterizations of perfectness. Conforti, Cornuéjols and de
Francesco [6] and Guenin [9] characterized perfectness in terms of associated {0,1}-
matrices. Boros and Cepek [2] gave a characterization is in terms of an associated
undirected graph.

Let us recall a characterization of perfect {0,1}-matrices. For a {0, 1}-matrix
with m rows and n columns, we associate a graph G4 which has the vertex set as the
set of column indices V' = {1,---,n} and has an edge {v,w} if and only if there is a
row @, = (Ctpy, -, ) Of A such that ¢, covers {v,w}, L.e., we have o, = a, = 1.
A graph G is called perfect if for any induced subgraph G’ the clique number w(G")
of G' (the maximum size of a clique of G’) is equal to the chromatic number \(G’)
of G' (the minimum number of pairwise disjoint stable sets of G’} (see, e.g., [13]).

Theorem 1.1 (Chviatal [4], Fulkerson (8], Lovész [13]): A {0,1}-matriz A is per-
fect if and only if

(i) The associated graph G 4 is perfect, and

(i1) Each mazimal clique of G4 appears as a row of A.
O

The purpose of this paper is to give a complete analogue of Theorem 1.1, where
we associate a bidirected graph ([7); see also [12]) for each {0, £1}-matrix and char-
acterize the perfectness in terms of the bidirected graph. (Boros and Cepek’s char-
acterization [2] has similar flavor as Theorem 1.1. However, they associate with a
{0, £1}-matrix an undirected graph, which construction seems less ohvious.)

A bidirected graph & = (V/, A} is defined as a pair of a finite set V" called vertex
set and a finite set A called arc set, where for arc ¢ € A either a has two tails v
and w, a has two heads v and w, or ¢ has one tail v and one head w. (Later, we
will give another pricise definition of bidirected graph.} For any {0,%1}-matrix 4
of size m X n, we associate a bidirected graph G, = (V, 4), where V' = {1,---,n}
and the arc set A is defined as follows:

(1) there is an arc @ € A which has two tails v and w if and only if there is a
row a, of 4 such that a,, = e, = 1.
(ii) there is an arc « € A which has two heads v and w if and only if there is a

row a, of A such that o, = o = ~1.
(iti) there is an arc « € A which has one tail ¢ and one head w if and only if
there is row a, of A such that o, = —av. = L.

A crucial step for proving the analogue of Theorem 1.1 is the characterizations
of perfect bidirected graph obtained recent years ([10], [14]). This corresponds to
the polyledral characterization of perfect graphs of Chvétal [4] in the proof of The-
orem 1.1. The rest of the proof of our result is not so immediate as in the case
for {0,1}-matrices. Another important step is the reduction of {0,=%1}-matrices
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used by Boros and Cepek [2]. However, for our purpose, the reduction of Boros ancl
Cepek [2] is not enough. We must further reduce {0, +1}-matrices.

Our characterization has the following features as was the case for Theorem 1.1:
(1) The associated bidirected graph is naturally defined; and (ii) Our characterization
gives an insight to structures of integral generalized set-packing polytopes. Also, our
characterization, if specialized to {0, 1}-matrices, is easily seen to vield Theorem 1.1.

The remaining sections of this paper are organized as follows. In Section 2
we review the concept of bidirected graph and the characterizations of bidirected
graphs. In Section 3 we describe the reduction of {0,+£1}-matrices obtained in [2]
(see also [3]). Finally, in Section 4 we describe a further reduction step for {0, £1}-
matices and prove the main theorem characterizing perfect {0, &:1}-matrices.

2. DPerfect Bidirected Graphs

In this section we review concepts and results concerned with bidirected graphs.
Characterizations of perfect bidirected graphs of Sewell [14] and of Ikebe and Tamura
(10} are of particular importance.

2.1. Bidirected graphs

A bidirected graph G = (V, B; d) consists of a finite set " called the wertez set and
a finite set B called the arc set, and 9: B — ZY, where for eacl b € B there exists
two vertices v and w such that we have either
(i} b= xu,+ Xw (b has two tails v and w),
(il) 0b= —x, — Xw (b has two heads v and w), or
(iii) @b = x, — Yw (b has one tail v and one head w),

where v, € RY is defined as

1 fo=w

0 otherwise (v eV, (2.1)

o) = {
for any w € V. Throughout this paper, we assume v # w for (iii). If b = v £ 1w,
we say b is incident to v (and w) and if the coefficient of v is positive (respectively,
negative), b is said to be positively (respectively, negatively) incident to v. Two arcs
by and by are called oppositely incident to v if b, and by are incident to a common

vertex v but with opposite signs.
We associate polytope P(G) with a bidirected graph G = (V, B; @) defined as

P(G)={zr|xeRV,0< < 1,Vbe B: (b ) <1 —ndb)), (2.2)



where (-, -} denotes the canonical inner product and for any = € {0, :I:l}v we denote
by n{z) the number of —1's in z. An integral vector in P(G) is called a solution of
G. Let Pr(G) be the convex hull of the solutions of G.

For a finite set V" let us denote by 3" the set of ordered pair of disjoint subsets of
V,ie, 3" = {(X,Y)|X,Y CV,XNY = 0}. Each element (X, ") of 3" naturally
corresponds to a {0, +1}-vector y(x,y) defined as

1 ifeeX
Xea(v) =< -1 ifeel (v el (2.3)
0 otherwise

and conversely. Vector x(x,y) is called the characteristic vector of (X,Y"). We also
call each element in 3Y a signed subset of V.

For any two signed subsets (X}, ¥7), (5, ¥5) € 3Y, if X1 C s and ¥] C Y3, we
write (X, ¥7) C (X5, 15).

For a {0,+1}-matrix A of size m X n we associate a bidirected graph G, as
follows. G4 has the vertex set as the set of columns 17 = {1,---  n} and there is an
arc b of G4 if and only if there is a row «, of A such that @, covers 9b, i.e., b C a,.
We call G4 the quadratic covering (bidirected) graph of {0, £1}-matrix A (see [3]).

Let Pr{A4) be the integer hull of P(4), i.e., the convex hull of the integral vectors
in P(A).

Proposition 2.1 ([3]): Let A be a {0,£1}-matriz and G4 its quadratic covering
graph. Then we have

P(A) C P(Ga), (2.4)
Pi(A) = Pi(GL). (2.5)
a

Note that we may have a strict inclusion in (2.4), e.g., P{G.,) is always nonempty
(since -é- € P(G,)) while P(A) can be empty.
For a bidirected graph G an alternate sequence of arcs and vertices

P = (wp,b1,v1,- -, by, 01) (2.6)

of G is called a path of G if

(i) b, is incident to vy and b; is incident to vy.

(i1} b; and b;+, oppositely incident to v; for i = 1,---,1 - 1.
A path is called cycle if vp = 1. A bidirected graph is called acyclic if it contains
no cycle.

A bidirected graph G is called transitively closed if for any two arcs b, ancd by
oppositely incident to a vertex ¢ there exists an arc by of G such that dby = 9b, +6bs.



The transitive closure of G = (V, B; ) is the minimal trausitively closed bidirected
graph G = (V,B*,9*) with B C B* and @ heiug the restriction of &*. It is obvious
that the set of solutions of G coincides with the set of solutions of G~, and hence,

Proposition 2.2: For any bidirected graph G we have

PI(G) = Pi(G") 2

[
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2.2. Perfect bidirected graphs

We call an acyclic and transitively closed bidirected graph closed bidirected graph
for short.

For a closed bidirected graph G, a signed subset (X, Y") € 3" is called a biclique
([11]) if for each distinet v, € X' UY there is an arc b of G such that 9b = +v £ w
and (db,(X,Y)) = 2. The bicliques ({v},0),(0, {v}) (v € V) are called #rivial. A
biclique of G is strong ([11]) if there is no vertex v € ¥ — (X U ¥’} of G such that

(i) for each w € X there exists an arc b of G such that b= y, =+ v, and
(ii} for each w € Y there exists an arc b of G such that 9b = —y, + v.

Theorem 2.3 (Johnson and Padberg [11]): Let G = (V, B; 8) be a closed bidirected
graph. Then we have
(i) PiG) is full-dimensional. ‘
(i) For each strong biclique (X,Y) of G, inequality 2(X) — 2(Y) < 1 - [¥] indu-
ces a facet of Pr(G),

where ¥(Z) = Y,z 2(v) for any Z C V. 0

A closed bidirected graph G is called perfect ([11]) if for each {0,41}-vector c:
V — {0,£1}, two objective function values of the following dual linear programming
problems are equal. .

Maximize Y e(v)a{v)
(P) vev (2.8)
st 2(X)—2(Y)<1-Y] ((X,Y) € S(G)).

Minimize S =¥
(X.F1E8(G)

s.t. E Axy) — E Mxyy 2 v}y (veV),
(X\V)eS(G)veX (X.Y)eS(G)aeY
(2.9)

(D)



where S(&) denote the set of strong hicliques of G.

The following theorem was conjectured by Johnson and Padberg [11] in 1982
and proved by Sewell [14] only recently. For a bidirected graph G = (V, B;d) the
underlying graph G = (V,E) of G is the (undirected) graph which edge set E is
defined by

E={{v,w}|3be B:0b==2vy, % x,}. (2.10)

That is, G is the undirected graph disregarding the incidence relation of every arc

of G.

Theorem 2.4 (Sewell {14]): A closed bidirected graph G is perfect if and only if its
underlying graph G is perfect. m)

For a closed bidirected graph G define a polytope Q(G) CRY as
Q(G) = {z]z € RV, 2(X)—a(Y) < 1-|¥| ((X,Y): a strong biclique of G)}. (2.11)

Ikebe and Tamura [10] characterized bidirected graph G for which Q(G) is inte-
gral. '

Theorem 2.5 (Ikebe and Tamura [10]): For o closed bidirected graph G, Q(G) is
integral if and only if its underlying graph G is perfect. O

Combining the two theorems above we obtain the following, which is crucial for
deriving our main theorem.

Corollary 2.6: Suppose G is a closed bidirected graph. Then, G is perfect if and
only if Q(G) is integral. |

3. Horn Matrices

In this section we review a sequence of reductions of a {0, £1}-matrix developed in

[2].

3'.1. Horn matrices

Let A be a {0, :I:l}—matrix of size m X n. Then, we have either

(i) P(A)is empty (4 is trivially perfect),
(ii) P(A) is nonempty while P(A) N {0, l}v is empty (A4 is not perfect), or
(i) P(4)n{0,1} #0.
(3.1)



Lemma 3.1 ([3]; see also (2, Corollary 2.2]): There is an O(mn) algorithm that
checks which case of (i)~(iii) in (3.1) occurs, and finds a vector &™ € P(4)N {0, 1}“
of Case (iii) occurs. O

A {0,£1}-matrix A is disguised Horn ([3]) if P(A)n {0,1}" # 0. It follows from
Lemma 3.1 that we ounly have to consider disguised Horn matrices. Suppose that
A is disguised Horn and 2™ € P(4) N {0, 1}". (Such a vector x* can be found in
O(mn) time.) Define S C V hy

S={v|ve Va2 (v)=1}. (3.2)

Let 4’ be a {0,%1}-matrix obtained from A by multiplying —1 for each column
v € 5. Then the mapping P{A4) 5 z — 2’ € P(A’) defined by

ton_ J T==(v} ifvel -
2'(v) = { z(v) otherwise (veV) (3.3)
gives an isomorphism between polyhedra P(A4) and P(4’). In particular, P(A) is
integral if and only if P(A') is integral. Therefore, our attention may be restricted
to such a matrix A’ that we have 0 € P(A').
We call a {0,%1}-matrix A Horn ([2]) if 0 € P(A4), or equivalently, n(A4) < 1.

3.2. Horn matrices with no forced zero

Let A be a Horn matrix. For each row » = 1,---,m of A let us denote by N, the
set of column indices for which r-th row of A has positive entries, i.e.,

N, ={v[veV a,=1} (3.4)

where a,, is the (r,v) component of matrix A. Let us consider the quadratic cov-
ering graph G, of A. Since A is Horn, there is no two-head arcs in 4. Let the
directed graph D, obtained by deleting all the two-tail ares of the quadratic cov-
ering (bidirected) graph G4'. Suppose that C,---,C, are the strongly connected
component of directed graph D4 (or equivalently, strongly connected component of
bidirected graph G4 (see [1])).

Lemma 3.2 ([2, Corollary 3.2]): Let A be a Horn matriz and x € P(A). Then, for
each strong component Cy, (t = 1,---,8) of D4, x is constant on Cy, i.e., we have
(v) = 2{w) forv,w e C,. m!

Horn matrix A is said to have no forced zero if there exits a vector 2 € P(A4)
such that z(v) > 0 for each v € V. -

Let A be a Horn matrix of size m x n. For each row a, (r = 1,---,m) of A
with n{a,) = 1 let us denote by ¢(r) the unique column index for which e, has the
negative entry.

1The definition of D 4 is slightly different from that in [2]. However, the difference is inessential.
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Lemma 3.3 ([2, Lemmas 3.3, 3.4 and 3.6]): Let A be « Horn matriz of size m X n.
Then A has no forced zero if and only if for each row ¢, (r = 1,---,m) of A with
n{a,}) = 1 we have

() |N.| =1 or

(ii) For the strong component C; containing c(r) we have N, N C, = §.
T

Lemma 3.4 ([2, Corollary 3.7]): Given an m X n Horn matriz A, one can obtain
in O(mn) time another Horn matriz A’ of size m’ x n' (m/ < m and n' < n) which
has no forced zero. Moreover, P(A") is integral if and only if P(A) is integral. O

3.3. Non-reconverging Horn matrices

Let us denote by U, the set of vertices reachable from vertex v in the directed graph
D As i.e., '
U, = {w|w €V, there is a path from v to w}. (3.5)

A Horn matrix A is said to reconverge from vertez v if there exists a row r of 4 such
that [NV, NU,| > 2. A is called non-reconverging if there is no such vertex.

Lemma 3.5 ([2, Lemuma 4.1]): Let A be a Horn matriz with no forced zero and
which is reconverging from @ vertex v. Then, P(A) is not integral. a

Boros and Cepek also showed that non-reconverging property of a Horn matrix
with no forced zero can be checked in O(n?m) time. It follows from Lemma 3.5 that
it suffices to consider non-reconverging Horn matrices with no forced zero.

4. Perfect {0,£1}-Matrices

Let A be a non-reconverging Horn matrix with no forced zero and D 4 he the directed
graph after deleting the two-tail arcs of the quadratic covering graph G, of A. Let
us note that for each strongly connected component C; (¢ =1,---,5) of D4 and each
row 7 of A we have |N. N Cy| < 1 by the definition of non-reconverging property.
Let us define an (apparently Horn) matrix A’ of size m x s by

1 f|N.NC|=1ande{r) & C,
apy=1¢ =1 if N,NCy=0and ¢(r) € G, (r=1,---,myt=1,---,5). (4.1)
0 otherwise

For each strong component C, {t = 1,---,s) of Dy, choose an arbitrary but fixed
vertex v; € C;. Given an » € RY, we define 2/ € R® as

dE)=a(vw) (E=1,---,9). (4.2)



Conversely, for any 2 € R*® we define x € RV as
w(v)y=2'(t) (veCut=1,--- s (4.3)

Lemma 4.1: Let 4 be a non-reconverging Horn matriz with no forced zero and A’
be defined in (4.1). Then x € P(A) if and only if 2’ € P(4'), where 2 € RY and
' € R* correspond under relations (4.2) and (4.3).

(Proof) We prove for each row index » = L,--+,m we have a,» < 1 — n(a,) if and
only if al2" <1 —n(al). Let r =1,---,m be any row index.

Case 1: n{a,) = 0. We have n{al) = 0 and by Lemma 3.2 that

arz = 2(N,)
= Y {a(N.nC)t=1,.-,5}
D) t=1,,8[N.NC] =1}
= AV
= ala, (4.4)

where N denotes the set of column indices for which a.. has positive entries.
Case 2: n{a,) = 1 and for the strong component Cj. containing e(r) we have
N.NCyp = 0. We have n(a) = 1 and by Lemma 3.2 that

ar = z(N.)— z{e(r))
= > {2(N.NCY[t=1,---,8} —2(c(r))
= Z{.‘L"(t) [2‘-=‘1,---,s,|.f\f,.ﬂC}| =1} — 2'(t7)
= WV - ()
= aa' (4.5)

Case 3: n(a,) = 1 and for the strong component C;. containing ¢(r} we have
NN Cp # §. In this case, we have by Lemma 3.3 that |N.] = 1. Letting {v*} = N,
it holds that

arx = z(v™) — 2(c(r)). (4.6}

Since v* and ¢(r) belong to the same strong component C-, we have a,2 = 0 for
any * € RY defined by (4.3). On the other hand, we have ¢/ = 0 by definition of
A’ and |N,.| = 1. Therefore, inequality /2" < 1 is vacuous. O

Then, we have

Lemma 4.2: Let A be a non-reconverging Horn matriz A with no forced zero. Then
the matriz A’ defined in (4.1) is again non-reconverging Horn matriz with no forced
zero. Furthermore, P(A) is integral if and only if P(A') is.

(Proof) Let ¢: P{A) — P(A") be defined as ¢(x) = ', where 2' is defined in (4.3).



It follows form Lemmas 4.1 and 3.2 that ¢: P(A) — P(A’) is a bijection. Also, since
¢ can be regarded as a projection of P(A) onto some coordinates, ¢: P{4) — P(A')
defines an isomorphism of polyhedra. The assertions of the present lemma now
follows. a

By definition, for the matrix A’ defined by (4.1) each strong component of D s
is singleton. For a Horn matrix A4 let us call A reduced? if each strong component. of
D4 (or equivalently, of G4) is singleton. It follows from Lemina 4.2 that we cousider
only non-reconverging reduced Horn matrix with no forced zero.

We are now ready to prove the following main theoren.

Theorem 4.3: A non-reconverging reduced Horn matric A with no forced zero is
perfect if and only if the following two conditions hold:

(i) The transitive closure G7 of the quadratic covering graph G, is perfect.
(i) The characteristic vector of each nontrivial strong biclique of G% appears as
a row of A.

(Proof) First, note that for a non-reconverging reduced Horn matrix A with no forced
zero, the quadratic covering graph G, is acyclic, and hence, its transitive closure
G is closed bidirected graph.

Suppose P(A) is integral. Then, we have

P(A) = Pi(A) = Pi(G4) = P{GY) C Q(GY). (4.7)

On the other hand, since the the characteristic vector of each strong biclique of G
induces a facet of P/(G%) = P(A) due to Theorem 2.3, it appears as a row of A
or is trivial, i.e., the facet is induced by 0 < az(v) or z(v) <€ 1 for some v € V.
Therefore, we have Q(G7) C P(A). Then we have Q(G7) = P(4) and it follows
from Corollary 2.6 that G’y is perfect.

Conversely, suppose that Conditions (i) and (ii) hold. Then, we have

Pi(A) = P(G3) = Q(G7) 2 P(A). (4.8)
Hence, we have Pr(4) = P(A), i.e., 4 is perfect. O
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