No. 713

A New View on Statistical Inference. (Part I) --- Case of the Uniform Distribution U[θ , θ +1) ---

_{by} Yoshiko Nogami

February 1997

A New View on Statistical Inference. (Part I) --- Case of the Uniform Distribution $U[\theta, \theta+1)$ ---

By Yoshiko Nogami

January, 1997

Abstract.

In this paper we again use the uniform distribution with density $f(x|\theta)=1$ for $\theta \le x < \theta + 1$; =0, otherwise for real θ . The purpose of this paper is to consider the problem of testing the null hypothesis H_0 : $\theta = \theta_0$ versus the alternative hypothesis H_1 : $\theta \neq \theta_0$, and construct the two-sided unbiased test $\phi *$ of size α which is uniformly most powerful(UMP). From direct computation we also see that the power function of $\phi *$ is convex (from below).

§ 1. Introduction.

Let $I_{\Lambda}(x)$ be an indicator function such that $I_{\Lambda}(x)=1$ for $x\in \Lambda$; =0 for $x\in \Lambda$. Throughout this paper the underlined distribution is the uniform with density $f(x|\theta)=I_{\{0,\ n+1\}}(x)$ for real. θ . We also let $X_{\{i\}}$ (i=1,2, ...,n) denote the i-th smallest observation of X_{1} , ..., X_{n} , taken randomly from the population with density $f(x|\theta)$. If we need to test the null hypothesis $H_{0}: \theta=\theta_{0}$ against an alternative $H_{1}: \theta\neq\theta_{0}$, then the likelihood-ratio tests based on the minimal sufficient statistics are useless.

So, in this paper we use an unbiased estimator $Y^{\pm}(X_{(1)}+X_{(n)}-1)/2$ to construct the two-sided size- α test ϕ^* which is unbiased and see this ϕ^* is uniformly most powerful(UMP) (in Section 2). In Section 3 the power function based on ϕ^* is computed, exactly. Eventually,we can see that for finite n, this power function is convex(from below).

For notational convensions we denote the defining property by $\stackrel{*}{=}$ and also let $h'(x)\stackrel{*}{=}dh(x)/dx$.

§ 2. Optimal Two-Sided Tests.

Let α be a real number such that $0<\alpha<1$. In this section we consider the problem of testing $H_0: \theta=\theta_0$ versus $H_1: \theta \neq \theta_0$ for real θ_0 and construct the optimal two-sided size- α test ϕ^* . Let $Y = (X_{(1)} + X_{(2)} - 1)/2$.

Let ϕ be a two-sided test of the following form:

(1)
$$\phi(y) = \begin{cases} 1, & \text{,if } y < y_1 \text{ or } y > y_2, \\ \gamma_1, & \text{,if } y = y_1, \text{, } i = 1,2, \\ 0, & \text{,if } y_1 < y < y_2, \end{cases}$$

where y_1 , y_2 , γ_1 and γ_2 are chosen so that $E_{\frac{\eta}{0}}\left(\phi\left(Y\right)\right)=\alpha$.

We let C be the critical region given by

$$C=\{y: y \le y_1 \text{ or } y \ge y_2\}.$$

To find optimal y_1 and y_2 we find the p.d.f. of Y.

Applying a variable-transformation to the joint density of $(X_{(1)}, X_{(n)})$ and taking marginal probability density function (p.d.f.) we obtain the p. d. f. of Y as follows:

(2)
$$g(y|\theta) = \begin{cases} n(1-2|y-\theta|)^{n-1} & \text{for } -1/2 < y-\theta < 1/2, \\ 0, & \text{elsewhere.} \end{cases}$$

Let $\pi_{C}(\theta) \stackrel{*}{=} E_{\theta}(\phi(Y))$. To get size- α unbiased test, we determine yl, y2 which satisfy $\pi_{C}(\theta_{0}) = \alpha$ and minimise $\pi_{C}(\theta)$ at $\theta = \theta_{0}$. Then, we get optimal region

(3)
$$C^* = \{y: y \le \theta_0 - r, y \ge \theta_0 + r\}$$

where

(4)
$$r=(1-\alpha^{1/n})/2$$
.

Let ϕ^* be the two-sided test based on above C*;

(5)
$$\phi^*(y) = \begin{cases} 1, & \text{if } y \leq \theta_0 - r, & y \geq \theta_0 + r \\ 0, & \text{if } \theta_0 - r < y < \theta_0 + r. \end{cases}$$

From the generalized Fundamental Lemma, we can show that UMP unbiased size- α test of testing $H_0:\theta=\theta_0$ versus $H_1:\theta\neq\theta_0$ is of form (1). Hence, ϕ^* is certainly UMP-unbiased.

\S 3. The convex power function.

In this section we shall exhibit the power function ${\mathfrak x}_{\mathbb C}^*(\theta)$ and show that it is convex.

(Here, we remark that for $(\mathfrak{a} \geq 0.001; n \geq 10)$, $(\mathfrak{a} \geq 0.01; n \geq 7)$, $(\mathfrak{a} \geq 0.05; n \geq 5)$, and $(\mathfrak{a} \geq 0.10; n \geq 4)$, we have that $\mathfrak{a}^{1/n} \geq 1/2$. (See Table, below.) So, calcula—

Table. The Values of alin.

tions led to (5) depend on \mathfrak{g} and n such that $\mathfrak{g}^{1/n} \geq 2^{-1}$.)

αl	.10	.05	.01	.001	
n=4	.56	.47	.32	.18	
5	.63	.55	.40	.25	Since, κ'_{c}^{*} (θ)<0 for $\theta < \theta_{0}$,
6	.68	.61	.46	.32	
71	.72	.65	.52	. 37	$\pi'_{C}^{*}(\theta)>0$ for $\theta>\theta_{0}$ and $\pi'_{C}^{*}(\theta_{0})=0$,
10	.79	.74	.63	.50	
50	.95	.94	.91	.87	and since $\pi_c^*(\theta_0) = \alpha$ and $\pi_c^*(+\infty) =$
100	.98	. 97	.96	.93	
					$\pi_{C}^{x}(-\infty)=1$, π_{C}^{x} (θ) is a convex (from

below) function of θ and the test based on C^* is an unbiased size- θ test. We also see that for all θ with $\theta \neq \theta_0$, $\pi_C^*(\theta) \uparrow 1$ as $n \uparrow \infty$.