No. 714

A New Statistical Inference. (Part A) —Case of the Uniform Distribution $U[\theta, \theta+1)$.—

Ъу

Yoshika Nogami

February 1997

A New Statistical Inference. (Part A) ----Case of the Uniform Distribution U(8,8+1).---

by Yoshika''' Nogami January, 1997

Institute of Socio-Economic Planning Institute of Policy and Planning Sciences University of Tsukuba

Abstract.

In this paper we use the uniform distribution with density $f(x|\theta)=1$ for $\theta \le x < \theta + 1$; =0, otherwise for real θ . The purpose of this paper is to propose a test based on an optimal confidence sets $\{S^x(y)\}$ for testing the Hypothesis $H_0: \theta = \theta_0$ versus the alternative $H_1: \theta \neq \theta_0$.

^{(*) &}quot;Yoshika" is a pen name of the author's first name, Yoshiko.

§ 1. <u>Introduction.</u>

Let $I_A(x)$ be an indicator function such that $I_A(x)=1$ for $x\in A$; =0 for $x\in A$. Throughout this paper the underlined distribution is the uniform with density $f(x|\emptyset)=I_{\{\emptyset,\emptyset,1\}}$, (x) for real \emptyset . We also let $X_{\{1\}}$, $(i=1,2,\dots,n)$ denote the i-th smallest observation of X_1,\dots,X_n , taken randomly from the population with density $f(x|\emptyset)$. Let α be a real number such that $0<\alpha<1$. To test the hypothesis $H_0:\emptyset=\emptyset_0$ against an alternative $H_1:\emptyset=\emptyset_0$ at a size α , we use an unbiased estimator $Y=(X_{\{1\}},+X_{\{n\}},-1)/2$ and construct uniformly most acculate (UMA) unbiased family of confidence sets $\{S^*(y)\}$ for \emptyset at $\{S^*(y)\}$ for $\{S^*(y)\}$ and $\{S^*(y)\}$ for $\{S^*(y)\}$ at $\{S^*(y)\}$ for $\{S^*(y)\}$ and $\{S^*(y)\}$ for $\{S^*(y)\}$ at $\{S^*(y)\}$ for $\{S^*(y)\}$ and $\{S^*(y)\}$ for $\{S^*(y)\}$ and $\{S^*(y)\}$ for $\{S^*(y)\}$ for

For notational convensions we denote the defining property by $\stackrel{\leftarrow}{=}$ and also let $h'(x) \stackrel{\leftarrow}{=} dh(x)/dx$.

\$2. The Optimal Confidence Sets {S'(y)} at level 1-4.

In this section we shall construct the optimal confidence sets $\{S^*(y)\}$ at level 1-a.

Let us call $\{S(y)\}$ the family of confidence sets at level 1-a, when $P_{s} \{S(Y)\ni \emptyset\}=1-a, \qquad \text{for all } \emptyset\in (-\infty,\infty).$

We consider, for each θ_0 , the problem of testing $H_0: \theta = \theta_0$ versus any alternative K at size θ_0 . Let $A(\theta_0)$ be the acceptance region of a size- θ_0 (nonrandomized) test ψ of testing $H_0: \theta = \theta_0$ versus K;

(2)
$$\psi(y) = \begin{cases} 1, & \text{if } y \notin A(\theta_0), \\ 0, & \text{if } y \in A(\theta_0) \end{cases}$$

where

$$P_{a_c} [Y \in A(\theta_0)] = 1-a.$$

From Nogami(1997), we obtain the uniformly most powerful unbiased test ϕ of size a for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ as follows:

(3)
$$\phi^{\bullet}(y) = \begin{cases} 1, & \text{if } y \notin A^{\bullet}(\theta_{0}) \\ 0, & \text{if } y \in A^{\bullet}(\theta_{0}), \end{cases}$$

where

(4)
$$A^*(\theta_0) = \{y: \theta_0 - r < y < \theta_0 + r\}$$

and

(5)
$$r=(1-\alpha^{1/n})/2$$
.

Define

(6)
$$S^*(y) \stackrel{!}{=} \{\theta: y \in A^*(\theta)\} = \{\theta: y-r < \theta < y+r\}.$$

Then, by Theorem 5.8.2 of Ferguson(1967) $\{S^*(y)\}$ is UMA unbiased family of confidence sets at level $1-\alpha$.

References

- 1). Ferguson, T. S.(1967). Mathematical Statistics---Decision Theoretic Approach, Academic Press.
- 2) Nogami, Y.(1997). "A New View on Statistical Inference.(Part I)--
 the Case of the Uniform Distribution U(0,0+1)---" Discussion

 Paper Series No. 713, pp. 1-4.